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Abstract Yu, 2008; Frank, Goodman, & Tenenbaum, in press) have ar-
Cross-situational learning allows word learning despite gu_ed that Word§ (_:an _St'" be Ie_arned despite this sort pfmnce
exposure-by-exposure uncertainty about a word’s meabing, tainty, by combining information across exposuresor@ss-
gomb%nlng In_formtatllor; %@rosg EXDOS;JretS tﬁ 6; \rllvord- A num- gtuational learning. While a number of flavours of cross-

er of experimental studies demonstrate that humans are ca- i 4+i : ; el .

pable of cross-situational learning. The strongest cldiere S|tu§1t|0nal learning e?('St (se.e e..g. Siskind, 1996; Frank.e
are made by Yu and Smith (2007), who provide experimental al., in press), the basic premise is as follows. Each s@nati
d_z’;ltaﬁugglelstlng_tha: adult_dk;urrans ?hre capable of 11(5'“9‘ cross in which a word is used provides a number of candidates for
Situational learning 1o rapidly learn the meanings O Ilp1|ﬂil ) H : :
words simultaneously and despite considerable unceytaint that word’s meaning. Multlple uses therefore produce multi
each exposure. We identify a flaw in their testing regime whic ~ ple sets of candidate meanings, and the learner can make use
_thrOV\és trf]l_eilf] Conclté_sior}i_into ({ﬁugt,lan_d Cf)deUCtoa ngwtexper of this cross-situational information, for example by assu
iment wnich remeaies tnis metnoaological flaw. Our adata sup- : . . .
ports a more limited view of the ability of adults to rapidigch ing that the true meaning of the.word lies at the intersection
simultaneously apply cross-situational learning in ctinds of these sets of candidate meanings.
of (relatively) high referential uncertainty.

i . o . Several experimental studies have shown that adults and
Keywords: word learning; cross-situational learning

children are capable of cross-situational learning, boamf
I ntroduction naturalistic stimuli (e.g. Gillette et al., 1999; Piccin &aW

. . . ) man, 2007) and more stylised materials (Yu & Smith, 2007,
Learning the meaning of a new word is a challenge: as fa-

mously noted by Quine (1960), there are in principle in_L. B. Smith & Yu, 2008). Perhaps the most striking demon-

- ) : . . . stration of human cross-situational learning prowess @ pr
finitely many meanings which could be consistent with a sin- , 4o 4 1, v\, and Smith (2007), henceforth YS, who show that
gle utterance of an unfamiliar word, or any sequence of such

utterances. However, despite this theoretical difficuity. adult learners are able to learn multiple words simultasgou

. . despite a small number of exposures to each word and refer-
mans manifestlydo learn the meanings of new words, and ~ " :
. ential uncertainty at each exposure. We show here that a flaw
rapidly too (Bloom, 2000).

A productive area of investigation has been to explore hovx'/n YS's testing regime means that they risk substantialrov

children eliminate some of the theoretically-possible iout estimating human cross-situational learning proficiency.
practice spurious candidate meanings for a new word, in or- In the next section we provide an analysis of their test-
der to make a better guess as to the word’s true meaningng regime and demonstrate that their human participaets ar
A number of such heuristics have been identified, includingn fact outperformed by a simple non-cross-situationaiiea
(to name but two examples) the mutual exclusivity heurising procedure. This severely undermines the conclusian tha
tic (each object should have only one name, and therefortheir experimental results indicate powerful cross-situnal
already-labelled objects can be excluded as candidate refdearning abilities. We then describe a replication and rexte
ents for new words: Markman & Wachtel, 1988) and thesion of YS’s results using a more appropriate testing regime
shape bias (words generalise by shape, so a new word prob@ur results provide only partial support for YS's originahe
bly refers to a category-typical shape rather than colexr, t clusions. Atintermediate levels of referential uncertgihu-
ture, etc: Landau, Smith, & Jones, 1988). man participants can indeed use cross-situational legitoin
However, heuristics of this sort are unlikely to uniquely rapidly learn multiple words in parallel. However, our risu
identify the true meaning of a word on every word learningalso show that at the highest level of referential uncetyain
encounter: some residue of uncertainty will remain. Vesiou tested, this ability breaks down — human cross-situational
authors (e.g. Pinker, 1989; Siskind, 1996; Gillette, Gbaih, learning abilities may be somewhat weaker than suggested by
Gleitman, & Lederer, 1999; Yu & Smith, 2007; L. B. Smith & YS. Furthermore, our results suggest problems at loweldeve
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of referential uncertainty, possibly arising from the diffity (a)‘

. I . . "clow" "goom" "quidector"” ‘
of integrating information across widely separated expesu

"'quidector" "thant" "dwilt" ‘

Analysing Yu & Smith (2007) \

In order to demonstrate conclusively that a group of word
learners are capable of cross-situational word learning, t e
following three steps are necessary: (1) Present thosedesar Q,
with a sequence of training exposures to a target word or tar- s
get words; (2) Test those learners on their ability to cdlyec (C)‘ "dwilt" "quidector” "ipe"” ‘
identify the meaning of each target word; (3) Demonstrate
that the resulting performance is significantly better ttreat -
which could be obtained by any learner using a single one of \
those training exposures (i.e. the learning performandsg tr -
indicates cross-situational, rather than one-shot, iegjn ;
YS present a series of word-learning studies which they ar- 19 Wi
gue meet these three criteria. We believe a deficiency in thei Q. .
testing regime (item 2 above) means that they are not in fact
able to satisfy the third requirement: a learner capablabyf o Figure 1: Training (a—c) and test (d) exposures in the YS 3x3
remembering a single training exposure for each word outper,, gition.
forms their human participants under their testing regime.
YS use the following experimental set-up (their Experi-

ment 1) to demonstrate cross-situational learning. Adat p  details of only one of each of the six exposures they receive
ticipants are presented with a series of exposures to Wordgr each word — e.qg. the first exposure, or the last. On test-
(aurally presented) paired with referent objects (preewt  jhg on a particular target word, this learner selects at ran-
sually). Example exposures (using our materials, not thosgom from all the test objects which it saw paired with the
used by YS) are illustrated in Figure 1. At each exposurqarget word on the single exposure it remembers. For exam-
2, 3 or 4 words are presented simultaneously, depending ofle, ooking at the training and testing episodes depiated i
condition (these are referred to as the 2x2, 3x3 and 4x4 GO”dFigure 1, if the one-exposure learner remembers the exgosur
tions respectively), with all participants experiencifigan-  gepicted in Figure 1(a), upon testing on the array shown in
ditions. Participants are trained on 18 words in each condigigure 1(d) the one-exposure learner would guess at random
tion, with the training set being constructed such that eacr&mong three possible referent objects (those objectsmirese
word is paired with its referent object six times. in the single remembered exposure). Alternatively, if the
During testing, participants are presented with each worgearner only remembered the exposure depicted in Fig. 1(b)
in turn, and asked to pick out the correct referent object foior (c), the learner would guess at random among two possi-
that word from an array consisting of the correct object pluspilities in the test array (if it remembered exposure b) ar co
three foils, which are themselves referents of other wondis a rectly identify the target referent as it is the only objecir
will therefore have been encountered six times during {rainthe single remembered exposure present in the test array (if
ing (see Figure 1d). YS show that human participants perc was the sole remembered exposure). This learner is clearly
form significantly better than a memoryless baseline gjsate not integrating information across exposures, since i ceM
which selects randomly among the four test objects, whictimembers a single training exposure for each word. Nor is it
would get 25% of test items correct on average: human learnearning from the test exposure — given a different testarra
ers score on average between 53% and 88%, depending @fis one-exposure learner might perform differently.
condition, with greater levels of referential uncertaifite. How well would the one-exposure learner perform on YS'’s
the 4x4 condition) leading to reduced performance. test regime? We have previously provided a mathematical
The baseline performance that YS evaluate their particiformalism which can be straightforwardly adopted to calcu-
pants against is that which would be achieved by a learner
with no memory of any of the training exposures they re- 1Given that the test array constrains which referent objeats
ceived. Humans perform better than this. Howev_er, ther reoigiﬁﬂea({icfﬂi ?r?f%-r%(gtti)g#rgelgz&e\ggﬁrtﬁguslﬁ]gésr,g:ﬂégﬂt)[gtxﬂg%)_
are other learners who might perform better than this memosure and the test array. While this is a potentially inténgsin-
ryless learner without making use of cross-situationadrinf terpretation, we believe it is desirable to separate thiakwierm
mation. In order to demonstrate that humans are performingggEgsusr;ig‘ﬁtgﬁﬁgﬂf}gfggangy(mg'?strsesgﬁgll\yvifﬁg}ggg;t?g#g
cross-situational learning, it must also be demonstrdiat t |earning across multiple exposures (which is more reletmotoss-

they are outperforming these non-cross-situational Evarn  Situational word learning in the real world). As we will aggin the
Consider the following learner, who we will term thee- oot %" e paper, the v testing regime obscures the extahtso
g , more interesting form of cross-situational learning byngsa test

exposure learner. The one-exposure learner remembers thevhich rewards one-exposure learning.
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late this (equation 1 in K. Smith, Smith, Blythe, & Vogt, S
2006). We will repeat the relevant expression here, modified
to the question at hand for ease of exposition.

YS’s experimental deign can be expressed as follows. A& =B
learner attempts to leak words, each paired uniquely with
one of W associated referent objects. At each exposure to &
particular target word, a learner sees the target word (and
number of other words) paired with the target referent glus
non-target referent objects (thmining foils: C=11in YS’s
2x2 condition,C = 2 in the 3x3 conditionC = 3 in the 4x4 3
condition). Those training foils are drawn from a setwft=
W — 1 objects. During testing, the learner is presented with )
the target word and asked to identify the target referembfro : . o e
a set consisting of the target referent plug= 3 in YS's Number of test foils, T

paradigm) non-target referented foils) drawn from the set . .
Figure 2: Probability of correctly guessing the target for a

of M =W — 1 non-target referents. )
ne-exposure learner, for various numbers of test fdils (

For a one-exposure learner, the relevant question is: for%I 0 k .
given word, how many of th& test foils were also present Sga\r}ﬁandf ?(5;/0 ﬁonflderlme interval fqr the meaﬁ@]x int
in the set ofC training foils during the single remembered /VN) 0 S human jearners are given as solid points
Rlus error bars, with shapes coded according toffset as

exposure to the target word? If there is no overlap betwee i id ob . th ints. Horizont it
training and test foils the one-exposure learner will cctitye necessary to avoid obscuring other points. Horizonta
éme gives performance of the YS memoryless learner.

identify the target referent as the only object it remember
co-present with the target word. If there is some overlap be-
tween these sets of foils, the one-exposure learner wikgue
at random between the target object and the members of thfe
overlapping set.

The probability ofO items being present in the overlap be-  Pone(T,C,M) =
tweenT test foils andC training foils is given by

Proportiofof

B—g

o
\o\o
—o

pression has the comparatively convenient closed form
M+1 (M-T\ /M)’
et () (€)
(3)
T M_T M\ L Figure 2 shows, foM = 17 andC =1, 2 or 3 (the parame-

> . ( ) . < > (1) tersused by YS in their Experiment 1) the probability of this
O C-0 c one-exposure learner correctly identifying the targetmexfit
under various testing regimes, includimig= 3 (the number
of test foils used by YS) antl = M, the hardest possible test
where the learner is confronted with all possible word refer
ents at every test. We also plot the human performance from
Yu and Smith (2007), Experiment 1.

There are several things to note. Firstly, the one-exposure
learner outperforms YS’s 25% baseline in all cases where
T = 3, and in nearly all other test regimes. Secondly, and
most importantly, under th€ = 1 condition human perfor-

mance is not significantly different from that of the one-
exposure learnett(37) = 1.27, p = 0.21), whereas under

L
T+1

Q(O|T,C,M) = <

The first term is the number of ways of correctly selecting
overlapping items: there arg) ways in which the desired
number of overlapping foils@) can be chosen from the test
foils T. The second term is likewise the number of ways of
correctly selecting non-overlapping itemst — T gives the
number of referents which aret test foils, and we must se-
lect C — O training foils from this set. The number of valid
combinations of training foils and test foils which satisife
desired condition is the product of these two expressiars, a
the probability of obtaining objects which were present in

bqth the t?St and training fp.“ sets is_obtained by T“.““_"“’@" theC = 2 andC = 3 conditions humans perform significantly
this quantity by the probability of a given set of trainingl$o worse than the one-exposure learr@re 2: t(37) = 2.22,

Once we have calculated this quantity it is relatively easy, — 0.03; C = 3: ((37) = 8.83, p < 0.001)3 Finally, the
to calculate the probability of a one-exposure learnersgjogs one-exposure learner performs worst on the test iherM,

the target meaning correctly on test. This is: at which point it will achieve a proportion/C + 1 correct

oot (guessing among the target and @waining foils on the sin-
=T 1 e
Pone(T,C,M) = O+1 Q(O[T.C,M) (2) 2All pvalues reported in this paper are for two-tailed tests.
=0 3YS report a second set of experimental results (their Experi
] ] ] ] ment 2), which involves comparing a replication of the 4x#die
where the sum is over the possible sizes of overlapping setsipn of Experiment 1 with two conditions where participatgarn

i i ili i smaller lexicons (9 words) in the 4x4 conditions, with moepeti-
and the fraction gives the probability of correctly selegi tion of each word. Performance in the 9-word lexicon coodsiis

the target meaning by chance from the union of the overlappgistinguishable from one-exposure learner performanceatest
ping set and the target meaning. It can be shown that thig27) = 1.57, p=0.128.
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gle remembered training exposure). If we wish to eliminate aarget referent from an array of all possible referent disjec
non-cross-situational learning strategy like the oneesxpe  is required to support this conclusion — at present, we canno
learner as a candidate explanation for human behaviour, th&le out non-cross-situational learning as a potentialanas
best approach is therefore to test on the full array of refere tion for the observed behaviour, or at least as a confounding

objects, rather than a subset. factor masking the true learning abilities of their pagats.
The fact that the one-exposure learner performs better .
than humans is slightly puzzling — can we reject non-cross- An Experimental Test

situational learning on the basis that human performance igVe therefore ran an experimental study to remedy the flaw in
inconsistent with this learning behaviour? Unfortunatedy.  the Yu and Smith (2007) method. As described below, we ran
One straightforward way to account for this mismatch is totwo groups of participants: a Control group, who underwent
introduce the notion of forgetful one-exposure learner. As  adirect replication of YS’s Experiment 1, and an Experimen-
before, this learner only remembers a single exposure to eadal group, where we replaced the flawed YS test with a more
target word, but within that exposure forgets each refesbnt  robust test of cross-situational learning ability (eac tem-
ject (including the target) with probability. We can provide prises the target plus all 17 possible test foils).

the following expression for the probability that a forgetf

one-exposure learner will guess correctly on a particalar t 'V'eth?d
get word: Participants 48 undergraduate psychology students at
Northumbria University participated in the study as part of
P(f,T.CM) = () fC 1+ a participation co-op scheme.
- 4
(1-1) [28/;8 P(C'C, f) - Pone(T,C',M) ) Materials Participants were asked to learn pairings of a ref-

erent object and a spoken (nhonsense) word form. 54 novel
whereP(C'|C, f) gives the probability of rememberii® of  referent objects were created by cutting and pasting tegeth

theC training foils, given by the expression components parts of pictures of technological artifactsrte
duce novel objects — see Figure 1 for examples. We created
P(C'[C, f) = (C) (1 f)C .o (5) 54 nonsense words (using the English Lexicon Project Web-
c site: Balota et al., 2007) which followed English phonois:t

and were stratified according to number of syllables (1-3),
stress (first or second syllable) and initial sound (vowiek, s

gle consonant, consonant cluster). These words were giloupe
into three sets, such that each set had a similar sample of
the various word types and the subjectively more confusable
words were in different sets. Spoken forms of these words
were produced using the Victoria voice on the Apple Mac OS
X built-in speech synthesiser.

The second term in the expressionRogives the probabil-
ity of correctly identifying the target during testing, \géted
by the probability of remembering the target{I) and be-
tween 0 andC of the training foils. The first term covers the
case where all details of the training exposure are forgptte
including the target, in which case the forgetful one-expes
learner picks at random among tfier 1 possibilities. The
other possibilities (forgetting the target and rememizeoine
or more of the training foils) will lead to incorrect guessesDesign and Procedure Following YS, participants were
and can therefore be omitted. explicitly briefed on the task: they would have to work out

Close matches between the forgetful one-exposure learnerhich object went with which word, multiple objects would
and the mean performance of YS’s human participants can beppear on the screen and their associated words would be spo-
achieved by assuming thétincreases witlC. For example, ken, there was no relationship between where the object ap-
human behaviour is not significantly different from thatloft  peared on the screen and the order in which the words were
one-exposure learner if we assume the followingalues:  spoken, and their task was therefore to work out across trial
C=1,f=0;,C=2,f=0.1,C=3,f =04,;t(37) <0.37. which word went with which object. Participants were tested

Based on these results, we therefore cannot reject thia groups of between 1 and 5, seated at a PC in a room with
null hypothesis that humans are incapable of cross-sitoalti  the PCs distributed around the periphery facing the walls.
learning and are achieving the observed levels of perfocman Participants observed objects being displayed on the wonit
by simply (partially) remembering a single exposure from th and listened to words being presented over headphones.
sequence of exposures. It is important to emphasise that we As in the YS study, participants were tested on three sets of
know that humansire capable of cross-situational learning 18 word-object pairings. Each set of 18 word-object pasing
— as discussed above there are a number of other empiricalas created by pairing each word from one of the word sets
demonstrations of cross-situational learning (e.g. @dlet  with a referent object selected randomly without replacgme
al., 1999; Piccin & Waxman, 2007). However, YS’s study from the set of 54 referent objects. The degree of referentia
makes the strongest claims about human cross-situationahcertainty varied between word sets, with either two,ehre
learning (both in terms of its rapidity and simultaneity)dea  or four words and their referents being presented at each ex-
replication of the YS experimental paradigm with a more de{posure trial (the 2x2, 3x3 and 4x4 conditions, correspogdin
manding test regime (such that participants must iderttidy t to C of 1, 2 or 3). All participants experienced all three con-
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ditions. Following YS, exposure times were designed so that
total training time was the same in each condition (see Table =1
1). Given that the training sequence is independent of gte te
regime, we designed the training sequences such thatipartic <1
pants were paired across the Control and Experimental group _, |
— for every member of the Control group, there was a par- ~
ticipant in the Experimental group who received an idettica .,
series of training exposures but underwent a more rigorous
test. Order of presentation of the three conditions ancethre o |
sets of word forms was counterbalanced across participants

B Yu & Smith
@ Control
O Experimental

Table 1: The training regimes o
3x3 4x4

Condition #trials Time per trial (secs) Total time

gxg gg g ggj Figure 3: Mean performance (out of 18 words) of YS’s partic-
X ipants and our participants, organised by condition. Byaos
4x4 27 12 324

give the 95% confidence interval of the mean. Dashed hori-
zontal lines give one-exposure performance — note that one-

After training on a word set was completed, participantsexposure performance for YS and Control groups is some-
were tested: each word from the current word set was prelimes far greater than human performance, as discussed with
sented aurally and the participants were instructed tacsele reference to Figure 2.
the associated object from the test array by clicking on-t us
ing the mouse. Participants were randomly assigned to one of
two groups. The Control group were tested using the YS tes®f referential uncertaintyH(10,72) = 3.97, p < 0.001), in-
regime — on each test trial, they were required to identiéy th dicative of a practice effect: participants perform refaly
target referent from an array of four objects, the actuglgar Poorly on their first word set (averaging across test regimes
object and three foils selected at random from the set of 1@nd levels of referential uncertainty) = 9.54 words cor-
referent objects in use for this word set. Replicating the YSect) relative to their second and third seké £ 11.42 and
regime allows us to check for any differences with their ba-M = 11.69 words correct respectively). Counterbalancing of
sic result arising from differences in participants or miale. ~ presentation orders means this practice effect does rest alt
The Experimental group were tested using what we identifyhe overall pattern of results we reportin the remaindehef t
above as the correct test regime — on each test trial, thepaper. All other main effects and interactions are n. s.
were required to identify the target referent from an arry o Looking at the performance of matched pairs of partici-

all 18 referent objects associated with this word set. pants across the two testing conditions, participants & th
Experimental group perform worse across the board: small-
Results estt(23) = 3.253, p = 0.004, occurring in the 2x2 condi-

Figure 3 shows the results from our two groups, alongside th&ion. Post-hoc tests on both the Control and Experimental
results from YS’s Experiment 1. Levels of performance in thegroups show that performance differed significantly betwee
Control condition correspond fairly well with those of YS, each level of referential uncertainty (all Bonferroni-amted
the greatest difference being slightly lower performante o p values< 0.01).
our participants in the 3x3 condition (Y® = 13.69 words We can also ask whether performance in the Experimen-
learned; ControlM = 12.92), but this difference is not sig- tal group gives a clear signal that our participants are do-
nificant ¢(60) = 0.83, p = 0.412). This gives us some con- ing cross-situational learning: are they significantlyt@et
fidence that our materials and participant pool are roughlyhan the best non-cross-situational performance level, af
comparable to those of YS. forded by one-exposure learning? One-sample tests show
Focusing on the contrast between the Control and Expetthat participants in the Experimental group perform above

imental groups: as suggested by Figure 3, an ANOVA withthe one-exposure chance levels in the 2x2 condition (mean
referential uncertainty as a within-subjects factor ang¢h one-exposure learner performance of 9 words= 204,
between-subjects factors (test regime, order of presentat p = 0.012) and in the 3x3 conditions (mean one-exposure
of the three levels of referential uncertainty, order ofggre  learner performance of 6 word$23) = 3.77, p= 0.001), but
tation of the three sets of word forms) reveals a main effectot in the 4x4 condition (mean one-exposure performance of
of referential uncertainty during trainingr (2,72) = 99.84, 4.5 words{(23) = 1.26, p = 0.219).
6 001 There is also a signicant interacton betwoen refersqr JLE "EA-oTmal natur of e istibution of scores o 12 x

: : tondition A< = 0.782, p = 0.032) necessitates use of a one-sample
ential uncertainty and order of presentation of the threelée  Wilcoxon Signed Rank Test rather than a one-sample t-test.
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Discussion conclusion that adult humans are capable of rapidly legrnin
multiple words in the face of relatively high referentialagn-
tainty. Our replication and extension of their work showatth
‘more limited conclusions are justified: while our participg
pre clearly doing cross-situational learning under the lo
1KgXZ) and intermediate levels (3x3) of referential undeatia

The finding that, in the Experimental 4x4 condition, our par-
ticipants do not perform significantly above the one-expesu
level of performance is a major departure from the conclu
sions reached by YS, and suggests that, given a more care
nstruction of th ing regim r participants m
Egpztbll:acg? dgmt gecﬁgzts-sﬁtuezgi oneeilolgafrir: gci;r)]alht: 4xi}tc)tebond there_ was no clear signal qf cross-sit_uational learningeund
tion, contrary to the conclusions drawn by YS. In otherwordsthe highest level of referential uncertainty tested (4X4ese

due to a flawed testing regime, YS may have overestimateﬁESUItS suggest t_hat human capacitie_s for rapid and simeslta
the human capacity for rapid, simultaneous cross-sitoatio ous cross-situational may be more limited than suggested by

learning under higher levels of referential uncertainty. Yu and Smith (2007).
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