APPENDIXA

Mathematical models of transmission

In this appendix | will present details of mathematical models of cultural and genetic
transmission. In Section A.1 | outline B&R’s treatment of cultural transmission and the
factors influencing cultural evolution. In Section A.2 | outline a simple mathematical

model of genetic transmission and biological evolution by natural selection. Finally, in
Section A.3 | describe the mathematical details of B&R’s model of the dual transmission
of cultural traits and a genetically-encoded direct bias.

A.1 Models of cultural transmission

This Section covers B&R’s basic models of unbiased cultural transmission (Section A.1.1),
and their treatment of the various pressures acting on cultural transmission (Section
A.1.2).

A.1.1 Basic cultural transmission models
A.1.1.1 Transmission of dichotomous traits

B&R provide a simple model of the cultural transmission of a dichotomous trait, where
individuals are either characterised as having cultural trait d. p is the proportion

of individuals in the population with cultural variant and1 — p is the proportion of
individuals with variantd. p’ is the proportion of individuals in the population with
cultural variant after cultural transmission.

Each individual acquires their cultural variant based on their observations of the cultural
variants ofn cultural parents, or models. The probability that a naive individual acquires
variantc based on the behaviour afmodels is therefore:
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Prob(individual = ¢| X1, ..., X,) =Y A;X;
i=1
whereX; = 1 if the ith model possesses variarand X; = 0 if the ith model possesses
variantd, A; is the probability that the naive individual acquires the variant ofithe
model andy"; A; = 1. A, therefore gives the importance of titha cultural parent in the
enculturation process.

Given this equation we can now calculatethe proportion of individuals with variarmat
after cultural transmission. For this we require the probability that a given set of models
(X1,...,X,)is formed,Prob(X;, ..., X,). This leads to:

p = 21: . 21: Prob(c|zy, ..., x,)Prob(X; =z, ..., X, = 13,)
z1=0 Tp=0

In other words, the proportion of individuals with variaris equal to the probability that
an individual will acquire variant based upon exposure to a specific set ahodels,
multiplied by the probability of the formation of that set of models and summed over all
sets of modelsp’ therefore depends on the probability of forming sets of models. If we
assume that the probability of any cultural parent possessing varisuggual top (i.e.
cultural parents are drawn at random from the population) then it can be shown that cul-
tural transmission leaves the frequency of cultural variants in the population unchanged
ie.

p=p

Therefore, if the original population exhibits variation for some cultural trait, cultural
transmission itself will not reduce that variation or alter the distribution of variants, as-
suming random selection of cultural parents — cultural transmission alone will not lead
to cultural evolution or cultural adaptation.

A.1.1.2 Transmission of continuous traits

In the continuous trait model each individual is characterised by a single nuidiber,
representing the value of their culturally-acquired character. In this case a population
cannot be characterised by the proportion of one cultural variant, as in the dichotomous
character model, but must rather be modelled as a distribution over valuesrfX).
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Making the simplifying assumption th&t(X') can be approximated by a normal distri-
bution allows a population to be characterised by the mean valXeinfthe population,
X and the variance ak in the population)/.

B&R consider how a blending inheritance model would alter the mean and the variance
of a cultural characteristic in a population. As in the dichotomous model, each naive
individual is exposed to the behaviour @fmodels, with the cultural variant of thigh

model beingX;. Based on these observations, the naive individual makes an estimate of
theith model’s cultural ruleZ;, where:

Zl:XmLe,

whereg; is a random variable drawn from the normal distribution with mean 0 and vari-
anceF;, representing errors in the naive individual's estimate of the model's cultural
character. As the name suggests, in a blending inheritance model the enculturated indi-
vidual’s cultural variant,X, is simply the average of their estimates of theimodels’
variants:

i=1

where, as in the dichotomous modael, is the importance of thé&h model.

By a similar method to that used for the dichotomous case, it is possible to calculate the
mean value ofX in the population after cultural transmissios, and variance of{ in

the population after transmissiori,. B&R show that, assuming non-selective formation

of sets of models:

X =X
In other words, blending inheritance does not change the population mean of the cultural
variant, as with the dichotomous model. However, the variance of the population does
not necessarily remain unchanged. Assuming non-selective formation of sets of models,
equal weighting for all models4; = 1/n for all ©) and no correlation between errors in
a given set of modelsjov(e;, e;) = 0 for all i andy):

V' = (1/n)(V +E)
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whereF is the average value df; (recall thatE; gives the variance of a normal distri-
bution, and the errors made by the learner when estimating the trait athtleailtural

parent come from this distribution) for the setromodels. In other words, there are two
forces acting on the population. Assuming no errors in transmis&os (), blending
transmission tends to reduce the variance in the population, with variance being reduced
faster for larger numbers of cultural parents. The counteracting force, dependent on the
average error introduced during transmissi@), (tends to increase the variance in the
population, with errors of larger variance increasing the variance in the population more.

A.1.2 Pressuresacting on cultural transmission

B&R provide mathematical accounts of how three pressure acting on transmission can
result in cultural change and cultural evolution. These are:

1. Natural selection of cultural variants, resulting from selective removal of encultur-
ated individuals.

2. Guided variation, resulting from individual learning by enculturated individuals.

3. Biased transmission, resulting from the strategy of learners during cultural trans-
mission. The forces of biased transmission can be further subdivided into three
forms:

(a) Directly biased transmission, resulting from a preference for learners to ac-
quire one cultural variant over another.

(b) Indirectly biased transmission, resulting from a preference for learners to ac-
quire cultural traits which are associated with other cultural traits.

(c) Frequency-dependent transmission, resulting from a disproportionate prefer-
ence for learners to acquire the most (or least) frequent cultural trait in the
population.

In Sections A.1.2.1 to A.1.2.5 B&R’s models for these pressures are reviewed. In the
interests of clarity, a separate section is devoted to each of the three subtypes of biased
transmission.

A.1.2.1 Natural selection of cultural variants

B&R model the natural selection of cultural variants by assuming that there are a set of
n distinct social roles (e.g. mother, father, uncle, priest, teacher). Each naive individual
acquires their cultural characteristic based on observation of a subset of thesg.roles
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As before, the weight of social roleis A,. The weight of social rolé with respect to a
subset of social roles;, Ay; is:

Ay if k belongs tor;
Akj = .
0 otherwise

Working within the dichotomous traits model, the probability that a naive individual ac-
quires variant based on the behaviour of the set of individuals with phenotypic values
Xi,...,X, and the set of cultural parents with rotess therefore:

o P Agi X
Prob(individual = ¢|1j, X1, ..., X,) = S—1—
Zk:l Akj

This equation normalises the weight of the cultural parent with kddg the weights of

all roles present in the set of rolesand is clearly related to the earlier equation for the
cultural transmission of dichotomous traits.

In order to model natural selection we must assume that the probability that an individ-
ual attains a particular social rokedepends on the cultural variant that that individual
possesses. Lé?.. be the probability that an individual with cultural varianattains
social rolek and, similarly (4. be the probability that an individual with cultural variant

d attains social rolé&. As before, we will assume that the frequency of variaint the
population isp. The frequency of individuals with variantattaining social rolé:, p} is
therefore:

p/ _ Qckp
T Qup + Qar(1 - p)

Working under the assumption that sets of rateare formed at random, and following

a similar procedure to that outlined for the basic cultural transmission rule, B&R show
that the frequency of cultural variantin the population after differential attainment of
social roles and cultural transmission by the linear rpfejs:

n
p" = Z Akpﬁg
k=1
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whereA,, gives the importance of parents in thign social role averaged over all possible
sets of cultural parents according to the frequency with which those sets occur:

_ Ay
A, = Zj:PTOb(TJ) (Zz Azj>

This equation can be combine with the equationgfpgiven above. It is the selective
advantage of variant with respect to rolé (o, = (Q./Qq) — 1) and assuming that
selection is weak, the equation becomes:

p'=p+p(l-p) (Z Zk%)
k=1

where the sum is the selection advantage of vaiantrole £ averaged over all social
roles and weighted by the importance of each relg)( Roles which offer a high selec-

tive advantaged,) will have a strong influence, even if that social role is not weighted
particularly highly in contribution to cultural transmission (i4 is not particularly high
relative to4,;). Variantc will increase if this quantity is positive and decrease if it is
negative — if variant offers a selective advantage when averaged over social roles then
it will increase in frequency in the population. In other words, if possessing variant
makes an individual more likely to occupy a role which allows them to enculturate others
and transmit that variant, therwill increase in frequency in the population.

A.1.2.2 Guided variation

A model of guided variation requires a model of individual learning. B&R assume that an
individual can be characterised by a numbgrthe initial value of their phenotype prior

to individual learning, and a numbéf, the value of their phenotype after individual
learning. This is therefore a continuous trait model of cultural characteristics. The goal
of learning is determined by the environment, which is characterised by a ndmiddre

aim of learning is essentially to moué towardsH. L is a parameter determining the
reliance of an individual on individual learning, with highindicating a high reliance

on individual learning. Errors made during the learning process are represented by a
normally distributed random variabtewith mean O and varianck.. It can be shown

that:

Y=aX+(1—-a)(H +¢)
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wherea =V, /(V, + L) is a parameter that gives the importance of individual learning —
a =~ 1 (L < V,) corresponding to a tendency to rely on the initial value of the phenotype
X anda = 0 (L > V,) corresponding to a tendency to ignore the initial value of the

phenotype and move towards the value preferred by the environident,

How does this type of individual learning change the mean value and the variance of a
population’s cultural characteristic? Prior to individual learning the mean value of the
trait in the population is given by and the variance is given By. The mean value after
individual learning” is:

Y=aX+(1-a)H

wherea is as before. As in the individual case, in the population case the mean value for
the trait will tend towards the value favoured by the environmentif 0.5. The variance
of the population after individual learning,, is:

U=aV+(1l-a)V,

Individual learning both decreases the variance of the trait in the population through
movement towards the environmentally-determined ggak(a?V . ..) and increases it
due to errors introduced by individual learnidg & ... (1 — a)?V,).

If we assume that the culturally-acquired value for the phenotype forms the initial value
of the phenotype which can subsequently be altered by individual learning, this model
of individual learning can be simply added to the blending model of cultural trans-
mission. Assuming non-selective formation of sets of models, equal weighting for all
models @, = A; = 1/n) and no correlation between errors in a given set of models
(Cov(e;, e;) = 0) the mean value ok in the next generationy , is:

X =aX+(1—a)H

i.e. when individual learning is powerfut (= 0) the population moves towards the value
of the phenotype favoured by the environment, due to the transmission of cultural traits
favoured by individual learning, and when individual learning is weak:(1) the mean
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value of the population’s cultural trait remains unchanged by individual learning. The
variance after transmissiol;, is:

V'= (1/n)(a*V + (1 — a)?V, + E)

i.e. blending both reducesl(/n)) and increases (. + E) variance, and individual learn-
ing both reducesafV’) and increaseg { — a)?V,) variance.

A.1.2.3 Directly-biased transmission

Direct bias can be simply modelled using the model of the transmission of dichotomous
characters given earlier. As before, the probability that an individual acquires cultural
variantc given the set of cultural parends,, ..., X,, is:

P?"Ob(C|X1, Ce ,Xn) = Z AzXz

=1

In the unbiased case, the value of a particulalis independent ofX; — the cultural
variant used by a model does not affect the importance of that model to the naive indi-
vidual. However, in the biased casé; depends on the intrinsic importance of tile
model, given byy;, and the biasing functiort(X;):

;i (1 + (X))
T ai(1+ B(X;))

Ai:

where the biasing function is:

5(Xi) =

B ifX;=1
-B if X;=0

B gives the strength of the bias in favour of cultural variamissumingB > 0 (variantc

is favoured over variant), if the ;th model has cultural variantthen the intrinsic weight

of that model will be increased by a factbr B, whereas if theth model has variant
then the intrinsic weight of that model will be decreased byB. Note that this model of

a biasing function is in principle arbitrary with respect to the functionality of the cultural
trait, with an arbitrary preference in favour of one variant over the other determinBd by
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However,B could be linked to the expected fitness payoff of the variants, in which case
the bias would be non-arbitrary and in favour of the cultural variant which is expected to
yield the greatest fithess payoff.

B&R consider the case where each individual is exposed to two models, with intrinsic
weightsa; anda,. This can be interpreted as either the case where each individual has
two cultural parents, or the case where each individual has multiple cultural parents but
is enculturated in a serial fashion, observikig for each parent in turn, comparing it to
their own value, &) and deciding on which of the two possibilitie¥ { or X;) to adopt.

If p is the frequency of variant in the population prior to such an episode of cultural
transmission, its frequency after cultural transmissionwill be:

4Boy«
p’=p+p(1—p)( - >

1-— B2 (Oél - 042)2

Assuming that both cultural parents have equal weight£ a, = 0.5), this reduces to:

p=p+p(l—pB

In other words, directly biased transmission will increase the frequency of the favoured
variant in the population. The rate of increase depends on the strength of thé&pias (
and the variance in the population({ — p)).

A.1.2.4 Indirectly-biased transmission

A model of indirect bias requires a model of the transmission of multiple cultural traits.
B&R develop a model of the blending transmission of two quantitative cultural traits
which is based on the basic transmission model for single continuous traits (outlined
in Section A.1.1.2). Thgth individual is characterised by a two-place vecloy =

(X1, X5;). As before, a naive individual observing individuaforms an estimate of

that individual’s cultural variants7; = (Z,;, Z»;) such that:

le = le + 61]'

Zyj = Xoj + ez
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As beforee;; andey; are random variables drawn from normal distributions with mean
0, varianced?’;; and F,; respectively and covariandg ;.

As for the earlier definition of the blending rule, naive individuals observe and estimate
the cultural character of models and then form their own cultural charact&y, =
(X10, X29), by averaging over observed models:

Xio = Z A2

J=1

Xog = Z AsiZo;

7=1
whereA;; is the importance of thgth model in transmitting cultural characteristi¢ =
1 or 2). As with the single-trait blending model, we need to know how this type of
transmission will affect the mean value of train the population,X ;, and the variance
of trait 7, V;. By similar methods, it can be shown that the mean and variance after
transmissionX; andV;) are given by:

/ J—

Vi = JZ:A?J' (V; +Ei)

whereF; is the weighted average of errors introduced during transmission:

n 2
I — j=1 Az’jEij

T — n 2
j=1 AZj

If we assume that all cultural parents for a given trait have equal weight{(j;e= A;;, =
1/n) then this reduces to:
Vi=(1/n) (V;' + Ez)

i.e. as before, blending inheritance leaves the mean in the population unchanged and
both decreases and increases variance, depending on the number of cultural parents and
variance of the errors introduced.
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Cultural transmission will also affect the covariance between the values of traits 1 and 2,
C1,. For the simplified case where each cultural parent has equals weight (4;, =

1/n, which impliesA,; = A,; i.e the models are equally important in transmitting both
traits, rather than some models being important in the transmission of one trait and other
models being important in the transmission of other traits), the covariance of the values
after transmissiort/|,, is give by:

= 1/ (€ + ZELE)

i.e. as with variance, co-variance is reduced by the fadtgor) and increased by cor-
related errors, measured by the degree of correlation between errors averaged over all
models §°7_, F,;/n). For more complex cases where the different traits are influenced
by different sets of models (i.ed;; # A,;) the covariance between the traits tends to
decrease.

Given this blending model of the transmission of two quantitative characters, itis possible
to model indirect bias. We will consider trait 1 to be the indicator trait and trait 2 to be
the indirectly biased trait, so that an individual can be characterised by a two-place vector
X = (X1, Xp) ({ for Indicator trait,D for derived trait). As described above, individuals
acquire their trait based on the weighted average of their estimate of the variants of their
cultural parents i.eX;o = 37, A;;Z;; wherei = I or D.

As discussed above, the indicator trait is a directly-biased trait — some values for the
indicator trait are intrinsically preferredi;; is therefore a function of the intrinsic influ-
ence of parenj with respect to traif, a;;, and the estimated value of modid trait 7,

Z[j:

. — o (L4 B(Zy))
TS an (14 B(Zw))

whereg (z) is a direct bias function. This equation should be familiar due to its similarity
to the equation from the direct bias section.

The importance of thgth cultural parent with respect to the indirectly biased trdit,;,
will be a function of that parent’s intrinsic importancey;, and the estimate of thgh
model’s value for theéndicator trait, 7;; (rather than the estimate of thith model’s value
for the indirectly biased trait ,;):
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g — a0 (1+0(Zp))
DI apk (140 (Zn))

wheref () is the indirect bias function, of a similar form to the direct bias function.

Assuming the non-selective formation of sets of models, weak biasing functions and
equal intrinsic weightings to all cultural parents;( = «;;, = 1/n), the mean values of

the traits after transmissioX; can be calculated given the mean values of the traits prior
to transmissionX;:

X, =X;+(1/n)Cov (Z1, B(Z;))

X)) = X+ (1/n) Cov (Z0,0(2)))

Cov (Z;, f (Z;)) is the covariance of the traif; and the bias functiori applied to some

trait Z;. If increases inZ; tend to result in increases jf\(Z;) thenCov (Z;, f (Z;)) >

0. On the other hand, if increases i) tend to result indecreases in f (Z;) then

Cov (Z;, f(Z;)) < 0. Cov(Z;,B(Z;)) therefore gives the strength and direction of
the direct bias — ifCov (71, 3(Z;)) < 0 then the mean value of; must be above

the value favoured by the direct bias and the mean value will decrease through trans-
mission by an amount proportional to the magnitud&'ot (Z;, 3 (Z;)). Similarly, if

Cov (Zr, B (Z1)) > 0 then the mean value of; will increase.

Cov (Zp,0(Z;)) gives the strength and direction of the indirect bias, and depends on
whether values o/, and Z; are correlated. Consider the case wh&feand Z; are
positively correlated. Higher values af, will be associated with higher values &7.

If the current value ofZ; associated with the current value &f, is below the opti-
mum value given by (Z;) then increases itxp will result in increases i (Z;) and
thereforeCov (Zp, 0 (Z;)) > 0. Similarly, if the current value of/; associated with

the current value of/, is above the optimal value then increase<Zin will result in
decreases ifi (Z;) and thereforeCov (Zp,0 (Z;)) < 0. In either case, the mean of the
population’s value forX'p will tend towards the value associated with the valueXof
which maximises the indirect bias functién— “variants of the indirectly biased trait
that are positively correlated with the admired variants of the indicator trait will increase
in frequency” (B&R p254). Similarly, variants of the indirectly biased trait which are
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negatively correlated with the admired variants of the indicator trait will decrease in fre-
quency.

A.1.25 Freguency-dependent bias

In Section A.1.1.1 a model was described which gave the probability of acquiring cultural
variantc on the basis of: models for the unbiased dichotomous case. The frequency-
dependent bias case is very similar:

Prob(individual = ¢|X1,...,X,) =Y AX;+ D (Z AiX,->

i=1 i=1

Assuming that each model has equal importance this becomes

Prob(individual = ¢|j) = j/n+ D (j)

where j is the number of parents with cultural variant

andD (j) is the frequency-dependent bias function. Wig(y) = 0 for all j there is no
frequency-dependent bias and the model reduces to the unbiased dasg) i 0 for

J >n/2andD (j) < 0for j < n/2then transmission is biased in favour of conformity
— the probability of acquiring the majority traiy (> n/2 indicates that the trait is
possessed by more than half the set @hodels) is increased by a factbr(j), and the
probability of acquiring the minority traitj( < n/2) is decreased by the factd? ().
Conversely, ifD (j) < 0for j > n/2 andD (j) > 0 for j < n/2 then transmission is
biased in favour of non-conformity — the probability of acquiring the majority variant is
decreased and the probability of acquiring the minority variant is increased.

Assuming non-selective formation of sets of parents and some kaueh that: > n /2
andk is minimised (i.e. the lowest value aéfsuch that: represents more than half the
number of models), it can be shown that the proportion of individuals with variant
p', after cultural transmission is:
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This rather complex equation deserves some explanation. The@)avmys to pickj
individuals from a population of size. The probability that one of these will exhibit ex-
actly j individuals with variant andn — j individuals with variantl is p? (1 — p)"_j and
the probability that one of these will exhibit exacflyndividuals with variant/ andn — j
individuals with variant is p" 7 (1 — p)’. There are thereforg"._, (?) (pj (1— p)”*j)
ways to pick sets of models from the population such that more than half of the mod-
els have variant, andy7_, (7) (p"~ (1 - p)’) ways to pick sets of models such that
more than half have variaat The proportion ot in the population therefore increases
according to the frequency-dependent bias funcfivfy) applied to the difference be-
tween the probability of picking sets of models such that the majority are ofdynel
the probability of picking sets of models such that the majority are of tiype

In the case of conformist transmissiaf,(j) > 0 for j > kandD (j) < 0 for j < k.
Therefore, the frequency of variant p, will increase whenevep > 0.5 (if ¢ is the

more frequent variant in the population then it will increase in frequency) and decrease
whenp < 0.5 (if ¢ is the less frequent variant in the population then it will decrease
in frequency). The rate of change pfis at its lowest ap approaches 1 or O (the two
saturation points) or 0.5 (the point where the population is perfectly split between the
two variants). Conformist transmission results in the spread of the most common cultural
variant.

A.2 Genetic transmission and natural selection

The simplest models of natural selection acting on genetic transmisdeat with the
changes in frequency of alleles of a single gene in asexually-reproducing haploid pop-
ulations — each individual has a single gene drawn from a set alfeles and each
individual inherits the allele of their single parent. In sexually-reproducing diploid pop-
ulations the equations are complicated by the fact that each individual has two alleles for
each gene and receives one allele from each of their two parents.

1The mathematical model given here is based on the models given in B&R, Hartl & Clark (1997) and
Futuyma (1998).
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Ontogeny is typically treated in a very simplistic manner in mathematical models of pop-
ulation genetics. In the haploid organism, single gene case there @digtinct alleles

and therefore: distinct genotypesr; ... G,. Itis typically assumed that there ane

distinct phenotypes; . .. F,, and ontogeny maps genoty@e onto phenotypéd’;. Selec-

tion then acts on the phenotype, but since there is a one-to-one correspondence between
genotypes and phenotypes we can talk of selection acting on genotypes and effectively
ignore ontogeny.

Suppose that each individual with phenotypesurvives with probability;. If N, is the
number of individuals with genotyp@; (and therefore phenotyp€) prior to selection
then the number of individuals with genotype after selection)Vy;, is:

!
NGi = SiNGi

If we assume that every surviving individual with genoty@e leaves, on average;
offspring then the number of individuals with genoty@e the next generationy, , is
given by:

" !
NGi = O’iNGi = SiOiNGi = szGl

wheref; gives the overall fithess of genotype, the probability that individuals with that
genotype will survive to reproductive age multiplied by the average number of offspring
produced.

Now consider a population with two genotyp&s andG,, with fithessf, and f, respec-
tively. Evolution by natural selection takes place in such a population where the two
genotypes do not reproduce at equal rateg—~ f,. Typically we are not interested

in the absolute numbers of the two genotypes, but the proportion of the population with
genotypd&+, and the proportion of the population with genotypg We will define these
asPq, = N]f’,a andPg, = % whereN is the overall population sizé\ = N¢, + Ng,).
We can then calculate the proportion of genotgfeat the next generation, which | will

denote byF, :

A faNGa _ faPGaN _ faPGa
“ " f.Ng, + fiNa,  fuPa, N+ fiPe,N ~ f.Pa, + f1Ps,
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The proportion of genotypé&', at the next generation therefore depends on the propor-
tions of genotypes:/, andG, and their fithess. We can calculate héw, will change
over time:

fiPs, p _ PaPa(f=h)
faPa, + vPa, " fiPa, + fiPq,

APg, =

If f, > f, then genotypé&/, willincrease in frequency, and ff, < f, then it will decrease

in frequency. The rate of change is at a maximum wRgnF, is at a maximum, which
occurs whenP;, = P;, = 0.5 — in other words, natural selection depends on genetic
diversity, and the rate of evolution is higher when the population exhibits more diversity.

A.3 Dual transmission and direct bias

Within the dual transmission model, B&R consider the circumstances under which a bi-
ological capacity for individual learning and biased and unbiased cultural transmission
will be favoured by natural selection. For the purpose of this thesis it is sufficient to
review their model of the genetic evolution of direct bias. Recall from Section A.1.2.3
above that direct bias on cultural transmission will increase the frequency of the favoured
variant in a population, with the rate of increase depending on the strength of the di-
rect bias, given by the biasing functigh and the cultural variance in the population.
B&R expand this model, following their general technique outlined above, to consider
the case wherg is determined genetically — an individual’'s genotype determines their
preference for cultural variants.

B&R assume that there are two cultural variantandd, and two genetic variants in the
populatione and f. Genotypes and f define biasing functions, andj; such that:

Be(Xi): 0
B ifX =1
Pr(Xs) = {—B if X; =0

Recall thatX; = 1 if the learner’sith cultural parent possesses varianand X; = 0
otherwise.e is therefore the unbiased allele afids the biased allele, where the bias is
in favour of cultural variant if B > 0. We can now calculate the probability that an
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individual with genotypé&~ acquires cultural variantgiven that it is exposed to cultural
parents with the cultural varianfs,, . .. X,,. This is given by:

"X (1+ Ba (X
Prob(c|Xy,..., Xy, G) = Ziﬂlfa- (1( + 5§G()(())))

As before,a; gives the intrinsic importance of th#h cultural parent. This is essentially
identical to the equation for directly biased transmission given in Section A.1.2.3, with
the addition of a specified genotypéwhich gives the particular biasing functigl; to

be used.

B&R first assume that genetic parents are selected at random from the pool of possible
parents, where the frequency of genotypén that pool isq;. The frequency of geno-
type G among offspringg,;, therefore remains unchanged — there is no natural selection
acting on genetic transmissiop.gives the frequency of cultural varianin the parent
population. Assuming that individuals have just two, equally-weighted, cultural parents,
the frequency of individuals with genotygéand cultural varian after cultural trans-
mission,F{, ., is therefore given by:

F. = e
Fi.= g (p+p(—p)B)
= ge (1 —p)

Fiy= q(1—p—p(1—-p)B)

As we would expect, individuals with the unbiased allelleave the same frequency of

the two cultural variants as was present in the parent population — individuals with allele
e and variant occur with frequency given by the product of the frequency of genotype

e and cultural variant (p), and individuals with allelee and cultural variantl occur

with frequency given by the product of the frequency of geno#ypad cultural variant

d (1 — p). Among individuals with the biased allelg cultural variantc increases in
frequency according to the strength of the bias and the cultural variance in the parent
population, and variant decreases by a similar factor.

B&R then go on to add natural selection to the model. Natural selection weeds indi-
viduals out after cultural transmission and prior to breeding, with the probability that an
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individual with genotype&~ and cultural varianfX' survives to breeding age being given
by Wex. Wex depends on the selective advantage of cultural variantand the cost
of biased transmission;

Wee= 1+s
Wi= 14+s5—2
Weqg = 1
Wiea = 1—2z

Individuals with cultural variant gain the fithess payo#. Individuals with the biased
genotypef suffer the cost of that biag, We can now calculate the expected frequency
of individuals with genotyp&: and cultural variani" after selectionf'/: -, according to
the equations given above for dealing with natural selection:

!

1
Fox = 5 o W F, A WasF - WogF,
ecllce T Wiellpo + Wedllgg + Wyal pq

B&R then go on to make several simplifying assumptions. They assume that cultural
variantc is always favoured by selection ¢ 0) and that bias has no cost or a positive
cost ¢ > 0) but that these factors are weak { < 1). Given these assumptions, B&R
work through a rather complex set of equations, keeping tragk,dhe frequency of the
biased genotype (henceforihandp, the frequency of cultural variamat ¢” andp” give

the frequencies of these two characters in the next generation.

Assume for a moment that the proportion of individuals with cultural variaatis fixed
at some arbitrary value. What happeng tthe frequency of individuals with the biased
genotype?

¢"=q+uvg(l—q)

wherewv gives the “selection differential” of the biased allele and is given by:

v=DB(sp(l—p))—=
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If v is positive the biased allele will increase in frequency. First consider the case where
z = 0 — the biased genotype has no associated cogi. # 0 or p = 1 thenv = 0

and the biased allele does not change frequency — if the population exhibits no cultural
variation then the biased allele has no fithess advantage over the unbiased allele and does
not change in frequency. If the population exhibits cultural variation then0 and the
biased allele will increase in frequency. Now consider the case wheré — the biased
genotype has a cost. If the population exhibits cultural variafice (p < 1) then the

sign of v will depend on the relative values &f, s, p andz. If the population exhibits

no cultural variation = 0 or p = 1) thenwv will be negative and the biased genotype
will decrease in frequency — the biased allele will suffer a fitness penalty due to its cost
and no fitness benefit over the unbiased allele due to the lack of cultural variation. To
summarise, in a population which is completely converged culturally (on either variant)
the frequency of the biased variant should either remain constant (if biased learning is
costless relative to unbiased learning), or decrease (if biased learning has a cost).

What can we predict about the frequency of cultural variargiven byp? Variantc

is always favoured by selection, and by biased transmission when0. Therefore
variantc will increase in frequency until the population reaches equilibrium-atl. As
discussed in the previous paragraph, at this equilibrium state the biased genotype either
has no advantage over the unbiased genotype or is at a disadvantage {whebg
Therefore, at equilibrium we should expect selection to either be neutral with respect
to bias, or to see only the unbiased allele — directly biased transmission pushes the
population to converge on the favoured cultural variant, at which point selection pressure
on the population’s genotypes either stops, or acts to reduces the frequency of the biased
allele which drove cultural convergence in the first place.
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