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Abstract

Natural languages partition meanings into labelled categories
in different ways, but this variation is constrained: languages
appear to achieve a near-optimal trade-off between simplicity
and informativeness. Across 3 artificial language learning ex-
periments, we verify that objectively simpler kinship systems
are easier for human participants to learn, and also show that
the errors which occur during learning tend to increase sim-
plicity while reducing informativeness. This latter result sug-
gests that pressures for simplicity and informativeness operate
through different mechanisms: learning favours simplicity, but
the pressure for informativeness must be enforced elsewhere,
e.g. during language use in communicative interaction.
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Introduction
Different languages partition meanings into different seman-
tic categories, labelled with words or morphemes. The scope
of variation in these partitions is wide, as systems of seman-
tic categories can differ in both the number of labels used
and in the strategies used to group meanings into categories.
However, this variation is constrained – not all theoretically-
possible partitions are found in natural languages, and similar
meanings are encountered in unrelated languages.

This pattern of constrained variation has been attested
in several domains, such as colour (Berlin & Kay, 1969),
number (Greenberg, 1978), and kin classification (Murdock,
1970). Kemp, Xu, and Regier (2018) propose that the con-
strained variation seen in these systems is a consequence of
pressures for efficient communication (see also e.g. Kemp
& Regier, 2012). According to this view, category systems
are shaped by two competing forces: the need for simplicity
(an efficient category system minimises cognitive load), and
the need for accurate communication (an efficient category
system allows listeners to reliably reconstruct the meanings
intended by the speaker). In general, simplicity and informa-
tiveness will conflict — the simplest category system (which
uses one word for all meanings) is not informative, and the
most informative category systems (which divide the world
into many fine-grained categories) are maximally complex.

Kemp et al. (2018) suggest that languages exist along an
optimal frontier, balancing simplicity and informativeness:
natural languages tend to adopt the simplest grammar yield-
ing a given level of informativeness and tend to have maximal
informativeness for a given level of complexity. In addition to
accounting for fine-grained variation among languages, this

same trade-off between simplicity and informativeness has
been implicated in the evolution of fundamental structural
properties shared by all languages, e.g. combinatorial phono-
logical coding (Oudeyer, 2005) and compositionality (Kirby,
Tamariz, Cornish, & Smith, 2015), which also represent opti-
mal trade-offs between simplicity and informativeness.

There is, however, some debate in the literature about
the mechanisms which impose these pressures. Kirby et al.
(2015) argue that pressures for simplicity are imposed dur-
ing learning (e.g. in intergenerational transmission), whereas
pressures for informativeness apply only during communica-
tive use; as a result, systems which are transmitted from per-
son to person but not employed for communication should be-
come increasingly simple and consequently lose communica-
tive function. In contrast Carstensen, Xu, Smith, and Regier
(2015) suggest that pressures for informativeness might op-
erate during learning, such that category systems which are
repeatedly learned will become increasingly informative, the
opposite prediction to that from Kirby et al. (2015) (see e.g.
Fedzechkina, Jaeger, & Newport, 2012 for similar claims).

Here we focus on the case of kinship systems (sets of
words used to refer to relationships between family mem-
bers). Kemp and Regier (2012) show that kinship systems
in natural languages exhibit a near-optimal trade-off between
informativeness (ability to uniquely specify individuals in a
family tree) and simplicity (which they quantify by the length
of the underlying grammar). In Experiments 1–2 we test one
of the key assumptions in Kemp and Regier’s argument, in-
vestigating whether simpler, more compressible (artificial)
kinship systems are indeed more learnable than less com-
pressible alternatives. We find that objectively simpler kin-
ship systems are indeed easier to learn, and that errors in
learning tend to reduce complexity at the cost of decreasing
informativeness. In Experiment 3 we explore the informa-
tiveness question further, verifying that learners sacrifice ex-
pressive power in favour of representational simplicity.

Experiment 1

Participants attempted to learn the language of an imaginary
community consisting of 12 members of an extended family.
The experiment comprised two phases: character familiari-
sation followed by the main language task. We varied the
complexity of the target kinship system between-subjects.
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Methods

Participants Fifty participants (25 per target kinship sys-
tem) were recruited from the student population at The Uni-
versity of Edinburgh and paid £6 to participate.

Materials: The family tree The community consisted of
12 members of a family tree (see Figure 1A). We trained par-
ticipants on kinship terms for 16 of the relationships which
can be depicted using individuals drawn from this family:
maternal grandmother, maternal grandfather, paternal grand-
mother, paternal grandfather, mother, father, maternal aunt,
maternal uncle, paternal aunt, paternal uncle, sister, brother,
daughter, son, granddaughter, grandson.

Materials: Languages We generated the initial language
for each participant by randomly combining 2–4 CV sylla-
bles to produce 12 non-words (e.g. walo, pugowo, kohuhake).
These 12 labels were used to express the 16 relationships
listed above: eight labels referred to unique relationships;
the remaining four were homonyms that referred to two pos-
sible relationships. Initial languages were either simple or
complex, depending on the placement of homonyms. Simple
languages used homonyms for the pairs <maternal grand-
father, paternal grandfather>, <brother, sister>, <maternal
uncle, maternal aunt>, and <paternal uncle, paternal aunt>;
complex languages used homonyms for the pairs <maternal
grandmother, paternal aunt>, <maternal grandfather, pater-
nal uncle>, <paternal grandmother, maternal aunt>, and
<paternal grandfather, grandson>. Thus, simple languages
assigned identical labels to similar meanings which could be
grouped under the same category (e.g., “mother’s sibling”),
while complex languages assigned identical labels to very dif-
ferent meanings. The two kinship systems differ on the objec-
tive measure of complexity used by Kemp and Regier (2012)
(i.e. it takes a larger grammar to capture the complex kinship
system) and also in the measure of complexity we develop
below.

Procedure: Character familiarisation Participants were
familiarised with the members of the community and their
relationships with each other through a series of introduc-
tion and test items. Introduction items presented images of
family members in groups of three and stated their relation-
ship, e.g. This is Mimi and Gonn. Mimi and Gonn have a
child: Lulu. Each introduction item was followed by a test
item which tested participants on the relationship they had
just been exposed to, for example presenting one character
and asking participants to select another character who was
parent or child of that character (e.g. Who is Lulu’s parent?).
No English kinship terms were used during the familiarisa-
tion phase except the primitives “parent” and “child”. Famil-
iarisation consisted of 8 introductory–test pairs and a further
10 test items. Participants were not allowed to proceed to the
language task until all test items had been answered correctly;
test items which were answered incorrectly were re-presented
immediately.
Procedure: Language task Participants were simultane-

ously trained and tested on the kinship system of the com-
munity. Participants were told their goal was to learn how
members of the community greeted one another. Participants
saw family members greet other family members with the
greeting luha and then a kinship term (i.e. the greetings were
equivalent to e.g. hello father!, hello auntie!). This phase pre-
sented two types of trials: production (Figure 1B) and com-
prehension (Figure 1C). After each trial, participants received
feedback on the accuracy of their response as well as the cor-
rect answer if their response was incorrect (except in the final
block of testing–see below).

The language task comprised five blocks of testing with 32
trials per block (16 production trials, 16 comprehension trials,
alternating). Each relationship (mother, father, grandfather
etc) was represented twice per block, once in a production
trial and once in a comprehension trial, order randomised. To
ensure that participants could remember the family tree, after
the first and second blocks of testing participants saw 5 test
items similar to those in the familiarisation phase. As before,
these were presented repeatedly until participants selected the
correct response. On the final block of testing, participants
received no feedback on the accuracy of their responses, pro-
viding us with a final language from each participant for anal-
ysis.

Kinship System Inference
We infer each participant’s underlying kinship system from
their productions in order to assess their complexity. We
use the model from Mollica and Piantadosi (under revision)
to sample possible kinship rules for each label used by the
participant, then measure the (summed) complexity of those
rules and the compressibility of the set of rules.

Rules are set functions, taking the speaker as input
and returning a set of individuals who are possible ref-
erents for the kinship term used in the greeting. The
functions are constructed using a small set of base func-
tions, namely: PARENT(X), CHILD(X), MALE(X), FE-
MALE(X), UNION(X,Y). The term ‘mother’ could thus be
represented as FEMALE(PARENT(X)); however, it is im-
portant to note that there are many other possible rules
that, if Nene (see Figure 1 for character names) is the
speaker, include Kiki in the set of possible referents. For
example: PARENT(X); CHILD(PARENT(PARENT(X))); or
UNION(PARENT(X), PARENT(PARENT(X))).

The model defines the Bayesian posterior probability of
each possible rule as a combination of the rule’s simplicity (in
the prior) and its precision (in the likelihood). The simplicity
prior P(r) is the product of the probability of each of the rule’s
components, and thus relates to the number of base functions
used to define the rule. The size principle likelihood P(d|r)
evaluates the number of possible referents given a data point
(speaker, referent, word): the larger the set of possible refer-
ents, the lower the likelihood (Tenenbaum & Griffiths, 2001).
In the above ‘mother’ example, the broad PARENT(X) rule,
applied to Nene as the speaker and Kiki as the intended refer-
ent, would have a high prior probability due to its simplicity,
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A. B. C.

Figure 1: A. Individuals in the family tree. Members within each branch shared physical features to aid the recognition of
relatedness. B. Example production trial: the participant sees the family members involved and must select the appropriate
kinship term (in the example depicted, in English the appropriate greeting would be “Hello grandmother”). C. Example
comprehension trial: the participant sees the speaker and their choice of kinship term and has to select the appropriate addressee
from the set of all family members (e.g. in the trial depicted, if nulenage means the equivalent of mother in English, the
participant should select Kiki, who is Nene’s mother).

but a lower likelihood as it picks out two possible referents,
in contrast to the FEMALE(PARENT(X)) rule.

We infer participant lexicons/kinship systems as follows.
For each participant, we use the final set of productions as
data, duplicated (i.e., doubled) to increase the pressure on
likelihood. We then use the Metropolis-Hasting sampler de-
scribed in Mollica and Piantadosi (under revision)1 to gen-
erate a set of high-probability candidate rules for each term,
given the participant’s productions. In order to keep infer-
ence time feasible and to counteract the paucity of data, the
sampler is initialised with the rules which generated the par-
ticipant’s input language, which allows us to run the sampler
for a relatively small number of steps (4000 steps across 40
chains) and still generate acceptable results. Due to the ini-
tialisation procedure, the sampler will preferentially explore
rules that are similar to the rules used to generate the training
data, albeit with high likelihood under the participant’s pro-
ductions, which often do not fit the training data very closely.

Lexicons are then created by drawing a rule for each term
from the set of sampled rules, in proportion to the posterior
probability of that rule. We create 100 lexicons for each par-
ticipant, to evaluate the distribution over probable lexicons
for that participant, rather than choosing a single representa-
tive lexicon. Each lexicon is evaluated along two criteria: the
product of the prior probability of each of the rules in the lex-
icon, and its compressibility (using Lempel-Ziv compression
on the inferred lexical meanings2). Both the prior and the
lexicon compression measure evaluate the complexity of the
kinship system. The prior probability of the inferred lexicon
(i.e. the product of the prior probabilities of the individual
rules) evaluates the simplicity of each of the individual rules,

1https://github.com/MollicaF/LogicalWordLearning.
2This involves encoding each rule as a list of integers, where each

term in each rule is encoded as a single integer, with each instance
of a term receiving the same code. Each integer then gets turned
into a bitstring using Fibonacci coding, and the resulting bitstring is
compressed using the LZ2algorithm. This metric is provided in the
code accompanying Mollica and Piantadosi (under revision).

while lexicon compression measures reuse across rules.
Under this measure the simple and complex input lan-

guages differ in their complexity, both on the prior probability
of their lexical rules and the compressibility of the entire lex-
icon: we inferred 100 lexicons for each input language, the
lexicons for the simple input language have mean log prior
probability of -128 and compressed size of 253 bits, the lexi-
cons for the complex input language have log prior probabil-
ity of -214 and compressed size of 329 bits.

Results
We analysed participants’ accuracy (the proportion of trials
where participants clicked on the correct response) across all
5 blocks of the experiment, the communicative functionality
of the languages they produced in the final testing block (as
measured by the number of labels and communicative cost),
and the complexity of the kinship system produced in the fi-
nal testing block (as measured by the prior probability and
compressibility of their inferred lexicon). We expected that
1) participants learning the simple system would reach higher
accuracy in a shorter time than participants learning the com-
plex system; 2) participants trained on simple kinship systems
would produce simpler systems on test; 3) participants’ final
languages would be simpler and less communicatively func-
tional than their input, reflecting a general bias in learning in
favour of simplicity at the expense of informativeness.

Accuracy Figure 2A shows participants’ accuracy (propor-
tion of trials on which participants clicked on the correct
response) over blocks in production and comprehension tri-
als. We used logistic mixed effects models to analyse the
binary outcome of participants’ response on each trial (cor-
rect/incorrect), with input complexity, block, and their in-
teraction as fixed effects;3 we ran separate models for pro-

3Input complexity was deviation coded; we coded block such
that the model intercept reflected performance at the final test block.
Models included random intercepts for subjects and by-subject ran-
dom slopes for block.
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Figure 2: Experiment 1 results. A. Performance over time in production and comprehension. Solid lines give means and
bootstrapped 95% CIs; individuals are also shown as fainter lines. B. Communicative cost of participants’ final languages.
Dashed lines show the input, large points indicate individual participants, small point and error bars give means and 95% CIs.
C. Compressed size of participants’ final languages. Plotting conventions as in B.

duction and comprehension trials due to the different nature
of the two tasks. Participants’ performance improved over
time: the models for accuracy showed a significant effect of
block in both production (b = 0.58, SE = 0.05, p < .001) and
comprehension trials (b = 0.57, SE = 0.05, p < .001). The
model fitted to production trials suggests a highly marginal
interaction of complexity and block (b = −0.17, SE = 0.10,
p = .093), which is consistent with slower learning of the
complex system; this results in a significant effect of com-
plexity at block 5, with the participants trained on complex
input having significantly lower production accuracy on block
5 (b =−0.96, SE = 0.42, p = .023). These effects are n.s. in
the comprehension model (p > .123), suggesting clearer ef-
fects of complexity on production than comprehension.

Communicative function of final languages We assessed
communicative functionality of the final languages produced
by our participants (i.e. on production trials in block 5) ac-
cording to two measures: the number of distinct labels pro-
duced (fewer labels will usually lead to a drop in commu-
nicative function as labels become increasingly ambiguous)
and the communicative cost of the labels produced (plotted in
Figure 2B: communicative cost for a label L is −log2(1/|L|)
where |L| is the number of relationships L applies to; the com-
municative cost of a lexicon is the average cost of its labels4).

We used regression to analyse the number of labels and
communicative cost (Poisson regression for the former),
with input complexity (deviation coded) as a fixed effect.
There was no difference between input conditions for num-
ber of labels (mean for simple lexicons, Msimple=10.28 la-
bels; Mcomplex=10.2 labels; b = 0.01, SE = 0.09, p = .930)
or communicative cost (b = 0.00, SE = 0.06, p = .967). Par-
ticipants on average produced fewer labels than in their input
(log number of labels in the model intercept is significantly

4Kemp and Regier (2012) include a weighting based on need
probability in the measure of communicative cost, i.e. the probabil-
ity of being required to communicate about different relationships;
in our experiment each relationship is labelled equally frequently,
making the need probabilities (at least in the context of the experi-
ment) uniform, allowing this term to be dropped.

lower than log(12), b = 2.33, SE = 0.04, p < .001), yielding
languages with higher communicative cost (model intercept
is higher than the communicative cost of the input languages,
1/3: b = 0.53, SE = 0.03, p < .001).

Complexity of final languages We assessed the complex-
ity of the final languages produced by our participants accord-
ing to the two measures introduced above: the summed log
prior probabilities of the lexical items (higher prior probabil-
ity indicates lower complexity) and the size of the compressed
set of rules (smaller size indicates a more compressible, sim-
pler rule system; see Figure 2C).

We used regression to analyse lexicon prior probability and
compressed size, with input complexity (deviation coded) as
a fixed effect. There was a significant difference between in-
put conditions for both lexicon prior probability (mean log
prior for simple condition = −98, mean for complex con-
dition =−130; b =−32.73, SE = 4.28, p < .001) and com-
pressed size (mean size for simple condition = 200 bits, mean
for complex condition = 252 bits; b = 51.43, SE = 6.79,
p < .001), with participants trained on the complex system
producing less compressible lexicons with more complex
rules. As can be seen in Figure 2C, participants in both condi-
tions produce simpler systems than they were trained on (the
difference between input and output complexity is significant
at p < .001 on both measures even for the simple input con-
dition), but this difference is clearly far larger for participants
in the complex input condition.

Experiment 1 discussion

These results are consistent with the theory that learning
favours simpler languages, and that errors made during learn-
ing tend to decrease complexity while also reducing commu-
nicative utility, i.e. increasing communicative cost. However,
our task was quite challenging and produced substantial inter-
individual variation (as seen in e.g. the accuracy over time
shown in Figure 2A), and some effects are marginal (most
notably the difference in learning rates across conditions); we
therefore attempted to replicate these results.
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Experiment 2
Experiment 2 is a replication of Experiment 1; to facilitate
rapid collection we ran the experiment online.

Methods
Participants Eighty participants (40 per target kinship sys-
tem) were recruited using Amazon Mechanical Turk and paid
$6 to participate.

Materials, procedure, analysis Identical to Experiment 1.

Results
Accuracy Figure 3A shows participants’ accuracy over
blocks in production and comprehension trials. As in the lab
experiment, participants’ performance improved over time:
there was a significant effect of block in both production
(b = 0.32, SE = 0.03, p < .001) and comprehension trials
(b = 0.37, SE = 0.03, p < .001). The model fitted to produc-
tion trials shows a significant interaction between complex-
ity and block (b = −0.14, SE = 0.07, p = .035), indicating
slower learning of the complex system (recall this effect was
highly marginal in Experiment 1); this difference in learning
rates results in a significant effect of complexity at block 5
(b = −0.71, SE = 0.27, p = .009). As in Experiment 1 the
equivalent effects are n.s. in comprehension trials (p > .128).

Communicative function of final languages As in Exper-
iment 1, there was no difference between conditions for num-
ber of labels (Msimple = 9.62; Mcomplex = 8.85; b = 0.08,
SE = 0.07, p = .254), but there was a marginal difference
in communicative cost, with participants trained on com-
plex input perhaps producing languages with higher cost
(b = −0.09, SE = 0.05, p = .077; see Figure 3B). As in the
lab, online participants produced languages with fewer labels
(b = 2.22, SE = 0.04, p < .001) and higher communicative
cost (b = 0.65, SE = 0.02, p < .001) than their input.

Complexity of final languages As in Experiment 1 there
was a significant difference between input conditions for
both lexicon prior probability (Msimple = −111; Mcomplex =
−121; b = −10.79, SE = 3.47, p = .003) and compressed
size (Msimple = 225; Mcomplex = 244; b = 19.80, SE = 6.9,
p = .002, see Figure 3C), with participants trained on the
complex system again producing less compressible lexicons
with more complex rules. As in Experiment 1, participants
in both conditions produce simpler systems than they were
trained on (the difference between input and produced com-
plexity is significant at p < .001 on both measures even for
simple input participants), and this difference is again far
larger for participants in the complex input condition.

Experiment 2 discussion
The results from Experiment 2 confirm those of Experiment
1: participants trained on simpler kinship systems learn more
rapidly and more accurately than participants attempting to
learn complex kinship systems, and as in Experiment 1 errors
in learning tend to reduce complexity, particularly for com-

plex input systems, and increase communicative cost. These
results are therefore consistent with the view that pressures
for simplicity and informativeness come from different mech-
anisms (i.e. learning and use respectively), or at least are not
both at play in learning (contra e.g. Fedzechkina et al., 2012;
Carstensen et al., 2015). However, our Experiments 1–2 are
a rather unfair test of the idea that learning might be biased in
favour of informativeness: participants were trained on a 12-
label kinship system, and on test only had 12 labels to select
among, meaning they could not introduce new distinctions
and straightforwardly reduce communicative cost. Reducing
communicative cost is possible by redistributing homonyms
(e.g. by overloading one homonymous term to refer to 3 in-
dividuals, creating a new unambiguous term), but this offers
only a modest decrease in communicative cost. As a result
our finding that errors in learning reliably increase commu-
nicative cost might just reflect a ceiling effect. Furthermore,
the 12-label systems we used seem to be at or beyond the
capacity for most participants to learn accurately in the time
available; in particular, participants typically failed to pro-
duce all 12 available labels, therefore inevitably increasing
the communicative cost of the system; while this is part of
the effect we are interested in, representing a bias for sim-
plicity in learning at the expense of communicative function,
it would be worthwhile to verify that a similar bias can be
seen in a kinship system featuring a more manageable num-
ber of labels. In Experiment 3 we therefore train participants
on an input language which uses fewer labels and which of-
fers more scope for learners to restructure their input so as
to reduce communicative cost and improve communicative
function.

Experiment 3
We trained participants on an input language which uses
only 8 distinct labels, which could be glossed in En-
glish as sister, brother, child (i.e. picking out the
pair of relationships <daughter, son>), mother and her
siblings (<mother, maternal aunt, maternal uncle>), fa-
ther and his siblings (<father, paternal aunt, pater-
nal uncle>), maternal grandparent (<maternal grand-
mother, maternal grandfather>), paternal grandparent
(<paternal grandmother, paternal grandfather>), and grand-
child (<granddaughter, grandson>).

Methods
Participants 41 participants were recruited using Amazon
Mechanical Turk and paid $6 to participate.

Materials, procedure, analysis Identical to Experiment 2,
with the exception of the input language; note that partici-
pants had 12 labels available on production test trials, the 8
labels featured in their training language and 4 ‘spare’ labels.

Results
Accuracy Figure 3A shows participants’ accuracy over
blocks. As expected, accuracy improves over time in both
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Figure 3: Experiment 2 results. A. Performance over time (Experiment 3 data also plotted; 20 randomly-selected participants
per condition shown as individual lines to reduce clutter). B. Number of labels. C. Communicative cost.

A
●

●

●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●

●

●

4

6

8

10

N
um

be
r 

of
 d

is
tin

ct
 la

be
ls

 u
se

d

B
●

●●

●
●●●

●●●●●●●
●●●●●●

●

●●●
●●●●●●

●●●

●●●

●●●

●●

●

0.50

0.75

1.00

1.25

1.50

C
om

m
un

ic
at

iv
e 

co
st

Figure 4: Experiment 3 results. A. Number of labels; B. com-
municative cost. Accuracy results shown in Figure 3A.

production (b = 0.35, SE = 0.04, p < .001) and comprehen-
sion (b = 0.33, SE = 0.04, p < .001); analysing data from
Exps 2–3 combined, with condition treatment-coded, indi-
cates that final accuracy in block 5 in Exp 3 is not significantly
higher than in simple condition of Exp 2 on either produc-
tion or comprehension (p > .44), but is higher than the com-
plex condition of Exp 2 (production: b = −0.87, SE = 0.24,
p < .001; comprehension: b =−0.67, SE = 0.23, p = .004).

Communicative function of final languages Figures 4A–
B shows the number of distinct labels produced and the com-
municative cost of the resulting lexicons. While participants
do not produce significantly fewer distinct labels than in their
input (b = 1.99, SE = 0.06, p = .136), the final languages
did however have higher communicative cost than the input
language (b = 0.97, SE = 0.03, p = .026).

Experiment 3 discussion

Experiment 3 removes the potential ceiling effect in Experi-
ment 2; it would be possible to redesign the input language
to reduce communicative cost, e.g. by using the ‘spare’ la-
bels to introduce additional distinctions, or by redistributing
homonymy more evenly across the 8 labels used in the in-
put. Most of our participants do not do this; instead, as in
Experiments 1–2, on average they produce final languages
which have even higher communicative cost than their input,
again consistent with the view that pressures for informative-

ness are not at play in learning (contra e.g. Fedzechkina et
al., 2012; Carstensen et al., 2015). It is also worth noting
that the language in Experiment 3 is learnt significantly bet-
ter than the low-communicative-cost complex language from
Experiment 2; this would be surprising if learners were biased
against languages with high communicative cost.

General discussion
Across 3 experiments we find that simpler kinship systems
are easier to learn for human participants, validating a cru-
cial assumption in Kemp & Regier’s (2012) analysis of natu-
ral language kinship systems, and matching similar results in
other domains indicating that biases in learning favour sim-
plicity (e.g., Feldman, 2000; van de Pol, Steinert-Threlkeld,
& Szymanik, 2019; see Feldman, 2016 for review).

Our results are inconsistent with claims that biases in
learning instead favour informativeness or communicative ef-
ficiency e.g., Carstensen et al. (2015); Fedzechkina et al.
(2012). How can we reconcile this difference? Carr, Smith,
Culbertson, and Kirby (in press) note that while simplicity
and informativeness are often opposed (e.g. having few la-
bels is simple but not informative), there are cases where the
biases coincide: in particular, they show that simplicity and
informativeness can both favour contiguous categories, where
closely-related meanings fall into the same category. Con-
tiguous categories are simple (they can be represented com-
pactly) but also more informative than non-contiguous cate-
gories, in that they direct the receiver of the category label
to the right region of the semantic space, even if they fail to
pick out exactly the right meaning. Carr et al. (in press) show
that this can account for the puzzling results from Carstensen
et al. (2015), where the apparent increase in informativeness
occuring over generations of learning is likely to be driven
by a simplicity-based preference for category contiguity. It
remains to be seen whether similar alternative explanations
exist for other findings suggesting communicative biases in
learning, e.g. those in Fedzechkina et al. (2012). It is also
worth noting that the measure of communicative cost we use
here merely depends on the probability of selecting the cor-
rect individual, rather than rewarding near misses (e.g. pro-
viding partial payoff for selecting an individual who is sim-
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ilar to the target in terms of generation or sex); it may be
that some of the errors made by our participants reduce com-
municative cost if measured in this way, as a side-effect of
increasing simplicity.

Another possibility is that the preference for simplicity we
see in our experiments merely reflects poor learning, and that
we would see a preference for decreased communicative costs
if participants were given more time to learn the target sys-
tems more accurately. This strikes us as unlikely. First, while
many of our participants do indeed have quite low accuracy
even by the end of the experiment, it is worth noting that in-
accurate learning is a necessary feature of our design, rather
than a flaw: some errors are necessary in order to reveal bi-
ases in learning, and if we trained participants to perfect ac-
curacy on the target systems we would not be able to measure
their deviations from those target systems. Second, in order
for different biases to be seen later in learning there would
need to be a discontinuity in the trajectory followed by our
learners. Our results suggest that participants (at least ini-
tially) approach the target language complexity from below,
i.e. via intermediate systems that are lower in complexity;
while it is logically possible that later in learning participants
would reliably overshoot the target language complexity and
then approach from above (i.e. from higher complexity, lower
cost systems) before finally settling on the target system, we
see no reason to expect this. Third, as mentioned above there
is already a wealth of independent evidence suggesting that
learning in multiple domains favours simplicity, a pattern of
results which our findings are consistent with and expected
under. Finally, even if this kind of trajectory was witnessed,
we would expect the effects of late-in-learning biases to be
quite subtle (because participants are close to the target sys-
tem), making them harder to spot experimentally but also lim-
iting their impact on the structure of linguistic systems rel-
ative to other pressures, such as simplicity biases earlier in
learning, or pressures arising during communication.

Conclusion
We provide evidence suggesting that simpler kinship systems
are easier to learn for human participants, and that biases in
learning favour simple systems even at the expense of com-
municative function; participants tend to produce simpler kin-
ship systems than they were trained on, and in all experiments
the kinship systems they produced would be less communica-
tively effective (i.e. had higher communicative cost) than their
input. This is consistent with accounts where the pressures
for simplicity and informativeness which shape natural lan-
guages (in their kinship systems and beyond) arise through
distinct processes, i.e. learning and use respectively, rather
than both being the product of biases in learning.
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