
CHAPTER 3

The cultural evolution of communication

The first step in an investigation into the evolution of the distinguishing design features

of language — cultural transmission, symbolicism and compositionality — is to consider

the cultural evolution of simple, unstructured communication systems. Such systems are

the equivalent of a symbolic vocabulary. In particular, I will search for the circumstances

under which optimal communication emerges. My line of reasoning, for the purpose of

this chapter, is as follows. Humans have a culturally transmitted, symbolic vocabulary.

Therefore, humans must have the necessary mental apparatus to support such a symbolic

vocabulary. I will make the default adaptationist assumption that this capacity must have

provided a fitness payoff at some point in evolutionary history, and this payoff must have

been due to the communicative benefits of symbolic vocabulary. Therefore, humans have

the necessary mental apparatus to support a communicatively useful, culturally transmit-

ted symbolic vocabulary. The aim of this chapter is therefore to identify the learning bias

required to support a communicatively useful vocabulary, in the strongest case an optimal

communication system, and equate this with the mental capacity of humans.

The assumption that the human capacity for symbolic vocabulary evolved due to fitness

payoff arising from communication will be reexamined in Chapter 4.

In Section 3.1 I review previous computational models which tackle this issue. In Sec-

tion 3.2 a simple model of communication is developed. In Section 3.3 a new ILM is

introduced. This model shows that the key determinant of the population’s communica-

tive behaviour is the direct bias on cultural transmission resulting from the learner’s bias.

In light of this, a more sophisticated model is developed in Section 3.4 to investigate a

wider range of learning biases. In Section 3.5 the key bias for the cultural evolution of

vocabulary is identified and defined. Finally, parallels are drawn between this learning

bias and the learning bias applied by human language learners to the task of vocabulary
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acquisition. This comparison suggests that the human learning bias (and perhaps not the

learning bias of other, closely related species) exhibits the appearance of design for the

cultural evolution of communicatively-optimal symbolic vocabulary.

3.1 Models of the evolution of vocabulary

In the review carried out in Chapter 2 I covered the models of the cultural evolution of

vocabulary systems described in Hutchins & Hazelhurst (1995) and Nowak et al. (1999).

To summarise briefly, Hutchins & Hazelhurst (working within the NM framework) re-

port that communicatively-optimal symbolic vocabulary evolves culturally. I attributed

this to a direct bias acting on cultural transmission, a consequence of the autoassociator

network architecture used in their model. Nowak et al. also demonstrate (working within

the ILM framework) that communicatively-optimal symbolic vocabulary can evolve cul-

turally. However, in their model this is a consequence of the natural selection of cultural

variants — successful communicators are more likely to act as cultural parents, therefore

successful communication systems are preferentially retained in the population.

Hurford (1989) describes possibly the first computational investigation into the evolution

of communication. One of the central concerns of Hurford’s paper is the biological evo-

lution of learning strategies, and his work in this area will be returned to in Chapter 4.

However, Hurford does cover purely cultural evolution as well.

The communicative behaviour of individuals in Hurford’s model is represented with two

probability matrices — a production matrix, which gives the probability of producing a

particular signal given a certain meaning, and a reception matrix, which gives the prob-

abilistic reception behaviour of the individual. A generational ILM is used. Learners

form their production and reception matrices based on a sample of the observable be-

haviour produced by the previous generation. Each learner samples once from the pop-

ulation’s production and reception behaviour, yielding a set of observed meaning-signal

pairs (based on a stochastic sample of the population’s production behaviour) and a set of

observed signal-meaning pairs (based on a stochastic sample of the population’s recep-

tion behaviour). Hurford considers three learning strategies. Imitator agents form their

transmission matrix based on observed transmission behaviour, and their reception ma-

trix based on observed reception behaviour. Calculators base their production behaviour

on observed reception and their reception on observed production. Saussureans base

their production behaviour on observed production, then derive their reception behaviour

from this matrix.
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Imitator learners form their production and reception matrixes on the basis of direct ob-

servation of production and reception behaviour — if, for example, an Imitator observes

signal s1 being produced for meaning m1, it will set the probability of producing s1 for

m1 to 1 in its own production matrix.

Saussurean learners derive their production matrix from production behaviour in a sim-

ilar manner, then design their reception matrix so as to make it optimally coordinated

with their own production behaviour — for example, if a Saussurean learner arrives at a

production matrix where s1 is produced for meanings m1 and m2, then it will interpret

s1 as meaning m1 with probability 0:5 and m2 with probability 0:5.

Calculators form their reception matrix on the basis of observed production behaviour, in

the same way that a Saussurean learner forms its reception matrix on the basis of its own

production behaviour. For example, if a Calculator learner observes a population where

s1 is produced for meanings m1 and m2, then it will interpret s1 as meaning m1 with

probability 0:5 and m2 with probability 0:5. By the same optimisation process, Calcula-

tors calculate their production matrix on the basis of observed reception behaviour.

Hurford reports two results with relation to this ILM. Firstly, populations of Calculator

agents are unable to preserve an optimal communication system over time. Secondly,

populations of Imitator and Saussurean learners are capable of creating communication

systems which lead to intermediate levels of communicative accuracy through purely

cultural processes.

There are two candidate pressures acting on cultural transmission in Hurford’s model.

Firstly, the behaviour of the populations could be explained by natural selection of cul-

tural variants — more successful communicators are more likely to act as cultural parents

in Hurford’s model. Secondly, the different learning strategies could result in different

direct biases on cultural transmission. I will demonstrate in Section 3.5.3 that this later

pressure is probably the key one.

Oliphant & Batali (1997) introduce another Iterated Learning Model of vocabulary. In-

dividuals are required to communicate about a small set of meanings using a small set

of signals. As in Hurford’s (1989) model, individuals are modelled using probabilistic

functions, with each individual being characterised by a production function, which gives

the probability of each signal being sent for a given meaning, and a reception function,

which gives the probability of a given signal being interpreted as a particular meaning.

Oliphant & Batali use a gradual population turnover model. At each time-step a sin-

gle individual is removed from the population and replaced by a new individual. This
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individual estimates the average production and reception functions in use in the popu-

lation, by making a number of observations of the population’s production and reception

behaviour. Based on these estimated functions, the new individual then creates its own

production and reception functions according to one of two learning procedures, termed

Imitate-Choose (a slight variation on Hurford’s Imitator) and Obverter (related to Hur-

ford’s Calculator).

The learner’s estimation of the probability with which the population produces signal

�j for meaning �i is given by P (�i; �j) and the learner’s estimation of the probability

with which the population interprets �j as meaning �i is given by R (�j; �i). The learner

must choose their own production and reception probabilities, given by p (�i; �j) and

r (�j; �i).

The Imitate-Choose learner proceeds as follows:

For each meaning �i:

– Find the signal �j for which P (�i; �j) is maximum.

– Set p (�i; �j) = 1 and p (�i; �k) = 0 for all k 6= j.

For each signal �j:

– Find the meaning �i for which R (�j; �i) is maximum.

– Set r (�j; �i) = 1 and r (�j; �k) = 0 for all k 6= i.

The Imitate-Choose learner therefore bases its production behaviour on the average pro-

duction behaviour of the population, selecting the most frequently used signal for each

meaning. Similarly, reception behaviour is based on the population’s reception behaviour,

with the most frequent interpretation of a given signal being learned as the only interpre-

tation of that signal. Note that there is no coupling between production and reception

behaviour.

The Obverter learning procedure proceeds as follows:

For each meaning �i:

– Find the signal �j for which R (�j; �i) is maximum.

– Set p (�i; �j) = 1 and p (�i; �k) = 0 for all k 6= j.

For each signal �j:

– Find the meaning �i for which P (�i; �j) is maximum.

– Set r (�j; �i) = 1 and r (�j; �k) = 0 for all k 6= i.
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Obverter learners will produce the signal which is most commonly interpreted by the rest

of the population as conveying the meaning they wish to convey. Similarly, Obverter

learners will interpret a signal as meaning the meaning it is most frequently produced

for. The Obverter learner therefore bases its production behaviour on the population’s re-

ception behaviour and its reception behaviour on the population’s production behaviour.

Note that, unlike in the Imitate-Choose strategy, this results in the coupling of production

and reception behaviour — the population’s production behaviour at time t will influence

its reception behaviour at time t + 1.

Oliphant & Batali define a measure of communicative accuracy for individuals using

these probabilistic send and receive functions, and measure how the communicative ac-

curacy of a population changes over time as new individuals are introduced and learn

according to one of the two strategies. Communicative accuracy within the population

is measured according to a variant of the canonical formula given in Chapter 2, Section

2.2.2.1 — simply put, a communicative episode between two individuals is a success if

the hearer interprets the form produced by the speaker as conveying the meaning that the

speaker intended.

Oliphant & Batali report that the Imitate-Choose strategy can increase communicative

accuracy among a population where communicative accuracy is already high. However,

in poorly coordinated populations the use of Imitate-Choose can result in further degra-

dation. In contrast, use of the Obverter strategy always results in a steady increase in

communicative accuracy until optimal levels are reached.

Why does the Obverter learning strategy result in optimal communication, but the Imitate-

Choose strategy does not? Oliphant & Batali attribute the success of the Obverter strat-

egy to its implicitly communicative aims — during learning, signals are selected so as to

maximise their probability of being understood. Imitator agents do not have this built-

in understanding of the communicative task. They suggest that both strategies build in

ambiguity-avoiding measures — in both cases the most popular meaning-signal combi-

nations are selected to the exclusion of other possible combinations. As we will see in

the remainder of this Chapter, these comments are somewhat wide of the mark. Firstly,

it is not necessary to build in an implicit understanding of the communicative task — in

Section 3.4 I will demonstrate that optimal communication can emerge in a population of

learners who do not select signals so as to maximise the probability of being understood.

Secondly, building in an understanding of the communicative task does not necessar-

ily lead to optimal communication — Hurford’s Calculators are similar to Oliphant &

Batali’s Obverters, but cannot even preserve an optimal system. Finally, it will be shown

in Section 3.5.3 that the Obverter and Imitate-Choose strategies respond differently to
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different types of ambiguity, and that this difference is crucial in understanding the be-

haviour of populations of such learners.

What is clear, however, is that the emergence or non-emergence of optimal communi-

cation in these populations is driven by what B&R term directly biased transmission —

the Imitate-Choose and Obverter strategies have different biases as to how they acquire

communication systems, and over the course of repeated cultural transmission the cul-

tural variants which most closely match these biases come to dominate the population.

We can surmise that the Imitate-Choose and Obverter strategies have different biases,

with only the Obverter strategy being biased in favour of communication systems which

maximise communicative accuracy.

Livingstone & Fyfe (1999) investigate the evolution of vocabulary using a model which is

a hybrid NM-ILM. Livingstone and Fyfe’s main concern is the emergence of diversity of

vocabulary, but they do make some observations of the overall structure of the vocabular-

ies in their populations. Individuals are modelled using neural networks, mapping from

input signals to output meanings1. The neural network model of an agent has N input

units and M output units, where these units can take values of �1. Meanings are repre-

sented by patterns of activation over the M nodes where a single node has an activation

of +1. This yields M distinct meanings. Signals are represented by arbitrary patterns

of activation over the N signal nodes, yielding 2N possible signals. The network’s be-

haviour while producing signals for a given meaning and arriving at the interpretation of

a particular received signal are determined by the single layer of connection weights in

the network, connecting all nodes in N with all nodes in M .

At each generation each individual in the generation g + 1 receives t exposures to the

communicative behaviour of generation g individuals, where each exposure consists of

an observation of a single meaning-signal pair. Generation g+1 individuals then receive

a further t=2 exposures to the communicative behaviour of other generation g + 1 in-

dividuals. This model therefore exhibits a degree of hybridization between the Iterated

Learning and Negotiation models. However, it is more appropriate to classify the model

as of the Iterated Learning type, as the exposures to the previous generation’s commu-

nicative behaviour occur first and will have the greatest impact. The model outlined in

Section 3.3 also suggests that the behaviour of the model would be qualitatively similar

if the negotiation portion of learning were omitted.
1Livingstone & Fyfe (1999) actually present the network as one which maps from input meanings to

output signals. However, during learning signals are treated as input and meanings as output. This turns
out to be the key factor in understanding the behaviour of the model.
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At each training episode the learner is presented with a signal-meaning pair. The learner

takes the signal as input and produces a pattern of activation over the output meaning

nodes, x0, representing that individual’s interpretation of that signal. The teacher’s mean-

ing x is then used to perform weight adjustment according to:

�wij = � (xi � x0i) yi

where wij is the weight of the connection between input node i and output node j, yi
and xi gives the activation levels of the ith input and output unit respectively and � is the

learning rate. This type of network model is typically referred to as an Obverter network

(as is the network described in Batali (1998), discussed in Section 2.3.3.4), by analogy

with the Obverter learning strategy of Oliphant & Batali (1997) — observed production

behaviour is used to acquire reception behaviour.

Livingstone and Fyfe report that, over time, populations of such agents converge on

shared, stable mappings between meanings and signals which would be optimal in terms

of the communicative accuracy measures used by Oliphant & Batali. What drives the

emergence of this optimal vocabulary system? As with the models of Hutchins & Hazel-

hurst (1995), Oliphant & Batali (1997) and Batali (1998), the learning bias of these agents

results in directly biased transmission, with the learners happening to favour communi-

cation systems which are optimal in terms of communicative accuracy. A discussion of

the nature of this bias is postponed until later in this Chapter.

3.2 The communication model

A communication system C consists of a production function p (m), mapping from un-

structured meanings m to unstructured signals s, and a reception function r (s), mapping

from signals s to meanings m. m and s are selected such that m 2 M and s 2 S where

M =
n
m1; m2 : : :mjMj

o
and S =

n
s1; s2 : : : sjSj

o
. This simple model is suitable for

studying the emergence of conventionalised symbolic vocabulary.

How can we evaluate the communicative accuracy of a population using such a commu-

nication system? The accuracy of a single communicative event involving a producer P

with production function p (m), a receiver R with reception function r (s) and a meaning

mi 2 M, ca (P;R;mi), is defined as:
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ca (P;R;mi) =

8<
: 1 if r (p (mi)) = mi

0 otherwise

9=
;

When ca (P;R;mi) = 1 the communication is successful. A population’s commu-

nicative accuracy can be estimated by taking the average ca (P;R;mi) for a random

sample of P , R and mi. In a population possessing an optimal communication system

ca (P;R;mi) = 1 for any choice of P , R and mi. This method of measuring commu-

nicative accuracy is adopted in Section 3.3.

Equivalently, if the production function p(m) is viewed as a probabilistic function p(sjjmi),

which gives the probability of producing signal sj given meaning mi, and the reception

function r(s) is similarly viewed as a probabilistic function r(mijsj) then the commu-

nicative accuracy between two individuals with respect to a single meaning, ca (P;R;mi),

is given by:

ca(P;R;mi) =
j=jSjX
j=1

p(sjjmi) � r(mijsj)

The communicative accuracy of P and R over all meanings, ca(P;R) can then be defined

as the average of their communicative accuracy over each meaning mi 2 M e.g.

ca (P;R) =

Pi=jMj
i=1

Pj=jSj
j=1 p (sjjmi) � r (mijsj)

jMj

In a population possessing an optimal communication system ca(P;R) = 1 for any

choice of P and R. This method of evaluating communicative accuracy is more appro-

priate for the model outlined in Section 3.4.

3.3 Model 1: a feedforward network model

In this Section a simple ILM is described, which is designed to allow the investigation of

the impact of learner bias and natural selection of cultural variants on emergent commu-

nication systems. This model is based on my undergraduate dissertation (Smith 1998),

and has been published in more recent form in Smith (in press).
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In this ILM, communicative agents are modelled using feedforward neural networks.

Neural networks were chosen for several reasons. Firstly, there is some tradition of us-

ing neural networks in research on the evolution of communication — neural networks

of some form are used by Batali (1994), Hutchins & Hazelhurst (1995), Batali (1998),

Cangelosi & Parisi (1998), Cangelosi (1999), Livingstone & Fyfe (1999) and Kirby &

Hurford (2002). Continuing this tradition provides several benefits. In particular, using

a similar model allows the results of this research to be more easily related to previous

research and the generality of the results of earlier simulations to be tested.

Secondly, well-established mechanisms exist for training neural networks to learn input-

output mappings (i.e. backpropagation). Using an established learning mechanism re-

duces the amount of novel elements contained in the model, as well as allowing our

understanding of that mechanism to be expanded.

Finally, using neural networks allows both genetically-transmitted and culturally-transmitted

information to influence, in principle, the eventual behaviour of agents in the model. This

will prove useful in Chapter 4, when I will consider dual-transmission models.

3.3.1 The communicative agent

The model of a communication system is as described above in Section 3.2. Commu-

nicative agents must be capable of representing, using and learning such systems.

3.3.1.1 Representation

Feedforward neural networks are used to model communicative agents. Each individual

is modelled using a single network mapping between meanings and signals. There are

two possible types of networks: one which takes a representation of a meaning as input

and produces a representation of a signal as output, and one which takes a signal as

input and produces a meaning as output. The structure of the two networks are shown in

Figure 3.1. Feedforward networks mapping from input meanings to output signals will

be termed imitator networks, whereas networks mapping from input signals to output

meanings will be referred to as obverter networks. The precise nature of the meaning-

signal mapping in these networks is determined by the network connection weights.

Given that the input and output layers in these networks have three nodes, commu-

nication systems are mappings between three-dimensional meaning vectors and three-

dimensional signal vectors. Binary vectors are used, giving 23 possible meanings and 23

possible signals. A subset of the set of possible meaning vectors, MCRS , are considered
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Imitator Network Obverter Network

Input/Meaning

Output/Signal

Input/Signal

Output/Meaning

Figure 3.1: The two network architectures. Imitator networks map from input meanings to
output signals. Obverter networks map from input signals to output meanings.

to be communicatively relevant situations, meaning the agents are required to communi-

cate about them. For all simulations outlined in this section, MCRS consists of the unit

meanings represented by the vectors (1 0 0), (0 1 0) and (0 0 1). The full set of possible

signals are allowed. Therefore jMj = 8, jMCRSj = 3 and jSj = 8.

3.3.1.2 Production and reception

These neural network models of agents embody the production and reception functions

p (m) and r (s). Deriving p (m) from an imitator network or r (s) from an obverter net-

work is straightforward. For imitator networks p (m) is derived by presenting the pattern

of activation corresponding to each m 2 MCRS to the network, propagating activations

forward through the network and thresholding the resultant real-valued output pattern of

activation to give the signal s 2 S associated with the given meaning. Similarly, for

obverter networks r (s) is derived by presenting the pattern of activation corresponding

to each s 2 S to the network, propagating activations forward through the network and

thresholding the resultant real-valued output pattern of activation to give the meaning

m 2 M associated with the received signal.

Reception for imitator networks and production for obverter networks is slightly more

complex, given that the networks are not bidirectional. To derive r (s) for an imitator

network each signal s 2 S is considered in turn. All m 2 MCRS are propagated through

a given agent’s network to produce a real-numbered output pattern of activation for each

meaning. Each output pattern is given a confidence rating, corresponding to how closely

that pattern matches the signal currently under consideration, s. The meaning which
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Network TypeProcess
Imitator Obverter

Production propagate confidence measure
Reception confidence measure propagate

Table 3.1: A summary of the production and reception procedures for the two types of
networks. Imitators produce a signal for a given meaning by propagating activations
forward through their network, and arrive at a meaning given a received signal using the
confidence measure. Obverter networks produce using the confidence measure process,
and receive by propagating activations.

yields the real-numbered output vector closest to s, according to the confidence mea-

sure, is chosen as the interpretation of s. This method is based on the method used by

Batali (1998) and Kirby & Hurford (2002) for producing outputs for similar networks.

Similarly, to derive an obverter network’s p (m) each meaning m 2 MCRS is consid-

ered in turn. All s 2 S are propagated through a given agent’s network to produce a

real-numbered output pattern of activation for each signal. Each output pattern is given

a confidence rating, corresponding to how closely that pattern matches the meaning cur-

rently under consideration, m. The signal which yields the real-numbered output closest

to m, according to the confidence measure, is chosen as the network’s production for m.

The confidence measure that a given real-numbered output vector, o, of length n matches

a target binary vector t of length n is given by C (t; o). C (t; o) is simply the product of

the confidence scores for each individual node 1:::n in the output vector i.e.

C (t [1 : : : n] ; o [1 : : : n]) =
nY
i=1

C (t [i] ; o [i])

where the confidence measure for node i is

C (t [i] ; o [i]) =
n o [i] if t [i] = 1;

(1� o [i]) if t [i] = 0:

(Equations adapted from Kirby & Hurford (2002))

The production and reception processes for both types of networks are summarised in

Table 3.1.

The deterministic nature of these networks during production means that a definition of

ambiguity for communication systems can be formally stated. Communication systems

used by neural networks will be termed:
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� Unambiguous if p(m) is a one-to-one function.

� Partially ambiguous if p(m) is a many-to-one function, but the range of p(m) is

not a singleton set.

� Fully ambiguous if the range of p(m) is a singleton set.

3.3.1.3 Learning

In common with most implementations of the NM and ILM, I assume here that indi-

viduals learn from observed meaning-signal pairs. Well-established procedures exist for

training feedforward networks to associate pairs of input-output pairs — here I use the

backpropagation method (Rumelhart et al. 1986). For imitator agents, the training pro-

cess involves attempting to associate an input meaning with an output signal. Imitators

are therefore learning their production function on the basis of observed production be-

haviour. Obverter networks learn to associate input signals with output meanings —

obverters learn their reception function on the basis of observed production behaviour, as

in Batali (1998), Livingstone & Fyfe (1999) and others.

3.3.2 The Iterated Learning Model

As discussed in Chapter 2, the results of repeated cultural transmission can be inves-

tigated using an Iterated Learning Model. In an ILM agents acquire their competence

through learning from observations of the behaviour of other agents. This competence is

then used to generate behaviour which is observed in turn by other agents. In the case of

this model, the culturally-transmitted behaviour of interest is a communication system.

The process of iterated learning requires a model of population turnover. In this model

I use a generational population turnover model, illustrated in Figure 2.6 (a) in Chapter

2. At every time-step a new population of a certain size is created. The pre-existing

population produces some observable behaviour and the members of the new population

observe and learn from that behaviour. The pre-existing population is then removed and

replaced by the newly-created population and the process repeats.

More formally, the generational ILM consists of an initialisation process and an iteration

process:

Initialisation Create a population populationg=0 of N agents2. Each agent is either

an imitator or obverter, as described above, with populations being homogeneous in this
2N = 100 for all ILMs outlined in this section.
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respect. Each agent has random initial connection weights in the range [�1; 1]. Each

agent’s communication system is determined by these random initial connection weights.

Iteration

1. Evaluate the communicative accuracy of every member of populationg by evaluat-

ing every individual’s communicative accuracy as both producer and receiver with

two randomly selected partners according to the measure ca (P;R;m), for every

m 2 MCRS .

2. For every member of the population populationg, generate a set of meaning-signal

pairs by applying the network production process to every m 2 MCRS . Noise is

added to each meaning-signal pair3 with probability pn.

3. Create a new population populationg+1 of N agents of the same type (imitator or

obverter) as populationg, where each member of populationg+1 has random initial

connection weights in the range [�1; 1].

4. Each member of populationg+1 receives e exposures to the observable behaviour

generated by populationg. During each of these e exposures the new agent ob-

serves the complete set of meaning-signal pairs generated by a member of populationg
selected randomly from among the tmost successful communicators in populationg.

For each exposure the learner updates their connection weights according to the

observed meaning-signal pairs using the backpropagation learning algorithm4.

5. populationg is removed and replaced with populationg+1. Return to 1.

Each pass through the iteration process will be termed a generation. Note that the selec-

tion of individuals to observe depends on t and therefore allows the possibility of natural

selection of cultural variants, as described by B&R. If t = N then selection of individuals

to act as cultural parents is independent of the communicative success of those individu-

als and there is no natural selection of cultural variants. When t < N the probability of

an individual being observed and learned from will depend on their evaluated commu-

nicative success, and there will be natural selection, acting on cultural transmission, in

favour of communication systems which result in successful communication.

The fact that every individual in a population begins their life with a particular net-

work type (imitator or obverter) and a particular set of connection weights (randomly
3In order to add noise to a meaning-signal pair hm i; sji, sj is replaced with a randomly-selected sk 2 S,

where k 6= j.
4A learning rate of 0.5 is used
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distributed within some range) suggests some kind of innate endowment of these com-

ponents. It is our goal to investigate the impact of this innate endowment on the com-

municative behaviour of the population. However, every agent begins life with the same

endowment – there is no possibility of genetic variation within the population. The emer-

gent behaviour of the population will therefore be determined by the dynamics resulting

from the iterated cultural transmission of communication systems among individuals with

a common genetic endowment. In Chapter 4 I will investigate how the biological evolu-

tion of this innate endowment in a genetically heterogeneous population can impact on

the evolution of communication systems.

3.3.3 Network architecture, learning bias and natural selection

The goal of this Chapter of the thesis is to identify the learning mechanisms necessary

to create, through cultural processes, a communicatively useful vocabulary. The ILM de-

scribed above can be used to investigate whether imitator and obverter agents construct

an optimal, unambiguous communication system from random initial behaviour, and un-

der what circumstances. To this end, runs of the iterated learning model were carried

out. In these simulations, the communication system used by agents in the initial popula-

tion is dependent on their random connection weights, and is therefore random. 10 runs

were carried out for each set of experimental conditions, with runs proceeding for 1000

generations. We are primarily interested in the end states of these runs, rather than their

progress through time. In order to evaluate the end state communication system in use

in the populations, the average communicative accuracy of the population is recorded for

the last 10 generations of each run. Each point in the plots that follow therefore represents

the average communicative accuracy of 10 populations over a period of 10 generations.

3.3.3.1 Learning bias and no natural selection

Figure 3.2 shows the results for simulation runs for imitator and obverter populations

where t = N , (every member of the population is a potential cultural parent) for various

numbers of learning exposures (e), in the absence of noise on cultural transmission (pn =

0).

The different network architectures clearly result in very different behaviour, when placed

in the context of the ILM. For imitator networks, the populations converge on commu-

nication systems which result in communicative accuracy of 0.33. This level of com-

municative accuracy is a consequence of the population using a shared, fully ambiguous

106



imitator populations
obverter populations

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

co
m

m
un

ic
at

iv
e 

ac
cu

ra
cy

e

Figure 3.2: The average final communicative accuracy of imitator (solid line) and obverter
(dashed line) populations as a function of the number of learning exposures (e) used during the
simulation runs. These results are for the case where there is no natural selection of cultural
variants (t = N ). Imitator populations converge on systems which yield chance levels of commu-
nicative accuracy, regardless of e. In contrast, given high enough e, obverter populations converge
on communication systems which give high levels of communicative accuracy.

communication system. In contrast, obverter populations converge on levels of com-

municative accuracy close to optimal when e is large — given large enough e, obverter

populations converge on a shared, unambiguous vocabulary.

Why do the two different network architectures display this behaviour when placed in

the context of the ILM? We can rule out natural selection of cultural variants (because

t = N ). This behaviour therefore must be due to direct bias pressure operating on cultural

transmission.

In order to understand the source of this bias, it is necessary to assess the ability of indi-

vidual agents, in isolation, to acquire systems of various levels of ambiguity, with varying

levels of exposure to such systems. The possible range of meaning-signal mappings is ac-

tually rather small — jMCRSj = 3 andjSj = 8 gives jSjjMCRS j = 512 possible meaning-

signal mappings. It is therefore possible to examine the ability of agents to acquire every

possible system. Of the 512 possible systems, 8 are fully ambiguous, 168 are partially

ambiguous and 336 are unambiguous. For each system, 100 networks with random ini-

tial weights in the range [�1; 1] were given e exposures to that system of meaning-signal
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System Type
e

Fully Ambiguous Partially Ambiguous Unambiguous

1 25.4 0.3 0.0
2 47.1 0.8 0.0
3 74.0 1.4 0.0
4 91.8 1.4 0.1
5 98.0 1.7 0.0
10 100.0 0.5 0.0
25 100.0 1.6 0.1
50 100.0 34.2 13.1

100 100.0 92.8 82.9
150 100.0 99.4 98.3
200 100.0 100.0 99.8

Table 3.2: The imitator learning bias. The table shows the percentage of imitator networks
which succeed acquiring languages of the various classifications, according to e, the number of
exposures to the system. For imitator networks, fully ambiguous systems are easier to learn.

System Type
e

Fully Ambiguous Partially Ambiguous Unambiguous

1 0.1 0.2 0.3
2 0.0 0.3 0.3
3 0.1 0.3 0.5
4 0.0 0.5 0.5
5 0.1 0.4 0.7
10 0.0 0.9 1.6
25 0.0 3.7 7.8
50 0.0 10.1 26.2

100 0.0 14.9 49.1
150 0.0 15.2 53.8
200 0.0 15.2 54.8

Table 3.3: The obverter learning bias. The table shows the percentage of obverter networks
which succeed acquiring languages of the various classifications, according to e, the number of
exposures to the system. Obverter networks find unambiguous systems easier to learn.

mappings. Learning proceeds via the backpropagation process, with the same learning

rate as used in the ILM. A network was judged to have learned a system successfully if

the observed system could be reproduced in production — for every meaning-signal pair

hmi; sji production of the signal associated with mi resulted in sj being produced. The

results are summarised in Tables 3.2 and 3.3 by communication system type.

As can be seen from Table 3.2, for imitator agents systems exhibiting a higher degree of

ambiguity are easier to acquire than systems exhibiting a lower degree of ambiguity, for
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System Type % population
Unambiguous 2

Partially Ambiguous 25
Fully Ambiguous 73

Table 3.4: The behaviour of imitator agents with random connection weights. The table shows
the percentage (based on 1000 test networks) of imitator networks with random connection
weights (in the range [-1,1]) who use a communication system of the given type. Random imitator
networks tend to produce fully ambiguous systems.

all values of e. Table 3.3 shows that obverter agents have the opposite learning bias —

systems exhibiting lower degrees of ambiguity are easier to acquire, for all values of e.

Learnability never reaches 100%, even for unambiguous communication systems. It ap-

pears that certain unambiguous systems are unlearnable by obverter agents, while certain

unambiguous systems are 100% learnable. The key point is that certain unambiguous

systems are highly learnable whereas partially ambiguous and fully ambiguous systems

are less learnable.

Returning to the results for ILM runs involving imitator populations, for low values of

e, no communication system can reliably be learned. Populations essentially behave in a

random fashion. The typical random behaviour of imitator agents is shown in Table 3.4.

The majority of individuals use fully ambiguous systems, resulting in chance levels of

communicative accuracy. As e increases, fully ambiguous systems rapidly become highly

learnable, and are always more learnable than less ambiguous systems. Less ambiguous

systems are less likely to be successfully learned than fully ambiguous systems, and are

unstable over time. The populations therefore converge on fully ambiguous systems,

resulting in low levels of communicative accuracy.

In contrast, the communicative accuracy in obverter populations increases as e increases.

For low values of e all systems are unlearnable, and individuals use a random system. As

shown in Table 3.5, obverter agents with random connection weights tend to use a un-

ambiguous systems. The communicative accuracy of the population is therefore low, as

there are a large number of uncoordinated unambiguous systems present. As e increases,

the learnability of unambiguous systems increases, and is always higher than the learn-

ability of more ambiguous systems. Unambiguous systems become increasingly stable

relative to more ambiguous systems and the populations converge on shared unambigu-

ous communication systems, resulting in high levels of communicative accuracy for high

values of e.
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System Type % population
Unambiguous 65

Partially Ambiguous 33
Fully Ambiguous 2

Table 3.5: The behaviour of obverter agents with random connection weights. The table shows
the percentage (based on 1000 test networks) of obverter networks with random connection
weights (in the range [-1,1]) who use a communication system of the given type. Random obverter
networks tend to produce unambiguous systems.

The behaviour of these populations in the ILM is therefore determined by the learning

biases of the two network architectures. These learning biases result in direct bias act-

ing on cultural transmission, with the cultural variants favoured by the bias eventually

reaching fixation.

3.3.3.2 Learning bias and natural selection

Figures 3.3 and 3.4 show the results for simulation runs for imitator and obverter agents

where t < N (only the top t individuals act as cultural parents, and t is less than the

population size N , therefore the less able communicators may not act as cultural parents),

for various values of t and e (learning exposures), again in the absence of noise (pn = 0).

In these simulations there are two pressures operating on the communication systems in

the populations:

1. Selection for learnability, driven by the agents’ learning bias, favouring either more

ambiguous communication systems (in the case of imitator agents) or less ambigu-

ous systems (in the case of obverter agents).

2. Selection for communicative success driven by natural selection of communication

systems, favouring systems which result in successful communication.

In populations of imitator agents pressures 1 and 2 are in conflict, with selection for learn-

ability favouring fully ambiguous systems (as discussed in the previous section), while

natural selection favours shared unambiguous systems. For obverter populations these

pressures are not in conflict, with both favouring the development of shared unambigu-

ous systems.

The addition of natural selection of cultural variants has little impact on the emergent

communication systems — as with the case where there is no natural selection, imitator

populations converge on fully ambiguous communication systems and communicative

accuracy remains uniformly low, while obverter populations converge on unambiguous
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Figure 3.3: The average final communicative accuracy of imitator populations where there is
natural selection of cultural variants (t � N ), and no noise on cultural transmission (pn = 0), as
a function of e. Natural selection of cultural variants clearly has no impact.
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Figure 3.4: The average final communicative accuracy of obverter populations where there is
natural selection of cultural variants (t � N ), and no noise on cultural transmission (pn = 0),
as a function of e. Natural selection of cultural variants has little impact — there are very slight
differences in final communicative accuracy, dependent on t.
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Figure 3.5: The average final communicative accuracy of imitator populations where there is
natural selection of cultural variants (t � N ), and noise on cultural transmission (pn = 0:05), as
a function of e. Natural selection of cultural variants clearly a slight impact for high e.

communication systems given sufficiently high e, with consequently high communicative

accuracy. The behaviour of the populations is still dominated by the intrinsic learning

bias of the agents.

B&R highlight the importance of cultural variation in populations where cultural trans-

mission is undergoing natural selection — where there is no variation, natural selection is

powerless. It is possible that we are not seeing any impact from natural selection due to a

lack of cultural variability in the populations. While the initial populations exhibit vari-

ability (see Tables 3.4 and 3.5), which direct bias clearly feeds off, it could be that biased

cultural transmission eliminates this variability too quickly, preventing natural selection

of cultural variants from functioning. In order to investigate this possibility, the exper-

iments outlined above were repeated with noise on cultural transmission (pn = 0:05).

This noise will potentially introduce cultural variation, which natural selection can then

feed off. The results are plotted in Figures 3.5 and 3.6.

The introduction of noise has a slight impact. In imitator populations, when e is very

high, there is a slight increase in average communicative accuracy for the case where

t = 20. This is in fact due to one (when e = 150) or two (when e = 200) of the ten

runs converging on partially ambiguous communication systems. This only occurs when
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Figure 3.6: The average final communicative accuracy of obverter populations where there is
natural selection of cultural variants (t � N ), and noise on cultural transmission (pn = 0:05), as
a function of e. Natural selection of cultural variants has a noticeable impact for e = 100 or 150.

e is very high as this is the point where the individual’s learning bias is weakest — as

can be seen from Table 3.2, partially ambiguous systems seem to be as learnable as fully

ambiguous systems where e � 150. However, the natural selection of cultural variants

needs to be very severe to produce this slight effect.

In obverter populations there is, similarly, a slight impact, with natural selection of cul-

tural variants improving the populations’ communicative accuracy somewhat for certain

amounts of learning (e = 100 or 150). The effect is still fairly minor.

3.3.4 Summary

The two distinct models of communicative agents have different learning biases, as high-

lighted by the acquisition tests outlined in Section 3.3.3.1. Placing these agents within

an ILM allows the consequences of the iterated application of these learning biases to

be explored. In the case where the direct bias on cultural transmission introduced by the

agents’ learning bias is the sole factor at play, the populations converge on the type of

communication system favoured by that bias, as predicted by B+R. Natural selection of

cultural variants in addition to this biased transmission has a very minor impact, and even

then only when noise is injected into the system to provide variation.
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Why do imitator and obverter agents have different biases and how can this bias best be

described? This issue will be returned to in Section 3.5. However, it is clear from the

relatively simple experiments outlined in this section that the behaviour of populations of

individuals is strongly determined by their learning bias, which can override other pres-

sures acting on cultural transmission, such as natural selection. Comparison of more than

two alternative learning biases remains desirable, and a model allowing the comparison

of a much wider range of biases is outlined in the next section. The feedforward neural

network model is returned to in Chapter 4, where it is used to investigate the interactions

between genetic and cultural transmission of communication.

3.4 Model 2: an associative network model

The feedforward network model described above is limited in the sense that the learning

bias of individual agents is a consequence of their network architecture, and there are only

two such possible architectures — the imitator architecture, and the obverter architecture.

Ideally we would like to be able to experiment with a wider range of learning biases,

in order to isolate the elements of bias which drive the cultural evolution of symbolic

vocabulary.

A promising approach to addressing precisely this question is outlined in Oliphant (1999).

Oliphant investigates how different learning rules influence the development of a vo-

cabulary system through cultural processes within a population of associative networks.

While the approach described in this paper is promising, its execution suffers from sev-

eral shortcomings. Firstly, only three possible learning rules are considered. Secondly,

while it is shown that certain learning rules result in the emergence of optimal communi-

cation, the properties of the learning rules that result in this behaviour are not explicitly

identified. Thirdly, the results for those three learning rules are not related to other results

in the field.

In this section I introduce a model, based on Oliphant’s, which allows a wide range of

learning rules, and associated learning biases, to be explored. This exploration allows

me, in Section 3.5, to identify the key bias leading to the emergence of communicatively

optimal, symbolic vocabulary through cultural processes. This bias can also be identified

in the feedforward network model described above, and in most other models of the

emergence of vocabulary via cultural evolution.
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3.4.1 Communicative agents

The model of communication is as outlined in Section 3.2. Given the nature of the com-

municative agent model, the probabilistic interpretation of the communicative accuracy

function is more natural, and is used in this section.

An associative network is used to model communicative agents. Since this model is

less standard than the feedforward network model outlined in Section 3.3 a detailed and

somewhat formal description is given here.

3.4.1.1 Representation

Agents are modelled using networks consisting of two sets of nodes NM and NS and a

set of weighted bidirectional connections W connecting every node in NM with every

node in NS .

Patterns of activation overNM are considered to represent meanings, whereas patterns of

activation over NS are considered to be signals. Restricting these patterns of activation

to contain a single active unit yields jNM j orthogonal meaning representations and jNSj

orthogonal signal representations, suitable for representing sets of unstructured meanings

and unstructured signals such as those described in Section 3.2. If Gi is the ith node

from the set NG and the activation of node Gi is aGi then the meaning mi corresponds

to a pattern of activation over NM where aMi = 1 and aM(j 6=i) = 0. Similarly, the signal

si corresponds to a pattern of activation over NS where aSi = 1 and aS(j 6=i) = 0. This

representational scheme is illustrated in Figure 3.7.

3.4.1.2 Production and reception

Patterns are retrieved from the network using a k-winners-take-all strategy. In order to

retrieve a pattern of activation over nodes in NS based on an input pattern of activation

over nodes in NM the weighted sum of inputs to node Si, qSi, for each Si 2 NS is

calculated according to the formula:

qSi =
j=jNM jX
j=1

aMj � wMj;Si

where wa;b 2 W is the weight of the connection between nodes a and b. The k nodes in

NS with the highest values of q then have their activations set to 1, while all other nodes

in NS have their activations set to 0. If several nodes have equal q a random winner

is selected from among them. Patterns of activation over the nodes in NM are retrieved
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Figure 3.7: A neural network where jNM j = jNS j = 3. Large filled circles represent nodes with
activation of 1, large empty circles represent nodes with activation of 0. The pattern of activation
over NM therefore represents the meaning m2 (aM2 = 1, aM1 = aM3 = 0). Similarly, the
pattern of activation over NS represents the signal s3

based on input patterns of activation overNS in exactly the same way. For all simulations

outlined in this paper, k = 1 — retrieved patterns of activation only ever consist of a

single active node and (jN j � 1) non-active nodes. This ensures that retrieved patterns

of activation conform to our representation of meanings and signals outlined above. This

retrieval process is illustrated in Figure 3.8.

Retrieving a pattern of activation over NS given an input pattern of activation over NM

corresponds to retrieving the signal associated with a given meaning — production of a

signal associated with a given meaning. Retrieving a pattern of activation overNM given

an input pattern of activation over NS corresponds to retrieving the meaning associated

with a given signal — reception of a given signal and interpretation of that signal to yield

a meaning. Note that the production and reception behaviour of such networks are not

necessarily closely related — for example, the network in Figure 3.8 would produce s2

when prompted with m2, but would interpret s2 as meaning m3. Using a single network

for both production and reception, as opposed to two separate networks, does however

allow the possibility of a coupling of production and reception.

3.4.1.3 Learning

In order to store the association between patterns of activation over NM and NS the

activations of the nodes in NM and NS are set to the required values and the weights

of the connections in W are adjusted according to some weight-update rule W . If we

assume that W must only adjust connection weights based on local information and that

all patterns of activation will be binary, W can be specified by the 4-tuple (� �  Æ),
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Figure 3.8: Retrieval of a pattern of activation over NS based on a pattern of activation over
NM . As before, large filled circles represent nodes with activation of 1. Connections between
nodes are represented by the intersections of connecting lines and have an associated weight. In
(a), the nodes in NM have been set to a pattern of activation, resulting in a pattern of weighted
sums of inputs over the nodes in NS — the q values for those nodes The numbers in the centre of
the nodes in NS represent the weighted sums to those nodes. In (b) the result of the application
of the winner-take-all process is shown — qS1 is greater than qS2 or qS3, therefore node S1 has
its activation set to 1 while nodes S2 and S3 have their activations set to 0.

where the value in � specifies how the weight of connection wi;j should be adjusted

when ai = aj = 1, the value in � specifies how wi;j should be adjusted when ai = 1 and

aj = 0, the value in  specifies how wi;j should be adjusted when ai = 0 and aj = 1 and

the value in Æ specifies how wi;j should be adjusted when ai = aj = 0. While weights

could be adjusted in many ways we will restrict ourselves here to the simplest case where

�, �,  and Æ must take integer values in the range [�1; 1]. This yields a range of 34 = 81

possible weight-update rules.

Given our interpretations of patterns of activations of NM and NS this storage process

represents the process of learning the association between a meaning and a signal in a

meaning-signal pair hm; si according to some rule W . The learning process is illustrated

in Figure 3.9.

3.4.2 Acquisition of an optimal system

We now have a model of communication, a model of an agent and processes of pro-

duction, reception and learning. The feedforward neural network model highlighted the

importance of the learning biases of agents when accounting for the behaviour of popu-

lations of such agents. The first question to be addressed here is therefore to ask whether

individual agents, in isolation, can acquire an optimal communication system. To this

end an unambiguous set of meaning-signal pairs A = fhm1; s1i; hm2; s2i : : : hm10; s10ig
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Figure 3.9: Storage of the meaning-signal pair hm2; s3i using the weight-update rule W =

(a b c d). In (a), the nodes in NM and NS have been set to the patterns of activation representing
m2 and s3. All connections have weight 0. In (b) the result of the application of the storage
process is shown — all connections now have weights of a, b, c or d, depending on the activations
of the nodes they connect.

was constructed. Agents using each of the 81 possible weight-update rules were then

trained onA, by storing each meaning-signal pair inA in their network. The agents were

then evaluated to see if they had successfully acquired an optimal communication system

based on exposure to the unambiguous set of meaning-signal pairs A. Agents are judged

to have acquired an optimal system, if, for every hmi; sii 2 A both:

1. Production of the signal associated with mi always5 results in si being produced,

i.e. hmi; sii can be reproduced in production and

2. reception of si always results in the interpretation mi, i.e. hmi; sii can be repro-

duced in reception, meaning that the agent would communicate optimally with

itself or another agent using the same weight-update rule exposed to A.

The 81 weight-update rules can therefore be classified according to a [�learner] feature.

31 of the 81 possible weight-update rules were judged to be capable of acquiring the

optimal communication system and were classified as [+learner]. The remaining 50

weight-update rules were classified [�learner].
5The term “always” has to be introduced to account for the stochastic nature of the behaviour of some

networks, resulting from multiple nodes in the network receiving the same weighted sum of inputs on
presentation of a pattern. In practice, “always” was reduced to “for every one of 1000 trials”.
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3.4.3 The Iterated Learning Model

As with the feedforward network model discussed above in Section 3.3, this model of a

communicative agent can be slotted into an Iterated Learning Model to evaluate how the

different weight-update rules influence the development of communication over time in a

population. Unlike the feedforward network model, a gradual, rather than generational,

population turnover model is used. The gradual population turnover model was preferred

to counter the possibility in the new model of “inverting” learners, who learn the oppo-

site communication system to their cultural parents. In a generational ILM populations

of such agents would score highly on the intra-generational communicate accuracy mea-

sures, but could not be said to have learned the communication system of their cultural

parents.

In the gradual population turnover model (see Figure 2.6 (b) in Chapter 2) at every time-

step a single agent is selected at random and removed from the population. The remaining

members of the population produce some observable behaviour, in the case of this model

sets of meaning-signal pairs. A new individual arrives and learns based on observations

of the population’s observable behaviour, then enters the population. The process then

repeats.

More formally, the ILM consists of an initialisation process and an iteration process:

Initialisation Create a population of N agents6, each using the weight-update rule W

and possessing communication system L.

Iteration

1. Select an agent at random from the population and remove it.

2. For every remaining member of the population, generate a set of meaning-signal

pairs by applying the network production process to every m 2 M. Noise is added

to each meaning-signal pair7 with probability pn.

3. Create a new agent with connection weights of 0 who uses weight-update rule W .
6N = 100 for all ILMs outlined in this section.
7In order to add noise to a meaning-signal pair hm i; sji, sj is replaced with a randomly-selected sk 2 S,

where k 6= j.
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4. The new agent receives e exposures to the population’s observable behaviour. Dur-

ing each of these e exposures the new agent observes the complete set of meaning-

signal pairs of a randomly selected member of the population and updates their con-

nection weights according to the observed meaning-signal pairs and their weight-

update rule W .

5. The new agent joins the population. Return to 1.

Each pass through the iteration process will be termed a cohort. Note that the random re-

moval of agents from the population means there is no selection based on communicative

ability. As with the feedforward network ILM, the fact that every individual begins its

life with a weight-update rule and initial set of connection weights suggests some kind

of innate endowment of these components. In the simulations outlined in this section

populations are homogeneous with respect to this endowment, and we restrict ourselves

to investigating the impact of cultural transmission factors on the emergent communi-

cation systems. In Chapter 4 the biological evolution of these innate endowments in a

genetically heterogeneous population will be investigated.

3.4.4 Maintenance of an optimal system

The first question to be addressed using the ILM is whether a population of agents pos-

sessing a weight-update rule W can maintain an optimal system over time in the presence

of a small degree of noise. Recall from the description of the ILM given above that the

agents in the initial population use some predefined communication system L. For the

experiments outlined in this section, the initial population’s set of weights W were con-

structed such that the p(m) of the initial L generates the set of meaning-signal pairs

L = fhm1; s1i; hm2; s2i : : : hm10; s10ig — the initial population shares an unambiguous

meaning-signal mapping. ILMs were run with each of the 81 possible learning rules,

with noise introduced with probability pn = 0:05 and each individual receiving expo-

sures to the communication systems of three randomly-selected members of the popula-

tion (e = 3). Populations were defined as having maintained the initial optimal system

if the population’s communicative accuracy remained above 0.95 for every cohort of a

run.8 Weight-update rules were classified as [+maintainer] if the optimal system was

maintained for each of ten 2000-cohort runs.

The populations exhibited four typical patterns of behaviour, illustrated in Figure 3.10.

Populations (a), (b) and (c) in Figure 3.10 have failed to maintain the optimal system
8The population’s communicative accuracy was estimated by evaluating every individual’s average

communicative accuracy as both producer and receiver with two randomly selected partners according to
the measure ca(P;R) given in Section 3.2, averaging over all individuals in the population.
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Figure 3.10: Populations of agents using the 81 learning rules exhibit four patterns of behaviour
when attempting to maintain an optimal system. This figure plots the communicative accuracy
over time of single populations exhibiting these patterns of behaviour: rapid collapse to chance
levels of communicative accuracy, as in (a); less rapid collapse to chance levels of communicative
accuracy, as in (b) and (c); maintenance of the optimal system, as in (d).

and can therefore be classified as [�maintainer], although population (a) in Figure 3.10

exhibits a more rapid decrease in communicative accuracy than populations (b) and (c).

Unsurprisingly, all 50 populations using weight-update rules with the [�learner] feature

followed the pattern of (a) and can therefore be classified [�learner, �maintainer]. Of

the remaining 31 weight-update rules, 13 resulted in the type of pattern exemplified by

populations (b) and (c) and can be classified as [+learner,�maintainer] and 18 resulted in

patterns similar to that of population (d) in Figure 3.10 and can be classified as [+learner,

+maintainer].

3.4.5 Construction of an optimal system

Finally, the 81 weight-update rules were examined to see whether they resulted in the

emergence of optimal communication systems from random behaviour when placed in

the context of the ILM. In the previous section the initial population’s communication

system, L, was optimal. In the models outlined in this section L has maximum entropy

— every m 2 M is associated with every s 2 S with equal probability, jMj = jSj = 10.

This was achieved by setting the connection weights of every individual in the initial

population to 0. Unlike in the previous section, cultural transmission is noise-free —
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pn = 0 (although results show that similar behaviour occurs with pn > 0). Simulations

were run for each of the 81 possible learning rules. A population was defined as having

constructed an optimal system if the population’s communicative accuracy reached 1:0.

Weight-update rules were classified [+constructor] if optimal systems were constructed

in each of ten 5000-cohort runs.

The populations exhibit three typical patterns of behaviour, of which populations (a), (b)

and (c) in Figure 3.11 are representative examples. The populations which fit the pattern

exemplified by (a) in Figure 3.11 have clearly failed to construct an optimal system and

in fact persist at the random level of performance for jMj = jSj = 10. All of the

weight-update rules which were classified as [�maintainer] follow this pattern and can

be classified as [�constructor].

Populations behaving similarly to population (b) in Figure 3.11 are performing above

the random level, but have not constructed an optimal system as defined above. In fact,

as suggested for a more limited case by Oliphant (1999), the level of communicative

accuracy in these populations hovers around the level we would expect given a random

assignment of signals from S to meanings from M with replacement:

communicative accuracy � 1�

 
1�

1

jSj

!jMj

The reason for this level of performance will be made clear in section 3.5.1. Nine of the

18 weight-update rules which were classified [+maintainer] fit this pattern and can be

classified as [�constructor].

Populations fitting the pattern exemplified by population (c) in Figure 3.11 have suc-

ceeded in constructing an optimal system from random behaviour and can be classi-

fied as [+constructor]. Nine of the 18 weight-update rules which were classified as

[+maintainer] fit this pattern.

3.4.6 Summary: The classification hierarchy

The three tests outlined above divide the 81 weight-update rules into four groups, sum-

marised in Table 3.6.

The fact that all weight-update rules which are [+constructor] are [+maintainer] and all

rules which are [+maintainer] are [+learner] suggests a hierarchy of weight-update rules,

summarised in Figure 3.12.
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Figure 3.11: Populations of agents using the 81 learning rules exhibit three patterns of be-
haviour when attempting to construct an optimal system: failure to construct an optimal system
and chance-level communicative accuracy, as in (a); failure to construct an optimal system, but
levels of communicative accuracy significantly above chance, as in (b); construction of an optimal
system, as in (c).

Classification Number

[�learner, �maintainer, �constructor] 50
[+learner, �maintainer, �constructor] 13
[+learner, +maintainer, �constructor] 9
[+learner, +maintainer, +constructor] 9

Table 3.6: The number of weight-update rules of each particular complete classification,
from the sample of 81.
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weight-update rules
(81)

[+learner]
(31)

[-learner]
(50)

[-maintainer][+maintainer]
(18) (13)

[-constructor][+constructor]
(9) (9)

Figure 3.12: The hierarchy of weight-update rules. Read from the top, each node places ad-
ditional restrictions on the properties of the weight-update rules. The numbers possessing each
feature are given in parentheses at each point in the tree.

3.5 The Key Bias

Why are obverter networks in the feedforward network model described in Section 3.3

biased in favour of acquiring unambiguous systems but imitator agents, with a slightly

different architecture, are biased in favour of acquiring fully ambiguous systems? Simi-

larly, what is it about the particular assignment of �1s, 0s and 1s to the four conditions

�, �,  and Æ in the associative network model9 (described in the previous Section) that

makes one weight-update rule incapable of learning an optimal communication system

whereas another weight-update rule is capable of constructing such a system from ran-

dom behaviour in the context of iterated cultural transmission?

The learning biases of the different network architectures or weight-update rules are best

described in terms of the one-to-one nature of mappings between meanings and signals.

As defined in Section 3.2, in an optimal communication system r(p(m)) = m for all

m 2 M. This requires that:

1. Each m 2 M should be expressed by a distinct s 2 S, i.e. p(m) should be a

one-to-one function.

2. Each s 2 S should map back to a single m 2 M such that p(m) = s, i.e. r(s)

should be a superset of the inverse of p(m).

9See Section 3.4.1.3. To recap, the value in � specifies how to change the connection weight between
coactive units, � specifies how to change the connection weight between an active meaning node and an
inactive signal node,  specifies how to change the connection weight between an inactive meaning node
and an active signal node, and Æ specifies how to change the connection weight between two inactive units.
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3.5.1 The key bias in the associative network model

There is a clear pattern relating the properties of weight-update rules to the assignment

of actions to values in the (� �  Æ) 4-tuple. Given the (approximately) bidirec-

tional nature of the networks and assuming jSj � jMj, point 1 above (p (m) should

be a one-to-one function) proves to be crucial in determining which weight-update rules

are [+constructor], which are [+maintainer, �constructor] and which are [+learner,

�maintainer, �constructor]. Weight-update rules which are [+constructor] are biased

in favour of a one-to-one p(m), those which are [+maintainer, �constructor] are neutral

with respect to the one-to-one nature of p(m) and those which are [+learner,�maintainer,

�constructor] are biased in favour of a many-to-one p(m).

3.5.1.1 The [+constructor] bias

Is there any pattern of assignment of values to conditions in the weight-update rule spec-

ification (� �  Æ) that characterises rules which are [+constructor] but not rules which

are [�constructor]? Yes.

A weight-update rule is [+constructor] if � > � ^ Æ > 

Why does this pattern of weight changes result in the construction of optimal systems

from random behaviour? Consider a network where jNM j = jNSj = 2 using the weight-

update rule (a b c d). Prior to learning, all the connection weights in W are 0. If we

represent W as a matrix with the value in row i and column j representing the weight of

the connection between nodes Mi and Sj then its initial weights will be:

0
@ 0 0

0 0

1
A

If this network is exposed once to the meaning m1 (recall from Section 3.4.1.1 that for

this meaning aM1 = 1, aM2 = 0), paired with the signal s1 (similarly, aS1 = 1, aS2 = 0),

its weight matrix will be: 0
@ a b

c d

1
A

For rules which are [+constructor] a > b. This means that if our simple network uses a

[+constructor] rule it will correctly produce s1 to communicate m1, due to the winner-

take-all retrieval procedure.
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For [+constructor] rules, d > c. In the context of our simple network, this means that

if the network uses a constructor rule it will automatically prefer to use the signal s2 to

communicate meaning m2, despite the fact it has only been trained to associate m1 with

s1. This is the crucial property of [+constructor] rules — they are biased in favour of

acquiring one-to-one mappings between meanings and signals. What consequences does

this bias have in the context of iterated cultural transmission?

Only communication systems which conform completely to the biases of learners will

be stable over iterated cultural transmission — communication systems which partially

conform to learner biases will be less likely to be acquired than systems which conform

more fully to the learner biases, and will therefore be filtered out of the population over

time. This differential retention of communication systems resulting from learner biases

results in direct bias on cultural transmission, as defined by B&R. The [+constructor]

bias in favour of one-to-one mappings between meanings and signals results in many-

to-one mappings being filtered out of the population. Eventually, through the process

of iterated learning, the population converges on a shared one-to-one mapping between

meanings and signals — an optimal communication system is constructed.

3.5.1.2 The [+maintainer] bias

Can the [+maintainer] property also be explained in terms of allocations of actions to the

(� �  Æ) weight-update rule specification? First, is there any pattern which uniquely

identifies the [+maintainer, �constructor] rules? Yes.

A weight-update rule is [+maintainer, �constructor] if � > � ^ Æ = 

Once again consider a network where jNM j = jNSj = 2 using the rule (a b c d) exposed

once to m1 paired with s1. As before, the resultant weight matrix is:

0
@ a b

c d

1
A

As for [+constructor] rules, for [+maintainer,�constructor] rules a > b. This means that

if our simple network uses a [+maintainer, �constructor] rule it will correctly produce

s1 to communicate m1.

For [+maintainer, �constructor] rules d = c. This means that, unlike [+constructor]

rules, the network using a [+maintainer, �constructor] rule will be equally likely to

express m2 using s1 or s2, due to their equal weights in the network. [+maintainer,
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�constructor] rules are therefore neutral with respect to one-to-one mappings. This ex-

plains both the ability of populations of agents using such rules to maintain optimal sys-

tems in the context of the ILM and the behaviour of these populations as they attempt to

construct optimal systems.

[+maintainer, �constructor] rules can maintain an optimal system in the presence of

noise. The initial optimal system is, by definition, a one-to-one mapping between mean-

ings and signals. Given the neutrality of [+maintainer,�constructor] rules to the one-to-

one nature of mappings, such optimal systems can be acquired in the presence of noise,

provided the noise is not sufficient to drown out the one-to-one mapping.

Recall from Section 3.4.5 and Figure 3.11 that, when provided with an initially random

system, populations of agents using [+maintainer, �constructor] rules converge on the

level of communicative accuracy one would expect given a random assignment, with re-

placement, of signals to meanings. This can be explained in terms of the neutrality of

[+maintainer, �constructor] rules to the one-to-one nature of mappings. The initial pop-

ulation’s random behaviour, when taken as a whole, will embody a random assignment of

signals to meanings. This random assignment will become shared among the population

through the process of cultural transmission. While [+constructor] agents remove the

many-to-one elements of the initial random system, [+maintainer, �constructor] agents

do not — the population’s eventual communication system will embody the same number

of many-to-one mappings as the initial random behaviour.

What then of the [+maintainer] property in isolation from the [�constructor] feature?

This can be captured thus:

A weight-update rule is [+maintainer] if � > � ^ Æ � 

The fact that rules which are [+constructor] are always [+maintainer] is captured by this

statement, as is the fact that it is possible to be [+maintainer, �constructor].

3.5.1.3 The [+learner] bias

The pattern of assignments of actions to the weight-update rule specification (� �  Æ)

that characterises rules which are [+learner] is:

A weight-update rule is [+learner] if �+ Æ > � + 

or, in simple terms, in order to be able to acquire an optimal communication system you

must make stronger associations between units which tend to have matching activations
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(α + δ > β + γ)
[+learner]

(α + δ <= β + )γ

^(α > δβ )> γ

^(α > δβ >= γ)
^(α < δβ > γ)

weight−update rules

[−learner]

[−constructor]
γ^(α > δβ )=

[−maintainer][+maintainer]

[+constructor]

^(α > δβ < γ)
or

Figure 3.13: The hierarchy given in Figure 3.12, expressed in terms of restrictions on possible
values in each condition of weight-update rules.

than between units which tend to have conflicting activations. Note that the � > �^Æ � 

constraint on [+maintainer] rules guarantees that all such rules are also [+learner].

Why are rules which are [+learner, �maintainer, �constructor] unable to maintain or

construct optimal communication systems? As we might expect, such weight-update

rules are biased against one-to-one mappings between meanings and signals and in favour

of many-to-one mappings. This immediately rules out construction of the one-to-one

mappings characterising optimal systems, and also maintenance of such systems. Any

many-to-one mappings introduced by noise will be preferentially acquired by [+learner,

�maintainer, �constructor] agents and will spread through populations of such agents,

resulting in the type of decrease in communicative accuracy seen in Figure 3.10.

3.5.1.4 Summary of the key bias in the associative network model

The weight-update rule hierarchy given in Figure 3.12 is re-presented in Figure 3.13 in

terms of the constraints on the values of the weight-update rules. Each terminal node of

the tree has a bias, summarised in Table 3.7.

3.5.2 The key bias in the feedforward network model

In the feedforward network model both imitator and obverter agents learn using the back-

propagation algorithm. The bias is therefore introduced by the architecture of these net-

works, rather than the particular learning rule used. Imitator networks map from input
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Classification Bias

[�learner, �maintainer, �constructor] NA
[+learner, �maintainer, �constructor] favours many-to-one mappings
[+learner, +maintainer, �constructor] neutral
[+learner, +maintainer, +constructor] favours one-to-one mappings

Table 3.7: A summary of the learning biases of each particular combination of features. Weight-
update rules which are classified as [�learner, �maintainer, �constructor] cannot be said to have
a learning bias as they cannot learn.

meanings to output signals, whereas obverter networks map from input signals to output

meanings. This turns out to be crucial in understanding the bias of these networks.

Feedforward neural networks learn many-to-one functions. Due to the deterministic na-

ture of the feedforward propagation of activation values they cannot learn one-to-many

mappings. The easiest function for a network to acquire is an all-to-one mapping from

inputs to outputs, the hardest learnable function is an injective (one-to-one) function and

one-to-many mappings are unlearnable. The reversal process used to model reception

behaviour for imitators and production behaviour for obverters is similarly biased — it

generates a function, which may be injective or many-to-one, based on the function the

feedforward network has acquired. In general, if the network has acquired a function

f(x) which has a range y, then the reversal process ensures that element yi 2 y will map

onto a single element xi 2 x such that f(xi) = yi — in simple terms, the reversal process

deterministically reverses the function acquired by the network.

In imitator agents the feedforward network learns functions from meanings to signals

— it learns p(m). Since it is a feedforward network it will be biased towards acquir-

ing a many-to-one or all-to-one p(m). As illustrated in Figure 3.14 and discussed in the

caption, the maximally stable p(m) for imitator agents is therefore an all-to-one fully

ambiguous function. Imitators are therefore biased against one-to-one mappings from

meanings to signals. Reception in imitators will be based on their acquired p(m) — as

shown in Figure 3.14, in the case of an all-to-one p(m), in r(s) the signal si that consti-

tutes the range of p(m) will map onto a single element from m. Therefore a population

of imitators agents will tend to produce the same signal for every meaning and interpret

the ambiguous signal as communicating one arbitrary selected meaning. This situation

results in performance equivalent to random guessing.

In obverter agents the feedforward network learns functions from signals to meanings —

it learns r(s). As illustrated in Figures 3.15 and 3.16 the only culturally stable system

has a one-to-one p(m) and an r(s) which includes at least the inverse of p(m). Obverter
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m1 m2 m3

s1 s2 s3 s4 m3m2m1

s3 s4s1 s2

m1 m2 m3

s1 s2 s3 s4
(d)

reverse

m1 m2

s2 s3 s4

learn

evaluate

m3

s1
(a) (b) (c)

Figure 3.14: (a) is a representation of an imitator agent’s feedforward network encoding an
all-to-one p(m) mapping three meanings onto a single signal, s2. The function from a domain
of real numbers (input unit activations) to a codomain of real numbers (output unit activations)
is represented by two lines, the lower line representing the domain, the upper representing the
codomain. Squares represent particular points on the line corresponding to binary meanings or
signals. Associations are shown with solid lines between elements in the domain and elements
in the codomain. (b) represents the confidence-measuring step of the reversal process for the
network underlying (a). In order to decide r(s2), the real-number values of p(m1), p(m2) and
p(m3) are calculated. These real-numbered mappings are represented by dotted lines in (b). (c)
represents the r(s) derived from applying the reversal process to (a). r(s2) = m2 because m2

mapped closer to s2 than any other m in (b). The other associations are effectively random.
The random nature of these mappings is represented by dashed lines. (d) represents the function
acquired by an imitator network exposed to behaviour generated by (a) — as it is an all-to-one
function between meanings and signals it is easily learned by imitator agents. This is in fact the
only stable function for imitators.

agents are therefore strongly biased in favour of acquiring systems with the properties of

optimal communication systems.

How can we relate these feedforward network biases to the classification hierarchy de-

veloped for the associative network weight-update rules? Obverter networks, biased in

favour of one-to-one mappings between meanings and signals, should clearly be classi-

fied as [+constructor]. The classification of imitator agents is less clear. Imitator agents

are capable, given sufficiently high e, of acquiring an optimal, unambiguous commu-

nication systems, and should therefore be classified as at least [+learner]. Populations

of such agents cannot construct an optimal system, and should therefore be classified

[�constructor]. Their status with respect to the [�maintainer] feature is less clear. We

would expect, given their bias in favour of many-to-one functions, that they should be

classified as [�maintainer]. However, simulation runs were carried out to measure the
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s1 s2 s3 s4
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(a) (b) (d)(c)

Figure 3.15: (a) represents an all-to-one r(s) encoded in an obverter agent’s feedforward net-
work. As obverters map from signals to meanings this is the most learnable r(s). (b) represents
the confidence-measuring step of reversing this r(s) to generate a p(m) — as before, real-number
mappings are shown as dotted lines. (c) shows the p(m) derived from (a). p(m2) = s3 as s3
mapped closest to m2 in (b). The other associations are essentially random. The p(m) in (c) pro-
duces the meaning-signal pairs f(m1; s1); (m2; s3); (m3; s3); g. Meanings and signals in these
pairs are transposed (yielding f(s1;m1); (s3;m2); (s3;m3); g) to train the next generation of
obverter networks. (d) shows the r(s) resulting from training an obverter network on the signal-
meaning pairs f(s1;m1); (s3;m2); (s3;m3); g. r(s1) = m1, as expected. However, feedfor-
ward networks cannot learn one-to-many mappings so r(s3) is effectively randomly assigned to
a signal, in this case m2. As s2 and s4 are not represented in the training set they are effectively
randomly assigned mappings. Notice that the mapping in (a) has been destroyed in (d) — the
many-to-one mapping in (a) is not culturally stable.

s3 s4s1 s2

m3m2m1

s3 s4s1 s2

reverse learn

s1 s2 s3 s4 m3m2m1

m1 m2 m3

(a) (b) (c)

Figure 3.16: Only an unambiguous p(m) is stable for obverter agents. (a) represents an obverter
agent’s r(s). (b) is the p(m) derived from reversal of (a) — it is a one-to-one function. (c)
illustrates that the r(s) resulting from training the next generation of agents on data produced by
(b) is effectively similar to (a) and will therefore lead to (b) once again — (a) and (b) are culturally
stable. The only unstable aspect is the floating synonym s4. This synonym is highly unlikely to
interfere with the mapping in (b) and the floating synonym phenomenon can be observed in other
obverter models.
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ability of populations of such agents to maintain an optimal system in the presence of

noise (e = 200, pn = 0:05) and no runs were found for which they failed to do so. How-

ever, this appears to be due to the large value of e, which reduces the impact of noise.

As we will see in Chapter 4, injection of a slightly different form of noise does result in

failure to maintain an optimal system. We will therefore classify imitator networks as

[+learner,�maintainer,�constructor].

3.5.3 The key bias in other models

Can we understand the behaviour of other models of the cultural evolution of vocabulary

in terms of this key bias? Specifically, in the models where cultural evolution is driven by

direct bias, does the direct bias result from a learning bias similar to that of [+constructor]

agents? Dealing with other neural network models first, does this key bias appear in the

neural network models of Hutchins & Hazelhurst (1995), Batali (1998) and Livingstone

& Fyfe (1999) (discussed in Section 3.1) and Kvasnička & Pospı́chal (1999) (which

will be discussed in Chapter 4), and Hare & Elman (1995) and Kirby & Hurford (2002)

(discussed in Chapter 5)?

Hutchins & Hazelhurst’s (1995) model can be treated separately from the other models,

which all share a common model of a learner. Hutchins and Hazelhurst use autoassocia-

tor networks to model communicative agents, with patterns of activation over the hidden

layer being interpreted as signals. Autoassociator networks must develop a distinct pat-

tern of activation over the hidden layer for every input-output pair (input-output pairs are

equivalent to meanings as defined here) in order to succeed in the autoassociator task.

Interpreting the hidden-layer patterns of activation as signals therefore builds in a one-

to-one bias of the type identified as crucial for developing an optimal communication

system.

Batali (1998), Kvasnička & Pospı́chal (1999), Livingstone & Fyfe (1999) and Kirby &

Hurford (2002) all use the obverter feedforward network configuration, with networks

mapping from input signals to output meanings. As discussed in Section 3.5.2, such a

configuration results in a learning bias in favour of one-to-one meaning-signal mappings.

The obverter network configuration, which is quite common in the literature, therefore

builds in a strong bias in favour of optimal communication systems.

Hare & Elman’s (1995) model of morphological change deserves a brief mention here.

This network maps from semantic representations of verbs to representations of the

phonological realisation of those verbs, and Hare & Elman observe a simplification of
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the phonological system, with increasing numbers of verbs being expressed with simi-

lar affixes. While this pattern exhibits some complex interactions between phonological

regularity and frequency of tokens, the general pattern of convergence to many-to-one

mappings is what we should expect to see from an imitator network architecture. We

can speculate that, had Hare & Elman allowed their simulations to continue for several

hundred generations, all verbs would end up being expressed with a single phonological

form. The learning bias of the imitator network would essentially destroy the morpho-

logical system. Contrast this with Batali’s (1998) results, where the obverter network

architecture results in the emergence of a morphological system.

Non-neural network models of the evolution of vocabulary, where that evolution is driven

by direct bias, are actually rather scarce, the only clear examples being the models of

Hurford (1989) and Oliphant & Batali (1997). As discussed in Section 3.1, Hurford con-

siders three learning strategies — Calculators, Imitators and Saussureans. Populations of

individuals using the first of these strategies cannot maintain optimal systems over time,

even when there is no noise on cultural transmission, while Imitator and Saussurean pop-

ulations can construct communication systems which yield intermediate levels of com-

municative accuracy, with Saussureans being somewhat more successful than Imitators

in this respect.

Based on these results, we would expect that Calculators can be classified as [�learner,

�maintainer,�constructor] and Imitators and Saussureans can be classified as [+learner,

+maintainer, �constructor]. Saussureans have the additional advantage over Imitators

that their production and reception behaviour are necessarily closely coupled — while

Imitator learners acquire their production and reception matrixes completely indepen-

dently from one another, Saussureans construct their reception matrix on the basis of

their own production matrix.

Do these learning strategies have the biases we would expect with respect to the one-to-

one nature of the meaning-signal mapping? In other words, are Imitators and Saussureans

neutral with respect to the one-to-one nature of mappings, and how are Calculators biased

with respect to this property?

It should be fairly obvious that Imitators and Saussureans are neutral with respect to

many-to-one mappings from meanings to signals — they acquire their production matrix

straightforwardly, by memorising the meaning-signal pairs they observe being produced.

The story with Calculators is somewhat more complicated. Consider a Calculator trying

to learn a system involving 2 meanings and 3 signals. Assume that the learner observes

a system where m1 is communicated using s1 and m2 is communicated using s2, with
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s3 being unused. This is a one-to-one system. On the basis of this observed production

behaviour the Calculator will arrive at the reception matrix

R m1 m2

s1 1 0

s2 0 1

s3 0.5 0.5

s3 is interpreted as meaning m1 and m2 with equal probability, given that these signals

are unused in the observed production system. This individual’s reception behaviour will

now be used by the next generation of learners to form their production behaviour. What

happens?

The Calculator above will produce two possible sets of reception behaviour. In both,

s1 is interpreted as m1, s2 interpreted as m2, with s3 being interpreted as m1 or m2

at random. What consequence does this have for the production matrices of the next

generation? If the learner at the next generation observes s3 being interpreted as m1 they

will arrive at the production matrix

P s1 s2 s3

m1 0.5 0 0.5

m2 0 1 0

In other words, they will now produce either s1 or s3 to communicate m1. If the learner

instead observes s3 being interpreted as m2 they will arrive at the production matrix

where s2 and s3 are produced with equal probability for m2. In other words, the spare

signal leads to the creation of one-to-many mappings between meanings and signals.

The inability of Calculators to acquire an optimal system (albeit over the course of two

learning episodes) therefore indicates they should be classified as [�learner]. This classi-

fication explains the fact that populations of such individuals immediately lose an initially

perfect system in an ILM where there is no noise on cultural transmission.

As discussed in Section 3.1, Oliphant & Batali contrast two learning strategies (Imitate-

Choose, henceforth imitator, and obverter). Populations of obverter learners can con-

struct an optimal system, whereas populations of imitators cannot. Oliphant & Batali

attribute this to the fact that obverter agents base their production behaviour on the popu-

lation’s reception behaviour, therefore explicitly designing their communication systems

so as to be understood, whereas imitator agents do not. However, the [+constructor]

agents described in Section 3.4 base their production behaviour on production behaviour,

yet still arrive at an optimal communication system. Do the obverter agents described by
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Oliphant & Batali arrive at an optimal system in a different way, or can the behaviour of

populations of such individuals be better explained in terms of a learning bias in favour

of one-to-one mappings between meanings and signals?

Figure 3.17 analyses how a population’s production (P) and reception (R) functions

change over time, for two initial starting conditions — an initial one-to-one mapping,

and an initial many-to-one mapping. Both these initial mappings are learnable by imi-

tator agents. For obverter agents, the one-to-one mapping remains stable over time —

the one-to-one P matrix leads to a one-to-one R matrix, which in turn leads back to the

one-to-one P matrix. In contrast, the many-to-one P matrix is unstable. The obverter

procedure attempts to derive an R matrix from this P matrix by finding the meaning mx

for which s1 and s2 is at a maximum. Since m1 and m2 are equally likely in both these

contexts, a random choice is made, which leads to four possible R matrixes, all equally

probable. For the sake of convenience, only two are shown in Figure 3.17. One of these

is a one-to-one R matrix, which leads to a one-to-one P matrix, which, as we have seen,

is stable. The other is a many-to-one R matrix, which leads, again through random selec-

tion, to 4 possible P matrixes, two of which are shown. Only the one-to-one P matrix is

stable — the other, as we have seen, is unstable. The learning bias of the obverter agents

favours one-to-one mappings between meanings and signals.

3.6 Biases in vocabulary acquisition in humans and non-humans

Is there any evidence that language acquisition in humans is guided by biases in favour

of one-to-one mappings between meanings and signals? If so, then the result of the com-

putational models shown here would suggest that optimal, or at least communicatively

useful, communication systems could arise in human populations through purely cultural

processes.

The one-to-one bias described here is typically broken down into two subcomponents

when talking about vocabulary acquisition in humans. The one-to-one bias consists of

both a bias against homonymy (many-to-one mappings from meanings to signals) and a

bias against synonymy (one-to-many mappings from meanings to signals). In Sections

3.6.1 and 3.6.2 I will present evidence from the language acquisition literature that sug-

gests that children apply both these biases to the learning of vocabulary. I will start with

the proposed bias against synonymy, as this is perhaps slightly less controversial, then

move on to homonymy. Finally, in Section 3.6.3 I will briefly review some evidence

from ape ‘language’ learning experiments which suggest that apes may not possess sim-

ilar learning biases to human infants. The postulated uniqueness of these learning biases
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Figure 3.17: The learning bias of Oliphant & Batali’s obverter learner. As illustrated in (a),
one-to-one mappings are stable over time — a one-to-one production matrix (marked by a P)
leads to a one-to-one reception matrix (R), which leads back to a one-to-one production matrix.
Many-to-one mappings are unstable, as illustrated in (b). The many-to-one production matrix
leads to four possible reception matrixes (only two are shown here). The one-to-one reception
matrix leads to a one-to-one production matrix which, as shown in (a), is stable. The many-to-one
reception matrix leads either to a one-to-one production matrix, which is stable, or a many-to-one
production matrix, which as we have seen is unstable. In other words, only one-to-one matrixes
are stable over time in populations of such learners.

to humans forms the motivation for Chapter 4, where investigations into the biological

evolution of the one-to-one learning bias are discussed. I will return to the role of one-

to-one biases in the acquisition of linguistic structure (both syntactic and morphological,

as opposed to essentially unstructured vocabulary which I discuss here) in Chapter 5.

3.6.1 Biases against synonymy in humans

Eve Clark and Ellen Markman have proposed that children have word-learning biases

which make synonyms (mappings from one meaning to several distinct words) either

unlearnable or difficult to learn. Both authors claim that these biases help children in the

rapid acquisition of vocabulary — the acquisition process in children has been termed

“Fast Mapping” (see Bloom (2000), Chapter 2, for review). While their conception of

this bias is in fact rather different, both base their theories on a set of experimental studies

carried out by Kagan (1981), replicated by, among others, Markman & Wachtel (1988).

136



In Kagan’s original study, children were shown three objects, two of which were famil-

iar (a doll and a dog) and one of which was unfamiliar (for example, a lemon zester).

Children were allowed to play with the objects, and were then asked to “Give me the

zoob” (or some other nonsense word) by the experimenter. The children showed a strong

preference for giving the novel item.

In Markman & Wachtel’s (1988) replication, children were shown a single familiar object

(for example, a plate) and an unfamiliar object (e.g. a radish rosette maker) and asked by

a puppet frog to “Show me the fendle” or some other nonsense word. Children reliably

respond by giving or showing the unfamiliar object. Results from a control group study,

where children were asked simply to “Show me one”, indicated that this preference was

not due to a preference on the part of children to respond with the unfamiliar object —

children only exhibit such a preference when prompted with a novel word.

Clark (Clark 1988; Clark 1990; Clark 1993) proposes two pragmatic principles guiding

vocabulary acquisition. The first, which she terms the Principle of Contrast (henceforth

Contrast), states that “different words have different meanings”. The second, the Prin-

ciple of Conventionality (henceforth Conventionality), states that “for certain meanings,

there is a form that speakers expect to be used in the language community”.

How does this relate to the child’s behaviour in the experiment outlined above? The child

knows, through Contrast, that contrasting words contrast in meaning. The child knows,

through Conventionality, that established words have priority. It is assumed that the child

already knows the established word for the familiar object. The child then deduces, via

Conventionality, that if the experimenter wished to refer to the familiar object they would

use the conventional word for that object. However, notes the child, the experimenter

used a novel word. The child reasons that that word cannot refer to the familiar object,

because different words have different meanings. The child therefore concludes that

the new word must refer to the unfamiliar object, responds appropriately by giving the

experimenter the unfamiliar object, and learns the (nonsense) name for the unfamiliar

object.

Contrast rigidly rules out synonyms — Clark emphasises that any difference in the form

of a word indicates a difference in meaning. To put it another way, according to Clark

synonyms do not exist. Clark is keen to point out that it does not rule out homonymy

(many-to-one mappings from meanings to signals), a point which I will return to below.

Markman (Markman & Wachtel 1988; Markman 1989; Markman 1992) proposes a Mu-

tual Exclusivity (ME) bias in children — “children should be biased to assume, especially
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at first, that terms [words] are mutually exclusive” (Markman 1989:188) and “each object

will have only one label”. Note that, unlike Contrast, this is not an inviolable principle,

but a tendency or bias that can be overridden given sufficient evidence. Like Contrast, ME

discourages synonymy — each object ideally has only one label, therefore there should

be no one-to-many mappings between meanings and signals. Markman is less clear on

the status of ME with respect to homonymy (for example, the term does not appear in the

index to her 1989 book), although she makes frequent reference to “one-to-one” biases in

vocabulary acquisition. Like Contrast, ME enables the child in the experiment above to

deduce that the novel word should refer to the unfamiliar object and learn that labelling

— ME dictates that the novel word cannot refer to the object which is already labelled,

therefore the novel word must refer to the unfamiliar object.

The main difference between Clark’s position and Markman’s is in the severity of the

bias. Markman (1989) presents what she considers to be evidence that children can learn

to violate ME. Specifically, they can learn super-ordinate terms (“poodle” but also “dog”

and “animal”). However, children find such super-ordinate terms difficult to learn, with

children as old as 14 making errors. Typically, the error involves mistaking a super-

ordinate term for a term expressing a collection of the subordinate items. Macnamara

(1972) gives the example of a child who will accept that a particular plaything is a

“truck” or a “train”, but will simultaneously deny that it is a “toy”, with the term “toy”

being reserved for a group of trucks, trains, Teddy bears and so on. This type of evi-

dence leads Markman to conclude that ME is violable. In contrast, Clark would say that

super-ordinate terms have a different meaning from their subordinate terms, therefore

Contrast is preserved, although this offers no explanation as to why children find super-

ordinates hard to learn. However, regardless of the debate between Contrast and ME, the

experimental evidence suggests that children have a bias against acquiring synonyms,

one-to-many mappings from meanings (objects in the experiment) to signals.

3.6.2 Biases against homonymy in humans

The status of biases with respect to homonymy is somewhat problematic. One does not

have to look very far through any language to find homonyms, mappings from several

meanings to a single surface form. At first blush, this seems to indicate that children

do not have any bias against acquiring many-to-one mappings from meanings to signals.

Indeed, Clark is keen to point out that Contrast and Conventionality do not in any way

bias against homonymy. Markman remains silent on the subject of homonymy, although

in several places she refers to “one-to-one” biases in vocabulary acquisition.
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Briefly considering a possible experiment should, however, serve to cast doubt on the first

intuition that children are unbiased with respect to the acquisition of homonyms. Imagine

a slight variation in the experiment outlined above, where, rather than the experimenter

asking the child to “show me the zoob”, the experimenter asks the child “Show me the

shoe” or whatever the familiar object was. I suspect that the child would respond by

showing the shoe, at least with the same level of reliability as children prompted with

the novel word would respond by showing the unfamiliar object. The fact that nobody,

to my knowledge, has carried out this experiment indicates that this is probably not a

very controversial hypothesis — our everyday experience indicates that people know the

names for things and if you request those things then they don’t assume you are talking

about something else.

However, this experiment, were it to proceed as I expect, would illustrate that children

must be biased against homonymy. If children are unbiased with respect to homonymy

then under such experimental circumstances they should show the shoe or the unfamiliar

object with equal probability — if many-to-one mappings between meanings and signals

are as possible as one-to-one mappings, then the child cannot tell whether “shoe” means

shoe1, the familiar sense of shoe, or shoe2, a new use of homophonous “shoe” to refer

to the unfamiliar object. It could be argued that the child would prefer the familiar sense

of “shoe” due to the fact that they have frequently encountered this use of “shoe” (this is

essentially Clark’s Conventionality principle). However, if we agree that children prefer

not to learn new meanings for established words then we are accepting a bias against

homonymy. It could be argued that this bias against homonymy only comes into play

once a well-established convention is in place — for example, once the child has ex-

perienced several hundred utterances of “shoe”, all with the same reference, they will

be resistant to learning a new meaning for “shoe”. However, it cannot simply be sheer

weight of numbers which performs this function. Bloom & Markson (1998) describe an

experiment where children are presented with two novel objects, given a single nonsense

name for one object (“bem”, for example), then asked to “Show me the jop”. Under these

circumstances children still reliably show the unnamed novel object. Given that neither

object has been encountered before, and the word “bem” is also novel, it seems that a

single exposure to a word paired with an object biases children against interpreting or

acquiring that word as conveying a different meaning.

It in fact seems that, with a learner unbiased with respect to homonymy, word learning

would become all but impossible — every possible utterance of a familiar word could

refer to any object at all. If we accept Contrast or ME, then the problem is fractionally

reduced — any word can refer to any object which has not already been labelled with a
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different word. However, Contrast/ME cannot really resolve the issue as learning even a

single label becomes an intractable task. This problem becomes worse when we consider

that children can learn labels for subparts of objects. Joint attention might narrow down

the focus of possible objects, ruling out other whole objects as the referent of “shoe”, but

when I say “Show me the shoe”, do I mean shoe1, the whole object, or shoe3, the string

that ties the shoes up, or shoe4, the man-made fibre which the shoe uppers are made of?

I believe that we are forced to conclude, on logical grounds, that children must have

some bias against acquiring homonyms, many-to-one mappings from meanings to words.

Without such a bias, word learning would become impossible or at best extremely ardu-

ous. This is in fact not a terribly new position, although the argument given above may

be a novel one. McMahon (1994) briefly discusses work carried out by Jules Gilliéron

in France from 1896. Gilliéron, with the aid of several fieldworkers, compiled the Lin-

guistic Atlas of France. One of Gilliéron’s primary concerns was to construct “phonetic

etymologies”, by comparing the expected forms of modern French words (based on a set

of hypothesised changes occurring between Latin and modern French) to the words ac-

tually attested. Where the predictions and the data did not match up Gilliéron attempted

to explain the discrepancy.

Gilliéron’s theory predicted that the modern French word for cockerel should be derived

from the Latin “gallus”. In the Gascony region these hypothesised changes should have

lead to the form “gat”. However, this is also the predicted form for the word for cat,

“cattus” in Latin. Gilliéron’s survey revealed that “gat” in Gascony does in fact refer to

cat, with cockerel being referred to by another word. Gilliéron appealed to an avoidance

of homonymy to explain this mismatch — cats and cockerels are both farmyard animals

(or presumably were in turn-of-the-century France), and homophony involving meanings

from the same semantic field is avoided, therefore “gat” was restricted to meaning cat

and an alternative form was employed for cockerel.

This early example does not indicate where the bias against homonymy resides — is it

in the language learner or the language user? Martinet (1972) proposes the second of

these alternatives. Martinet’s primary concern is an account of phonemic change, but he

works within a functionalist framework: “The basic assumption of functionalists in such

matters is that sound shifts do not proceed irrespective of communicative needs, and that

one of the factors which may determine their direction and even their appearance is the

basic necessity of securing mutual understanding” (Martinet 1972:144). The imperative

to preserve mutual understanding should discourage, among other things, homonymy —

homonymy leads to ambiguity.
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Lass (1980) provides a concrete example of an irregular phonemic change which ap-

pears to result in the avoidance of homonymy. During the change from Old English to

modern English, the Old English vowel /y/ appears to change in two distinct ways. In

the first, regular path, Old English /y/ changes to modern English /I/, via Middle En-

glish /i/. However, in some lexical items Old English /y/ appears to change to Middle

English /u/ and then to modern English /2/. The vowel of modern English “shut” pro-

ceeded according to the less frequent, irregular path. Had it proceeded according to the

more regular path, the result would have been “shit”, as Lass puts it “[t]his particular ho-

mophony would be, I would think, about as ‘pernicious’ as any” (Lass 1980:76). Those

subscribing to Martinet’s line of reasoning would perhaps argue that “shut” avoided the

more regular change in order to avoid homonymy, which would lead to a decrease in

communicative function, although Lass argues strongly against this interpretation, as we

will see below.

Turning briefly to cross-categorial homonymy, Macnamara (1982) reports two pieces

of evidence, based on the acquisition behaviour of two young subjects, that children

prefer not to acquire homophonous terms which refer both to an action and an object.

Macnamara’s first subject preferred to use ambiguous terms such as “comb” to refer to

either the action or object, but not both, even when the child’s parents used the term as

both noun and verb in the child’s presence. Macnamara’s second subject, his son, went

so far as to invent a new word to avoid this type of homonymy.

To summarise, the logical argument and proposed experiment outlined at the beginning

of this Section suggest that children must be biased to some extent against acquiring

many-to-one mappings from meanings to signals. This is supported by some concrete

examples of where this type of homonymy avoidance might be observed empirically. The

empirical evidence at this point is somewhat weak, and will be considerably strengthened

in Chapter 5, where more evidence for a bias against homonymy is presented. However,

for now it is time to return to the two main arguments against a bias with respect to

homonymy — the fact that languages contain numerous homonymous mappings, and

that teleological mechanisms do not exist for homonymy avoidance.

Firstly, if children do need to be biased against homonymy, why is homonymy so frequent

in language? Doesn’t this prove that children are in fact not biased against homonymy?

There are two possible responses to this position, both similar to Clark and Markman’s

respective defences of their proposed biases relating to synonymy.

We could imitate Clark’s rather rigid line of argument, and insist that, just as difference

in signal reflects difference in meaning, congruence of signal represents similarity of
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meaning. This line, in a rather strong form, is pursued by Haiman (1980). While this

argument can probably be used to deflect some cases of homonymy, such as polysemous

uses of “mouth” (mouth of an animal, mouth of a cave, mouth of a river etc), it perhaps

does not do to push it too far.

Alternatively, we could appeal to the kind of explanation that Markman makes to explain

violations of ME — perhaps homonyms are simply somewhat harder to learn than non-

homonyms, but still learnable. This testable hypothesis therefore allows that we should

indeed expect to see homonymy in language, particularly when we consider that a learner

bias against homonymy is not the only pressure acting on language and language acquisi-

tion — not only do phonological shifts and borrowing continually bring homonymy into

a language, but there are other possible pressures:

“[These other pressures might] pertain to the number of fixed expressions,

patterns, and locutions that a speaker must master, remember, and manipulate

in language use. The impracticality of having a separate lexical item for

every conceivable object, event, or situation a speaker is likely to encounter

is of course a truism. Languages never provide a lexical inventory that is

vast enough to label with uniqueness and precision the elements of every

conceivable contingency; rather they depend on the speaker to use creatively

a more restricted inventory of lexical units in conjunction with the resources

of the grammatical system.” (Langacker 1977:114)

It is interesting that this tendency to minimise the number of lexical items which have

to be learned impacts differently on synonyms and homonyms. Synonyms will be dis-

favoured — memorising two words for a single object increases (perhaps unnecessar-

ily) the learning burden. The preference for smaller vocabularies then reinforces the

child’s bias against synonyms. However, a pressure to minimise vocabulary size favours

homonyms — if a single word can be used for two meanings, then the total number

of words which must be learned is reduced. The tendency to minimise vocabulary size

therefore fights against the postulated learner bias against homonyms. This is one pos-

sible explanation for the apparently contradictory fact that there are few (if any) true

synonyms in language and numerous homonyms, while children are biased against both

synonyms and homonyms.

The second objection to proposed anti-homonymy biases is the suggested location of

such biases. Lass (1980) deals rather forcefully with functionalist explanations. Perhaps

his most telling criticism is that, according to the functionalists, “it seems that speakers
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avoid homophones by prolepsis, i.e. by taking avoiding action in advance . . . [b]ut this

is surely absurd . . . the only mechanism left is for speakers actually to produce the of-

fending articles, and then, having discovered what they’ve done, to remove them (’My

God, I’ve just said “please shit the door”; better change it to shut’)” (Lass 1980:79). If

we accept this line of argument, this leaves us with the homonymy avoidance residing in

the language learner.

Croft (2000) deals with teleological explanations for homonymy avoidance:

“perhaps the greatest objection is that there is no plausible theory motivat-

ing a teleological mechanism [whereby language users change the linguistic

system for the sake of the linguistic system] . . . innovations must be brought

about ultimately as a result of actions by speakers. Yet there is no obvious

motivation for speakers to innovate to make the grammatical system more

symmetrical, or to preserve distinctions for the sake of preserving distinc-

tions. Speakers have many goals when they use language, but changing the

linguistic system is not one of them” (Croft 2000:70)

I could not agree more. Locating a bias against homonymy in the language learner avoids

the distasteful aspects of teleological and functional explanations — children learning

language avoid homonyms not because they’re worried that they’ll say “Please shit the

door mother”, but simply because they can’t help it — the bias against homonymy is a

component of the innate device which determines the way children acquire language. Of

course functionalist explanations of the origin of this language learning bias still have to

be explained, which will be the role of Chapter 4.

3.6.3 Biases in non-human animals?

Clark and Markman present evidence that children are biased against acquiring one-to-

many mappings between meanings and signals. I have also presented an argument that

children must be biased against acquiring many-to-one mappings between meanings and

signals. We should therefore, if we accept both these factors, expect children to be biased

in favour of one-to-one mappings between meanings and signals. This is precisely the

bias that we found to be necessary for the cultural evolution of functional communication

systems. This provides partial support for our theory that only humans have the mental

capacity to support learned symbolic vocabulary — we have established that humans

have the necessary bias. The second supporting strut for this argument would be to fill

143



in the “only” piece — to show that no non-human animals have a learning bias which

favours one-to-one mappings between meanings and signals.

Do non-human animals have a bias in favour of one-to-one mappings between meanings

and signals? Some evidence on this front comes from the ape language-learning experi-

ments, but this evidence is somewhat sketchy. This is largely due to the fact that Kanzi,

possibly the most prominent and successful ape language learning subject, essentially

learned what he learned without the researchers noticing — while the focus had been

on teaching Kanzi’s mother to communicate “Kanzi had been keeping a secret. He had

been learning these words all along . . . We thought he did not know how to talk with

the keyboard, but he did.” (Savage-Rumbaugh et al. 1998:22). While this set of circum-

stances may shed some light on whether or not apes need explicit reinforcement to learn a

communication system, it is rather disappointing from our current perspective — nobody

noticed how Kanzi went about learning lexical items.

There is some empirical evidence on this point, however. David Premack reports (in

the discussion section following Premack (1983)) on an experiment where chimpanzees

requested a previously unnamed object using a “new word”, a newly introduced piece

of plastic. This suggests a bias against homonymy — if the apes were unbiased with

respect to homonymy, they could happily refer to the unnamed object using a known

word, therefore introducing a many-to-one mapping between meanings and signals.

Other experimental work casts doubt on this conclusion, however. Lyn & Savage-Rumbaugh

(2000) describe a fairly rigorous set of experiments into the ability of two pygmy chim-

panzees (Kanzi and his younger half-sister Panbanisha) to learn new words for novel

items. Their overall experimental setup is inspired by the experimental setup used to

investigate the Contrast/ME principle in human infants.

Lyn & Savage-Rumbaugh tested the ability of the two apes to acquire new words (lexi-

grams) for ten novel items. Before an ape was tested on an item, it received pre-exposure

to that item being named by two human experimenters in a naturalistic dialogue. These

dialogues took place outside the ape’s living enclosure, but in clear view of the ape. Dur-

ing each presentation session, the two experimenters played with and discussed the item,

naming it between six and 19 times. Presentation sessions were grouped in threes, with

the experimenters discussing one novel item, going away, returning with another novel

item, and so on.

Within one hour of these groups of three presentation sessions the apes were tested on

their ability to name the novel items. During each test session the ape was presented
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with five familiar items and the three novel items it had just seen named. The apes were

allowed to play with all the items until their initial curiosity waned. 11 tests were then

conducted, during which the ape was asked to give a particular item to the experimenter.

During the first three such tests the apes were instructed to hand over a familiar item. Both

apes responded correctly in at least two thirds of these initial tests. For the remaining

eight tests the apes were told to give the experimenter each of the eight items, in random

order. If the ape made a mistake during any one of these eight tests, the request was

repeated a single time. During testing, food and praise were given freely to the apes, but

“[i]ndication of the incorrectness of a response was kept to a minimum” (Lyn & Savage-

Rumbaugh 2000:261), notwithstanding the repetition of the request.

If an ape failed to correctly name all three novel items the presentation and test sessions

were repeated within 48 hours. The repeat presentation sessions proceeded exactly as

before, with all three novel items being named. However, during the test sessions, the

apes were only prompted to give the novel items which they had earlier failed on.

Lyn & Savage-Rumbaugh report that Kanzi required a mean of 2 presentation/test ses-

sions before he correctly responded to the name of a novel item, which amounted to a

mean 22.8 exposures to that novel item being named by experimenters. Panbanisha fared

rather less well, requiring a mean of 4.1 presentation/test sequences and 42.5 exposures

per item. Furthermore, on 70% of the test incidents when the apes were asked to give

a novel item they failed to do so, either choosing a familiar item, choosing more than

one item or refusing to answer. As Lyn & Savage-Rumbaugh point out, this is a below-

chance level of performance, indicating a preference by the apes to select familiar items

when asked for a novel item. Finally, while Kanzi’s level of performance remained fairly

constant over the series of experiments, Panbanisha’s performance gradually improved

— it took her a greater number of cycles to learn the name for the first novel item than it

did for the last novel item.

How should we interpret these results with respect to homonymy and synonymy biases

in apes? Firstly, it should be noted that apes clearly have a rather more difficult time with

the task than children, requiring pre-exposure and multiple tests to select ‘novel’ items

when presented with ‘novel’ words. Secondly, the apes’ performance at some aspects of

the task indicate a lack of a bias against homonymy, or at least a very weak bias. The

apes sometimes failed when asked to give a familiar item during the first three trials of

each test session, although not more than 33% of the time. This suggests that they are

not strongly biased against associating a familiar word with a novel object or the wrong

familiar object (a many-to-one mapping from objects to words). Their performance on
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requests for familiar items during the remaining eight tests is not reported. Thirdly, the

apes’ preference for selecting familiar, already-named items when prompted with a novel

word indicates the absence of a bias against synonymy — the apes fail, or at least take

time to pass, the Contrast/ME test. Finally, Panbanisha apparently has to learn how to

perform the task, while it comes naturally to human infants. Whereas the experimenters

interpret this as Panbanisha coming to terms with the test environment (Heidi Lyn, per-

sonal communication), it could be taken to indicate that she takes time to come to terms

with the idea of naming novel items with novel words. What is clear from this set of

experiments is that apes find the acquisition of words much more difficult than humans,

and the process, which is known as Fast Mapping in human infants, takes time. The

experiments also suggest that apes are either unbiased with respect to homonymy and

synonymy, or at least much less biased than human infants, although this conclusion is

more a matter of interpretation.

To further muddy the waters, it could be noted that, in a detailed report on a separate set

of ape language experiments, Savage-Rumbaugh et al. (1986) report that Mulika (Kanzi’s

younger sister) “began by using the lexigram milk for many different things, including

requests to be picked up, requests for attention, requests to travel to different places,

requests for food and requests for milk” (Savage-Rumbaugh et al. 1986:219). Matata,

Kanzi and Mulika’s mother, “did not develop an adequate concept of one-to-one cor-

respondence between a given symbol and a given referent” (Savage-Rumbaugh et al.

1986:215). These (admittedly circumstantial) examples of a lack of any obvious one-to-

one bias in ape vocabulary acquisition should throw further doubt on whether the biases

humans bring to this task are present in a closely related species.

3.7 Summary of the Chapter

In this Chapter I have presented two models of the cultural evolution of unstructured com-

munication systems — one revolving around a feedforward network model of a learner,

the other based on an associative network model. In both models, a learning bias in

favour of one-to-one mappings between meanings and signals was found to be key in

driving the cultural evolution of communication. In the feedforward network model, ob-

verter agents have this bias whereas imitator agents do not. Consequently, populations

of obverter agents converge on optimal, unambiguous communication systems whereas

populations of imitator agents do not. These results were found to hold even in the face of

fairly strong natural selection of cultural variants. In the associative network model, only

certain weight-update rules (those classified as [+learner, +maintainer, +constructor])

possess the one-to-one bias. Only those weight-update rules, when placed in the context
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of the ILM, result in the emergence of communicatively optimal systems of meaning-

signal mappings.

An examination of the learning biases involved in other models of the cultural evolu-

tion of communication shows that this one-to-one learning bias is paramount. More

significantly from the point of view of understanding language evolution in human pop-

ulations, one-to-one biases seem to be brought to bear by human infants when acquiring

vocabulary. I have presented arguments that human infants are biased against acquiring

synonyms and homonyms. Furthermore, non-human primates appear not to have this

bias. This suggests that the one-to-one biases applied by humans to the vocabulary learn-

ing task may be unique among primates, and may explain the uniqueness (among the

primates) of language as a culturally transmitted, symbolic communication system.
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