
APPENDIX A

Mathematical models of transmission

In this appendix I will present details of mathematical models of cultural and genetic

transmission. In Section A.1 I outline B&R’s treatment of cultural transmission and the

factors influencing cultural evolution. In Section A.2 I outline a simple mathematical

model of genetic transmission and biological evolution by natural selection. Finally, in

Section A.3 I describe the mathematical details of B&R’s model of the dual transmission

of cultural traits and a genetically-encoded direct bias.

A.1 Models of cultural transmission

This Section covers B&R’s basic models of unbiased cultural transmission (Section A.1.1),

and their treatment of the various pressures acting on cultural transmission (Section

A.1.2).

A.1.1 Basic cultural transmission models

A.1.1.1 Transmission of dichotomous traits

B&R provide a simple model of the cultural transmission of a dichotomous trait, where

individuals are either characterised as having cultural traitc or d. p is the proportion

of individuals in the population with cultural variantc, and1 � p is the proportion of

individuals with variantd. p0 is the proportion of individuals in the population with

cultural variantc after cultural transmission.

Each individual acquires their cultural variant based on their observations of the cultural

variants ofn cultural parents, or models. The probability that a naive individual acquires

variantc based on the behaviour ofn models is therefore:
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Prob(individual = cjX1; : : : ; Xn) =
nX
i=1

AiXi

whereXi = 1 if the ith model possesses variantc andXi = 0 if the ith model possesses

variantd, Ai is the probability that the naive individual acquires the variant of theith

model and
P

iAi = 1. Ai therefore gives the importance of theith cultural parent in the

enculturation process.

Given this equation we can now calculatep0, the proportion of individuals with variantc

after cultural transmission. For this we require the probability that a given set of models

(X1; : : : ; Xn) is formed,Prob(X1; : : : ; Xn). This leads to:

p0 =
1X

x1=0

: : :
1X

xn=0

Prob(cjx1; : : : ; xn)Prob(X1 = x1; : : : ; Xn = xn)

In other words, the proportion of individuals with variantc is equal to the probability that

an individual will acquire variantc based upon exposure to a specific set ofn models,

multiplied by the probability of the formation of that set of models and summed over all

sets of models.p0 therefore depends on the probability of forming sets of models. If we

assume that the probability of any cultural parent possessing variantc is equal top (i.e.

cultural parents are drawn at random from the population) then it can be shown that cul-

tural transmission leaves the frequency of cultural variants in the population unchanged

i.e.

p0 = p

Therefore, if the original population exhibits variation for some cultural trait, cultural

transmission itself will not reduce that variation or alter the distribution of variants, as-

suming random selection of cultural parents — cultural transmission alone will not lead

to cultural evolution or cultural adaptation.

A.1.1.2 Transmission of continuous traits

In the continuous trait model each individual is characterised by a single number,X,

representing the value of their culturally-acquired character. In this case a population

cannot be characterised by the proportion of one cultural variant, as in the dichotomous

character model, but must rather be modelled as a distribution over values ofX, P (X).
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Making the simplifying assumption thatP (X) can be approximated by a normal distri-

bution allows a population to be characterised by the mean value ofX in the population,

X and the variance ofX in the population,V .

B&R consider how a blending inheritance model would alter the mean and the variance

of a cultural characteristic in a population. As in the dichotomous model, each naive

individual is exposed to the behaviour ofn models, with the cultural variant of theith

model beingXi. Based on these observations, the naive individual makes an estimate of

theith model’s cultural rule,Zi, where:

Zi = Xi + ei

whereei is a random variable drawn from the normal distribution with mean 0 and vari-

anceEi, representing errors in the naive individual’s estimate of the model’s cultural

character. As the name suggests, in a blending inheritance model the enculturated indi-

vidual’s cultural variant,X0, is simply the average of their estimates of theirn models’

variants:

X0 =
nX
i=1

AiZi

where, as in the dichotomous model,Ai is the importance of theith model.

By a similar method to that used for the dichotomous case, it is possible to calculate the

mean value ofX in the population after cultural transmission,X
0
and variance ofX in

the population after transmission,V 0. B&R show that, assuming non-selective formation

of sets of models:

X
0
= X

In other words, blending inheritance does not change the population mean of the cultural

variant, as with the dichotomous model. However, the variance of the population does

not necessarily remain unchanged. Assuming non-selective formation of sets of models,

equal weighting for all models (Ai = 1=n for all i) and no correlation between errors in

a given set of models (Cov(ei; ej) = 0 for all i andj):

V 0 = (1=n)(V + E)
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whereE is the average value ofEi (recall thatEi gives the variance of a normal distri-

bution, and the errors made by the learner when estimating the trait of theith cultural

parent come from this distribution) for the set ofn models. In other words, there are two

forces acting on the population. Assuming no errors in transmission (E = 0), blending

transmission tends to reduce the variance in the population, with variance being reduced

faster for larger numbers of cultural parents. The counteracting force, dependent on the

average error introduced during transmission (E), tends to increase the variance in the

population, with errors of larger variance increasing the variance in the population more.

A.1.2 Pressures acting on cultural transmission

B&R provide mathematical accounts of how three pressure acting on transmission can

result in cultural change and cultural evolution. These are:

1. Natural selection of cultural variants, resulting from selective removal of encultur-

ated individuals.

2. Guided variation, resulting from individual learning by enculturated individuals.

3. Biased transmission, resulting from the strategy of learners during cultural trans-

mission. The forces of biased transmission can be further subdivided into three

forms:

(a) Directly biased transmission, resulting from a preference for learners to ac-

quire one cultural variant over another.

(b) Indirectly biased transmission, resulting from a preference for learners to ac-

quire cultural traits which are associated with other cultural traits.

(c) Frequency-dependent transmission, resulting from a disproportionate prefer-

ence for learners to acquire the most (or least) frequent cultural trait in the

population.

In Sections A.1.2.1 to A.1.2.5 B&R’s models for these pressures are reviewed. In the

interests of clarity, a separate section is devoted to each of the three subtypes of biased

transmission.

A.1.2.1 Natural selection of cultural variants

B&R model the natural selection of cultural variants by assuming that there are a set of

n distinct social roles (e.g. mother, father, uncle, priest, teacher). Each naive individual

acquires their cultural characteristic based on observation of a subset of these roles�j.
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As before, the weight of social rolek isAk. The weight of social rolek with respect to a

subset of social roles�j, Akj is:

Akj =

8<
: Ak if k belongs to�j

0 otherwise

Working within the dichotomous traits model, the probability that a naive individual ac-

quires variantc based on the behaviour of the set of individuals with phenotypic values

X1; : : : ; Xn and the set of cultural parents with roles�j is therefore:

Prob(individual = cj�j; X1; : : : ; Xn) =

Pk=n
k=1 AkjXkPk=n
k=1 Akj

This equation normalises the weight of the cultural parent with rolek by the weights of

all roles present in the set of roles�j and is clearly related to the earlier equation for the

cultural transmission of dichotomous traits.

In order to model natural selection we must assume that the probability that an individ-

ual attains a particular social rolek depends on the cultural variant that that individual

possesses. Let
ck be the probability that an individual with cultural variantc attains

social rolek and, similarly,
dk be the probability that an individual with cultural variant

d attains social rolek. As before, we will assume that the frequency of variantc in the

population isp. The frequency of individuals with variantc attaining social rolek, p 0k is

therefore:

p0k =

ckp


ckp + 
dk(1� p)

Working under the assumption that sets of roles�j are formed at random, and following

a similar procedure to that outlined for the basic cultural transmission rule, B&R show

that the frequency of cultural variantc in the population after differential attainment of

social roles and cultural transmission by the linear rule,p00, is:

p00 =
nX

k=1

Akp
0
k
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whereAk gives the importance of parents in thekth social role averaged over all possible

sets of cultural parents�j according to the frequency with which those sets occur:

Ak =
X
j

Prob(�j)

 
AkjP
lAlj

!

This equation can be combine with the equation forp0k given above. If�k is the selective

advantage of variantc with respect to rolek (�k = (
ck=
dk) � 1) and assuming that

selection is weak, the equation becomes:

p00 = p+ p(1� p)

 
nX

k=1

Ak�k

!

where the sum is the selection advantage of variantc in role k averaged over all social

roles and weighted by the importance of each role (Ak). Roles which offer a high selec-

tive advantage (�k) will have a strong influence, even if that social role is not weighted

particularly highly in contribution to cultural transmission (i.e.Ak is not particularly high

relative toAl 6=k). Variantc will increase if this quantity is positive and decrease if it is

negative — if variantc offers a selective advantage when averaged over social roles then

it will increase in frequency in the population. In other words, if possessing variantc

makes an individual more likely to occupy a role which allows them to enculturate others

and transmit that variant, thenc will increase in frequency in the population.

A.1.2.2 Guided variation

A model of guided variation requires a model of individual learning. B&R assume that an

individual can be characterised by a numberX, the initial value of their phenotype prior

to individual learning, and a numberY , the value of their phenotype after individual

learning. This is therefore a continuous trait model of cultural characteristics. The goal

of learning is determined by the environment, which is characterised by a numberH. The

aim of learning is essentially to moveY towardsH. L is a parameter determining the

reliance of an individual on individual learning, with highL indicating a high reliance

on individual learning. Errors made during the learning process are represented by a

normally distributed random variable� with mean 0 and varianceVe. It can be shown

that:

Y = aX + (1� a)(H + �)
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wherea = Ve=(Ve+L) is a parameter that gives the importance of individual learning —

a � 1 (L� Ve) corresponding to a tendency to rely on the initial value of the phenotype

X anda � 0 (L � Ve) corresponding to a tendency to ignore the initial value of the

phenotype and move towards the value preferred by the environment,H.

How does this type of individual learning change the mean value and the variance of a

population’s cultural characteristic? Prior to individual learning the mean value of the

trait in the population is given byX and the variance is given byV . The mean value after

individual learning,Y is:

Y = aX + (1� a)H

wherea is as before. As in the individual case, in the population case the mean value for

the trait will tend towards the value favoured by the environment ifa < 0:5. The variance

of the population after individual learning,U , is:

U = a2V + (1� a)2Ve

Individual learning both decreases the variance of the trait in the population through

movement towards the environmentally-determined goal (U = a2V : : :) and increases it

due to errors introduced by individual learning (U = : : : (1� a)2Ve).

If we assume that the culturally-acquired value for the phenotype forms the initial value

of the phenotype which can subsequently be altered by individual learning, this model

of individual learning can be simply added to the blending model of cultural trans-

mission. Assuming non-selective formation of sets of models, equal weighting for all

models (Ai = Aj = 1=n) and no correlation between errors in a given set of models

(Cov(ei; ej) = 0) the mean value ofX in the next generation,X
0
, is:

X
0
= aX + (1� a)H

i.e. when individual learning is powerful (a � 0) the population moves towards the value

of the phenotype favoured by the environment, due to the transmission of cultural traits

favoured by individual learning, and when individual learning is weak (a � 1) the mean
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value of the population’s cultural trait remains unchanged by individual learning. The

variance after transmission,V 0, is:

V 0 = (1=n)(a2V + (1� a)2Ve + E)

i.e. blending both reduces ((1=n)) and increases (: : :+E) variance, and individual learn-

ing both reduces (a2V ) and increases ((1� a)2Ve) variance.

A.1.2.3 Directly-biased transmission

Direct bias can be simply modelled using the model of the transmission of dichotomous

characters given earlier. As before, the probability that an individual acquires cultural

variantc given the set of cultural parentsX1; : : : ; Xn is:

Prob(cjX1; : : : ; Xn) =
nX
i=1

AiXi

In the unbiased case, the value of a particularAi is independent ofXi — the cultural

variant used by a model does not affect the importance of that model to the naive indi-

vidual. However, in the biased case,Ai depends on the intrinsic importance of theith

model, given by�i, and the biasing function,�(Xi):

Ai =
�i(1 + �(Xi))Pn
j=1 �j(1 + �(Xj))

where the biasing function is:

�(Xi) =

8<
: B if Xi = 1

�B if Xi = 0

B gives the strength of the bias in favour of cultural variantc. AssumingB > 0 (variantc

is favoured over variantd), if the ith model has cultural variantc then the intrinsic weight

of that model will be increased by a factor1 +B, whereas if theith model has variantd

then the intrinsic weight of that model will be decreased by1�B. Note that this model of

a biasing function is in principle arbitrary with respect to the functionality of the cultural

trait, with an arbitrary preference in favour of one variant over the other determined byB.
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However,B could be linked to the expected fitness payoff of the variants, in which case

the bias would be non-arbitrary and in favour of the cultural variant which is expected to

yield the greatest fitness payoff.

B&R consider the case where each individual is exposed to two models, with intrinsic

weights�1 and�2. This can be interpreted as either the case where each individual has

two cultural parents, or the case where each individual has multiple cultural parents but

is enculturated in a serial fashion, observingX2 for each parent in turn, comparing it to

their own value, (X1) and deciding on which of the two possibilities (X1 orX2) to adopt.

If p is the frequency of variantc in the population prior to such an episode of cultural

transmission, its frequency after cultural transmission,p0, will be:

p0 = p+ p(1� p)

 
4B�1�2

1� B2 (�1 � �2)
2

!

Assuming that both cultural parents have equal weight (�1 = �2 = 0:5), this reduces to:

p0 = p+ p(1� p)B

In other words, directly biased transmission will increase the frequency of the favoured

variant in the population. The rate of increase depends on the strength of the bias (B)

and the variance in the population (p(1� p)).

A.1.2.4 Indirectly-biased transmission

A model of indirect bias requires a model of the transmission of multiple cultural traits.

B&R develop a model of the blending transmission of two quantitative cultural traits

which is based on the basic transmission model for single continuous traits (outlined

in Section A.1.1.2). Thejth individual is characterised by a two-place vectorXj =

(X1j; X2j). As before, a naive individual observing individualj forms an estimate of

that individual’s cultural variants,Zj = (Z1j; Z2j) such that:

Z1j = X1j + e1j

Z2j = X2j + e2j
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As before,e1j ande2j are random variables drawn from normal distributions with mean

0, variancesE1j andE2j respectively and covarianceE12j.

As for the earlier definition of the blending rule, naive individuals observe and estimate

the cultural character ofn models and then form their own cultural character,X0 =

(X10; X20), by averaging over observed models:

X10 =
nX

j=1

A1jZ1j

X20 =
nX

j=1

A2jZ2j

whereAij is the importance of thejth model in transmitting cultural characteristici (i =

1 or 2). As with the single-trait blending model, we need to know how this type of

transmission will affect the mean value of traiti in the population,X i, and the variance

of trait i, Vi. By similar methods, it can be shown that the mean and variance after

transmission (X
0

i andV 0
i ) are given by:

X
0

i = X i

V 0
i =

nX
j=1

A2

ij

�
Vi + Ei

�

whereEi is the weighted average of errors introduced during transmission:

Ei =

Pn
j=1A

2

ijEijPn
j=1A

2

ij

If we assume that all cultural parents for a given trait have equal weight (i.e.Aij = Aik =

1=n) then this reduces to:

V 0
i = (1=n)

�
Vi + Ei

�

i.e. as before, blending inheritance leaves the mean in the population unchanged and

both decreases and increases variance, depending on the number of cultural parents and

variance of the errors introduced.
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Cultural transmission will also affect the covariance between the values of traits 1 and 2,

C12. For the simplified case where each cultural parent has equals weight (Aij = Aik =

1=n, which impliesA1j = A2j i.e the models are equally important in transmitting both

traits, rather than some models being important in the transmission of one trait and other

models being important in the transmission of other traits), the covariance of the values

after transmission,C 0
12

, is give by:

C 0
12
= (1=n)

 
C12 +

Pn
j=1E12j

n

!

i.e. as with variance, co-variance is reduced by the factor(1=n) and increased by cor-

related errors, measured by the degree of correlation between errors averaged over all

models (
Pn

j=1E12j=n). For more complex cases where the different traits are influenced

by different sets of models (i.e.A1j 6= A2j) the covariance between the traits tends to

decrease.

Given this blending model of the transmission of two quantitative characters, it is possible

to model indirect bias. We will consider trait 1 to be the indicator trait and trait 2 to be

the indirectly biased trait, so that an individual can be characterised by a two-place vector

X = (XI ; XD) (I for Indicator trait,D for derived trait). As described above, individuals

acquire their trait based on the weighted average of their estimate of the variants of their

cultural parents i.e.Xi0 =
Pn

j=1AijZij wherei = I orD.

As discussed above, the indicator trait is a directly-biased trait — some values for the

indicator trait are intrinsically preferred.AIj is therefore a function of the intrinsic influ-

ence of parentj with respect to traitI, �Ij, and the estimated value of modelj’s trait I,

ZIj:

AIj =
�Ij (1 + � (ZIj))Pn
k=1 �Ik (1 + � (ZIk))

where� (x) is a direct bias function. This equation should be familiar due to its similarity

to the equation from the direct bias section.

The importance of thejth cultural parent with respect to the indirectly biased trait,ADj,

will be a function of that parent’s intrinsic importance,�Dj, and the estimate of thejth

model’s value for theindicator trait,ZIj (rather than the estimate of thejth model’s value

for the indirectly biased traitZDj):
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ADj =
�Dj (1 + � (ZIj))Pn
k=1 �Dk (1 + � (ZIk))

where� (x) is the indirect bias function, of a similar form to the direct bias function.

Assuming the non-selective formation of sets of models, weak biasing functions and

equal intrinsic weightings to all cultural parents (�ij = �ik = 1=n), the mean values of

the traits after transmission,X
0

i can be calculated given the mean values of the traits prior

to transmission,X i:

X
0

I = XI + (1=n)Cov (ZI; � (ZI))

X
0

D = XD + (1=n)Cov (ZD; � (ZI))

Cov (Zi; f (Zj)) is the covariance of the traitZi and the bias functionf applied to some

trait Zj. If increases inZi tend to result in increases inf (Zj) thenCov (Zi; f (Zj)) >

0. On the other hand, if increases inZi tend to result indecreases in f (Zj) then

Cov (Zi; f (Zj)) < 0. Cov (ZI ; � (ZI)) therefore gives the strength and direction of

the direct bias — ifCov (ZI ; � (ZI)) < 0 then the mean value ofXI must be above

the value favoured by the direct bias and the mean value will decrease through trans-

mission by an amount proportional to the magnitude ofCov (ZI ; � (ZI)). Similarly, if

Cov (ZI ; � (ZI)) > 0 then the mean value ofXI will increase.

Cov (ZD; � (ZI)) gives the strength and direction of the indirect bias, and depends on

whether values ofZD andZI are correlated. Consider the case whereZD andZI are

positively correlated. Higher values ofZD will be associated with higher values ofZI .

If the current value ofZI associated with the current value ofZD is below the opti-

mum value given by� (ZI) then increases inZD will result in increases in� (ZI) and

thereforeCov (ZD; � (ZI)) > 0. Similarly, if the current value ofZI associated with

the current value ofZD is above the optimal value then increases inZD will result in

decreases in� (ZI) and thereforeCov (ZD; � (ZI)) < 0. In either case, the mean of the

population’s value forXD will tend towards the value associated with the value ofXI

which maximises the indirect bias function� — “variants of the indirectly biased trait

that are positively correlated with the admired variants of the indicator trait will increase

in frequency” (B&R p254). Similarly, variants of the indirectly biased trait which are
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negatively correlated with the admired variants of the indicator trait will decrease in fre-

quency.

A.1.2.5 Frequency-dependent bias

In Section A.1.1.1 a model was described which gave the probability of acquiring cultural

variantc on the basis ofn models for the unbiased dichotomous case. The frequency-

dependent bias case is very similar:

Prob(individual = cjX1; : : : ; Xn) =
nX
i=1

AiXi +D

 
nX
i=1

AiXi

!

Assuming that each model has equal importance this becomes

Prob(individual = cjj) = j=n+D (j)

where j is the number of parents with cultural variantc:

j =
nX
i=1

Xi

andD (j) is the frequency-dependent bias function. WhenD (j) = 0 for all j there is no

frequency-dependent bias and the model reduces to the unbiased case. IfD (j) > 0 for

j > n=2 andD (j) < 0 for j < n=2 then transmission is biased in favour of conformity

— the probability of acquiring the majority trait (j > n=2 indicates that the trait is

possessed by more than half the set ofn models) is increased by a factorD (j), and the

probability of acquiring the minority trait (j < n=2) is decreased by the factorD (j).

Conversely, ifD (j) < 0 for j > n=2 andD (j) > 0 for j < n=2 then transmission is

biased in favour of non-conformity — the probability of acquiring the majority variant is

decreased and the probability of acquiring the minority variant is increased.

Assuming non-selective formation of sets of parents and some valuek such thatk > n=2

andk is minimised (i.e. the lowest value ofk such thatk represents more than half the

number of modelsn), it can be shown that the proportion of individuals with variantc,

p0, after cultural transmission is:
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p0 = p +
nX

j=k

D (j)

 
n

j

! h
pj (1� p)n�j � pn�j (1� p)j

i

This rather complex equation deserves some explanation. There are
�
n

j

�
ways to pickj

individuals from a population of sizen. The probability that one of these will exhibit ex-

actlyj individuals with variantc andn�j individuals with variantd is pj (1� p)n�j and

the probability that one of these will exhibit exactlyj individuals with variantd andn�j

individuals with variantc is pn�j (1� p)j. There are therefore
Pn

j=k

�
n

j

� �
pj (1� p)n�j

�
ways to pick sets of models from the population such that more than half of the mod-

els have variantc, and
Pn

j=k

�
n

j

� �
pn�j (1� p)j

�
ways to pick sets of models such that

more than half have variantd. The proportion ofc in the population therefore increases

according to the frequency-dependent bias functionD (j) applied to the difference be-

tween the probability of picking sets of models such that the majority are of typec and

the probability of picking sets of models such that the majority are of typed.

In the case of conformist transmission,D (j) > 0 for j > k andD (j) < 0 for j < k.

Therefore, the frequency of variantc, p, will increase wheneverp > 0:5 (if c is the

more frequent variant in the population then it will increase in frequency) and decrease

whenp < 0:5 (if c is the less frequent variant in the population then it will decrease

in frequency). The rate of change ofp is at its lowest asp approaches 1 or 0 (the two

saturation points) or 0.5 (the point where the population is perfectly split between the

two variants). Conformist transmission results in the spread of the most common cultural

variant.

A.2 Genetic transmission and natural selection

The simplest models of natural selection acting on genetic transmission1 deal with the

changes in frequency of alleles of a single gene in asexually-reproducing haploid pop-

ulations — each individual has a single gene drawn from a set ofn alleles and each

individual inherits the allele of their single parent. In sexually-reproducing diploid pop-

ulations the equations are complicated by the fact that each individual has two alleles for

each gene and receives one allele from each of their two parents.
1The mathematical model given here is based on the models given in B&R, Hartl & Clark (1997) and

Futuyma (1998).
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Ontogeny is typically treated in a very simplistic manner in mathematical models of pop-

ulation genetics. In the haploid organism, single gene case there aren distinct alleles

and thereforen distinct genotypesG1 : : : Gn. It is typically assumed that there aren

distinct phenotypesF1 : : : Fn and ontogeny maps genotypeGi onto phenotypeFi. Selec-

tion then acts on the phenotype, but since there is a one-to-one correspondence between

genotypes and phenotypes we can talk of selection acting on genotypes and effectively

ignore ontogeny.

Suppose that each individual with phenotypeFi survives with probabilitysi. If NGi
is the

number of individuals with genotypeGi (and therefore phenotypeFi) prior to selection

then the number of individuals with genotypeGi after selection,N 0
Gi

is:

N 0
Gi
= siNGi

If we assume that every surviving individual with genotypeGi leaves, on average,oi
offspring then the number of individuals with genotypeGi the next generation,N 00

Gi
, is

given by:

N 00
Gi
= oiN

0
Gi
= sioiNGi

= fiNGi

wherefi gives the overall fitness of genotypeGi, the probability that individuals with that

genotype will survive to reproductive age multiplied by the average number of offspring

produced.

Now consider a population with two genotypesGa andGb with fitnessfa andfb respec-

tively. Evolution by natural selection takes place in such a population where the two

genotypes do not reproduce at equal rates —fa 6= fb. Typically we are not interested

in the absolute numbers of the two genotypes, but the proportion of the population with

genotypeGa and the proportion of the population with genotypeGb. We will define these

asPGa
= NGa

N
andPGb

=
NGb

N
, whereN is the overall population size (N = NGa

+NGb
).

We can then calculate the proportion of genotypeGa at the next generation, which I will

denote byP 0
Ga

:

P 0
Ga

=
faNGa

faNGa
+ fbNGb

=
faPGa

N

faPGa
N + fbPGb

N
=

faPGa

faPGa
+ fbPGb
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The proportion of genotypeGa at the next generation therefore depends on the propor-

tions of genotypesGa andGb and their fitness. We can calculate howPGa
will change

over time:

�PGa
=

faPGa

faPGa
+ fbPGb

� PGa
=

PGa
PGb

(fa � fb)

faPGa
+ fbPGb

If fa > fb then genotypeGa will increase in frequency, and iffa < fb then it will decrease

in frequency. The rate of change is at a maximum whenPGa
PGb

is at a maximum, which

occurs whenPGa
= PGb

= 0:5 — in other words, natural selection depends on genetic

diversity, and the rate of evolution is higher when the population exhibits more diversity.

A.3 Dual transmission and direct bias

Within the dual transmission model, B&R consider the circumstances under which a bi-

ological capacity for individual learning and biased and unbiased cultural transmission

will be favoured by natural selection. For the purpose of this thesis it is sufficient to

review their model of the genetic evolution of direct bias. Recall from Section A.1.2.3

above that direct bias on cultural transmission will increase the frequency of the favoured

variant in a population, with the rate of increase depending on the strength of the di-

rect bias, given by the biasing function�, and the cultural variance in the population.

B&R expand this model, following their general technique outlined above, to consider

the case where� is determined genetically — an individual’s genotype determines their

preference for cultural variants.

B&R assume that there are two cultural variants,c andd, and two genetic variants in the

population,e andf . Genotypese andf define biasing functions�e and�f such that:

�e(Xi) = 0

�f (Xi) =

8<
: B if Xi = 1

�B if Xi = 0

Recall thatXi = 1 if the learner’sith cultural parent possesses variantc, andXi = 0

otherwise.e is therefore the unbiased allele andf is the biased allele, where the bias is

in favour of cultural variantc if B > 0. We can now calculate the probability that an

324



individual with genotypeG acquires cultural variantc given that it is exposed to cultural

parents with the cultural variantsX1; : : :Xn. This is given by:

Prob(cjX1; : : : ; Xn; G) =

Pn
i=1 �iXi (1 + �G (Xi))Pn
i=1 �i (1 + �G (Xi))

As before,�i gives the intrinsic importance of theith cultural parent. This is essentially

identical to the equation for directly biased transmission given in Section A.1.2.3, with

the addition of a specified genotypeG which gives the particular biasing function�G to

be used.

B&R first assume that genetic parents are selected at random from the pool of possible

parents, where the frequency of genotypeG in that pool isqG. The frequency of geno-

typeG among offspring,q 0G, therefore remains unchanged — there is no natural selection

acting on genetic transmission.p gives the frequency of cultural variantc in the parent

population. Assuming that individuals have just two, equally-weighted, cultural parents,

the frequency of individuals with genotypeG and cultural variantX after cultural trans-

mission,F 0
GX , is therefore given by:

F 0
ec = qep

F 0
fc = qf (p+ p(1� p)B)

F 0
ed = qe (1� p)

F 0
fd = qf (1� p� p(1� p)B)

As we would expect, individuals with the unbiased allelee have the same frequency of

the two cultural variants as was present in the parent population — individuals with allele

e and variantc occur with frequency given by the product of the frequency of genotype

e and cultural variantc (p), and individuals with allelee and cultural variantd occur

with frequency given by the product of the frequency of genotypee and cultural variant

d (1 � p). Among individuals with the biased allelef cultural variantc increases in

frequency according to the strength of the bias and the cultural variance in the parent

population, and variantd decreases by a similar factor.

B&R then go on to add natural selection to the model. Natural selection weeds indi-

viduals out after cultural transmission and prior to breeding, with the probability that an
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individual with genotypeG and cultural variantX survives to breeding age being given

by WGX . WGX depends on the selective advantage of cultural variantc, s, and the cost

of biased transmission,z:

Wec = 1 + s

Wfc = 1 + s� z

Wed = 1

Wfd = 1� z

Individuals with cultural variantc gain the fitness payoffs. Individuals with the biased

genotypef suffer the cost of that bias,z. We can now calculate the expected frequency

of individuals with genotypeG and cultural variantX after selection,F 00
GX , according to

the equations given above for dealing with natural selection:

F 00
GX =

WGXF
0
GX

WecF 0
ec +WfcF 0

fc +WedF 0
ed +WfdF 0

fd

B&R then go on to make several simplifying assumptions. They assume that cultural

variantc is always favoured by selection (s > 0) and that bias has no cost or a positive

cost (z � 0) but that these factors are weak (z; s � 1). Given these assumptions, B&R

work through a rather complex set of equations, keeping track ofqf , the frequency of the

biased genotype (henceforthq) andp, the frequency of cultural variantc. q 00 andp00 give

the frequencies of these two characters in the next generation.

Assume for a moment thatp, the proportion of individuals with cultural variantc, is fixed

at some arbitrary value. What happens toq, the frequency of individuals with the biased

genotype?

q00 = q + vq(1� q)

wherev gives the “selection differential” of the biased allele and is given by:

v = B (sp (1� p))� z
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If v is positive the biased allele will increase in frequency. First consider the case where

z = 0 — the biased genotype has no associated cost. Ifp = 0 or p = 1 thenv = 0

and the biased allele does not change frequency — if the population exhibits no cultural

variation then the biased allele has no fitness advantage over the unbiased allele and does

not change in frequency. If the population exhibits cultural variation thenv > 0 and the

biased allele will increase in frequency. Now consider the case wherez > 0— the biased

genotype has a cost. If the population exhibits cultural variance (0 < p < 1) then the

sign ofv will depend on the relative values ofB, s, p andz. If the population exhibits

no cultural variation (p = 0 or p = 1) thenv will be negative and the biased genotype

will decrease in frequency – the biased allele will suffer a fitness penalty due to its cost

and no fitness benefit over the unbiased allele due to the lack of cultural variation. To

summarise, in a population which is completely converged culturally (on either variant)

the frequency of the biased variant should either remain constant (if biased learning is

costless relative to unbiased learning), or decrease (if biased learning has a cost).

What can we predict about the frequency of cultural variantc, given byp? Variantc

is always favoured by selection, and by biased transmission whenq > 0. Therefore

variantc will increase in frequency until the population reaches equilibrium atp = 1. As

discussed in the previous paragraph, at this equilibrium state the biased genotype either

has no advantage over the unbiased genotype or is at a disadvantage (wherez > 0).

Therefore, at equilibrium we should expect selection to either be neutral with respect

to bias, or to see only the unbiased allele — directly biased transmission pushes the

population to converge on the favoured cultural variant, at which point selection pressure

on the population’s genotypes either stops, or acts to reduces the frequency of the biased

allele which drove cultural convergence in the first place.
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