
CHAPTER 5

The cultural evolution of compositionality

In Chapter 3 I described an investigation into the properties of a learning bias required to

construct an optimal vocabulary system, and equated these properties with learning bi-

ases of humans. This investigation was carried out under the assumption that the human

learning biases evolved under natural selection for communication. However, the re-

sults outlined in Chapter 4 forced a re-evaluation of this position — such learning biases

are unlikely to evolve through natural selection for communication, due to the time-lag

between the emergence of an appropriate bias and a communicative payoff to those indi-

viduals possessing it.

In this Chapter I will pursue a similar route to that taken in Chapter 3, investigating

the conditions under which compositional language can emerge through purely cultural

processes, and attempting to draw analogies between these conditions and the factors at

play in human language acquisition. I will return to the issue of the evolution of the

learning biases necessary to support compositional communication in Chapter 6, while

for the meantime remaining sceptical as to whether these biases are communication-

specific.

The review of models of the cultural evolution of linguistic structure carried out in Sec-

tion 5.1 highlights three possible factors impacting on linguistic structure: the severity

of the transmission bottleneck, the biases of language learners and the degree of struc-

ture shared by communicatively-relevantsituations. In Section 5.2 an Iterated Learning

Model is presented, based on an extension of the associative network model outlined in

Chapter 3, which is designed to shed light on these issues. In Section 5.3 the impact of

transmission bottleneck and environment structure on emergent communication systems

is investigated. The results outlined in this Section broadly support the conclusions of

other models — a transmission bottleneck leads to a pressure for generalisation, and the
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advantage of compositionality is at a maximum when the environment is structured. In

Section 5.4 I conduct a thorough examination of the learning biases required to support

compositional language in this model. A bias in favour of one-to-one mappings between

elements of meaning and elements of signal is found to be key, in combination with

a preference for exploiting internally-compositional representations. Similar biases are

present in several other ILMs dealing with the evolution of linguistic structure. Finally,

in Section 5.6, I argue that human language learners are also characterised by this type

of bias.

5.1 Models of the cultural evolution of linguistic structure

In Chapter 2, Section 2.3.6, I outlined models by Kirby (Kirby 2002) and Batali (Batali

2002) which demonstrated that compositional and recursive syntax can emerge from

holistic, non-recursive communication through purely cultural processes. Both authors

attribute this emergent linguistic structure to the bottleneck on cultural transmission,

which forces language to be generalisable.

Armed with this basic result, we might ask two further questions. Firstly, is the trans-

mission bottleneck alone sufficient to lead to the emergence of compositional language,

or are there some particular learner biases which must also be in place? Secondly, how

do changes in the severity of the bottleneck impact on the structure of the evolving lan-

guages? In Sections 5.1.1 and 5.1.2 below I present other Expression/Induction models

which shed some light on these two issues. Finally, in Section 5.1.3 I describe a model

by Brighton which introduces another factor which impacts on the cultural evolution of

compositionality — the structure of the meaning space.

5.1.1 Varying the learner model

No direct within-model manipulation of learner biases have been carried out. However,

a cross-model comparison yields some insight into the types of learning biases required

to support the cultural evolution of linguistic structure. Kirby and Batali’s initial findings

have been replicated both with connectionist and symbolic models of learners.

Kirby & Hurford (2002) present an ILM based around a feedforward neural network

model. Their network maps from input signals to output meanings. Meanings and sig-

nals are modelled by binary patterns of activation over output and input nodes in the

network. Individuals observe meaning-signal pairs and, based on this observed produc-

tion behaviour, acquire their reception competence, which in turn determines their own
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production competence. This is therefore the classic obverter neural network paradigm.

Production and reception in the network proceed by processes which are essentially iden-

tical to those described for obverter networks in Chapter 3.

Kirby & Hurford report that, given a certain level of bottleneck on cultural transmission

(as discussed in the next Section), perfectly compositional systems emerge, where the

value of a particular bit in the meaning is expressed by the value of a particular bit of the

signal. Their results support the earlier finding that a bottleneck on cultural transmission

leads to the emergence of a compositional mapping between meanings and signals, and

demonstrate that this phenomenon is not specific to the symbolic models used by Kirby

and Batali.

Hare & Elman (1995) also use a feedforward network model of a learner in an early ILM

dealing with morphological change. However, Hare & Elman’s network follows the imi-

tator architecture, and as discussed in Chapter 3, Section 3.5.3, this network architecture,

with the associated many-to-one bias, probably leads to theloss of linguistic structure.

The comparison of this result with that of Kirby & Hurford (2002) demonstrates that the

differences in the learning biases associated with the obverter and imitator networks may

be significant when considering the cultural evolution of linguistic structure.

Hurford (2000) describes a symbolic model of a learner which is based on Kirby’s (2002)

context free grammar-inducing agent, but has a rather stronger bias towards composi-

tionality. The main difference between Kirby’s model and Hurford’s is that, in the latter,

structural generalisations can be formed on the basis ofsingle exposures to structured

meaning signal pairs. In Kirby’s model, several such exposures are required. Hurford’s

results support Kirby’s findings on the impact of the transmission bottleneck on linguistic

structure. This is perhaps not surprising, given the strengthening of the agents’ induc-

tive bias. However, Hurford also experimentally varies the frequency with which agents

apply their strong inductive bias — rather than making structural generalisations with

every observation, learners in the modified experiment make such generalisations only

25% of the time, with most learning episodes simply involving memorisation. Under

these circumstances, Hurford finds that the population’s language, based on an analysis

of produced meaning-signal pairs, appears to be completely compositional. However,

examination of the agents’ internal rule systems reveals that individual agents are in fact

producing utterances in a partially compositional, partially holistic fashion. While this

type of experimental variation of learning bias is desirable, it is not clear that the infre-

quent application of a strong, appropriate bias is the same as the constant application of

a weak or inappropriate bias.
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5.1.2 Varying the transmission bottleneck

Kirby & Hurford (2002) use their obverter network ILM to investigate the impact of

various severities of transmission bottleneck. When the bottleneck is very severe (20

exposures to utterances produced for randomly selected meanings from the space of 256

possible meanings) no stable systems emerge. When there is virtually no bottleneck

(2000 exposures) stable holistic vocabularies emerge. However, when the bottleneck is

at some intermediate level (50 exposures) perfectly compositional systems emerge. The

severity of transmission bottleneck clearly plays a role in shaping the emergent linguistic

system in this model.

Both Kirby (2001) (using a model of a learner similar to that described in Kirby (2002))

and Hurford (2000) (discussed above) present results which indirectly indicate the ef-

fects of bottleneck severity on linguistic evolution. In both these models, certain mean-

ings occur with disproportionately high frequency. Variation in frequency of particular

meanings is equivalent to varying the bottleneck on the cultural transmission of different

meaning-signal pairs. Given a fixed number of exposures, assuming uniform frequency

distributions over meanings, we can calculate the probability of a learner observing a par-

ticular meaning-signal pair, with this probability being equal for all meaning-form pairs.

However, if one meaning is disproportionately frequent then learners are more likely to

observe an utterance being produced for that meaning — the frequent meaning is more

likely to pass through the bottleneck than the less frequent meanings. Kirby (2001) and

Hurford (2000) both report that more frequent meanings are more likely to be expressed

in a non-compositional manner. This suggests that we should expect an increase in bot-

tleneck size to lead to a reduced pressure for compositionality.

Finally, Brighton (2002) presents results for several levels of bottleneck severity. I will

discuss his results in the next Section.

5.1.3 Varying the structure of the meaning space

A recent paper by Henry Brighton (Brighton 2002) addresses the impact of transmission

bottleneck and meaning space structure on the relative stability of holistic and compo-

sitional language. Brighton adopts a mathematical modelling approach, and restricts

himself to examiningstability, rather than a full-blown emergence model.

Brighton models meanings as points in anF -dimensional space where each dimension

hasV discrete values.F andV therefore define the structure of a meaning space — high

F andV give a highly structured meaning space, with the possibility of a large number of
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fine-grained semantic distinctions, whereas lowF andV give a meaning space capable

of only a few distinctions.

Brighton compares the stability of perfectly compositional and completely holistic com-

munication systems over a single generation of cultural transmission. This allows us

to predict the likely outcome of a multi-iteration ILM — over cultural time, highly sta-

ble systems will persist whereas unstable systems will disappear or change radically.

Brighton varies both the structure of the meaning space and the severity of the trans-

mission bottleneck, to investigate how these factors impact on the relative stability of

compositional and holistic language.

Brighton assumes the strongest possible capacity to generalise. A learner faced with a

completely holistic language cannot make any generalisations — by definition, in a holis-

tic language there is no way to reconstruct a signal which you have not seen paired with

a meaning, due to the arbitrary associations between meanings and signals. A learner

of a holistic language simply has to memorise observed meaning-signal mappings. In

contrast, a learner confronted with a perfectly compositionalcan generalise, due to the

structure in the system of meaning-signal mappings. Brighton assumes that a learner who

has observed some subset of a perfectly compositional language will be able to express a

meaning if it has observed all the feature values that make up that meaning, paired with

signal substrings — in other words, if they know how to express each part of the meaning

individually, they know how to express the whole meaning in a compositional manner.

If an individual (who has either memorised some portion of a holistic language or learned

from some subset of a compositional language) is called upon to express a meaning

they have not observed being expressed and cannot generalise to, they have two options.

Firstly, they could simply not express. Alternatively, they could produce some random

signal. In either case, any association between meaning and signal that was present in

the previous individual’s hypothesis will be lost — part of the meaning-signal mapping

will change. A shortfall in expressivity therefore results in instability over cultural time.

Brighton uses mathematical techniques to compare relative expressivity (and therefore

relative stability) of a learner exposed to some subset of a holistic or compositional lan-

guage. Where these two languages have equal stability we should expect them to emerge

with equal frequency over cultural time. When compositional languages are more stable

than holistic languages we should expect them to emerge more frequently, and persist for

longer, than holistic languages, and vice versa.

Brighton reports two main results:
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1. The stability advantage of compositional language is at a maximum when learners

only observe a small subset of the language of their cultural parents. Holistic lan-

guages will not persist over time when the bottleneck on cultural transmission is

tight. In contrast, compositional languages are generalisable, due to their structure,

and remain relatively stable even when a learner only observes a small subset of

the language of the previous generation.

2. A large stability advantage for compositional language only occurs when the mean-

ing space exhibits a certain degree of structure, suggesting that structure in the

conceptual space of language learners is a requirement for the evolution of compo-

sitionality. In such meaning spaces, distinct meanings tend to share feature values.

A compositional system in such a meaning space will be highly generalisable —

the signal associated with a meaning can be deduced from observation of other

meanings paired with signals, due to the shared feature values. However, if the

meaning space is too highly structured the compositional language has little stabil-

ity advantage, as few distinct meanings will share feature values and the advantage

of generalisation is lost.

This first result is a verification of the results reported by Kirby, Batali and others, out-

lined in the previous Section. The second result is a novel one, and indicates a possible

precondition for the cultural evolution of compositionality.

5.2 An Iterated Learning Model

Where are we now, based on the review? We have seen that learning bias, bottleneck, and

meaning-space structure can all impact on the cultural evolution of compositionality. The

ILM outlined in this Section is an extension of the associative network ILM described in

Chapter 3 and is designed to allow investigation into the importance and interaction of

these three factors. This ILM is also described in Smithet al. (forthcoming) and Smith

et al. (submitted).

5.2.1 Languages and communication

The model of a structured language is based on the model of unstructured communica-

tion systems outlined in Chapter 3, Section 3.2. A languageL consists of a production

functionp (m), mapping from meaningsm to signalss, and a reception functionr (s),

mapping from signalss to meaningsm. m ands are selected such thatm 2 M and

s 2 S whereM =
n
m1; m2 : : :mjMj

o
andS =

n
s1; s2 : : : sjSj

o
.
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In the model of unstructured communication systems eachm 2 M and eachs 2 S

is a distinct atomic unit. In the model of structured languages, eachm 2 M is a vector

drawn from anF -dimensional space, where each dimension hasV possible values. More

formally,F andV define a meaning-spaceM:

M = f(f1 f2 : : : fF ) : 1 � fi � V and1 � i � Fg

We can therefore define a distance measure between two meaningsmi andmj,HD (mi; mj).

This is simply the Hamming distance between the two meanings, the number of features

for whichmi andmj have different values.

In the simulations outlined in Chapters 3 and 4, the set of meanings agents were required

to produce utterances for was equivalent to the meaning spaceM. However, this need

not be the case. I will introduce a new term, theenvironment, E , appealing to the notion

that the agents’ external environment provides the situations which they are required to

produce signals for. The meanings inE constitute asubset of M.

Each signals 2 S is a string of characters of length 1 tol, l � lmax, where the characters

are drawn from the alphabet�. lmax and� define a signal spaceS:

S = fw1w2 : : : wl : wi 2 � and1 � l � lmaxg

We can define a distance measure between two signalssi andsj, LD (si; sj). LD is

the Levenstein (string edit) distance between those two signals and gives the minimum

number of deletions, insertions or substitutions required to converts i into sj.

In previous Chapters I defined measures of communicative accuracy, and measured the

change in communicative accuracy within populations over time. However, in the models

outlined in this chapter I will consider the case where the population at each generation

consists of a single individual. The concept of communication therefore becomes essen-

tially meaningless, given that individuals have no-one to communicate with. It would

be possible to measure inter-generational communicative accuracy by similar techniques

to those used to measure intra-population communicative accuracy in previous Chapters.

However, I will focus instead on the evolution of linguistic structure, and postpone the

consideration of communication until Chapter 6, where the model outlined in this Chap-

ter is extended to deal with larger populations.
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5.2.2 Communicative agents

Communicative agents in the model must be capable of representing such communication

systems, modelling production and reception functions of the type outlined above and

modifying their behaviour based on observations of systems of the type outlined above.

The associative network model outlined in Chapter 3 is used as a basis for the model

of a communicative agent. The basic associative network model is altered to allow the

manipulation of structured meanings and signals. The most fundamental changes are in

the processes of production and reception, while the process of learning remains largely

unchanged.

5.2.2.1 Representation

Agents are modelled using networks consisting of two sets of nodesNM andNS and

a set of weighted bidirectional connectionsW, which connect every node inNM with

every node inNS.

What do these nodes represent? In the associative network outlined in Chapter 3, mean-

ings and signals are discrete atomic items, therefore each node represented a particular

meaning or signal. However, in the case of structured languages each distinct meaning

or signal has structure, some of which may be shared with other meanings or signals.

In order to represent systems of this type, it is necessary to introduce two new pieces of

terminology — the notion ofcomponents of meanings and signals, andanalyses of mean-

ings and signals. I will define components now, and postpone the definition of analyses

until the section on production and reception.

As summarised above, each meaning is a vector inF -dimensional space where each

dimension hasV values.Components of meanings are (possibly partially specified) vec-

tors, with each feature of the component either having the same value as the meaning, or

a wildcard. More formally, ifcm is a component of meaningm, then the value of thejth

feature ofcm is:

cm [j] =

8<
: m [j] for specified features

� for unspecified features

where� represents a wildcard. Similarly, components of signals of lengthl are (possibly

partially specified) strings of lengthl. I impose the additional constraint that a component

must have a minimum of one specified position. For example, the components of the

meaning represented by the vector(1 2) are(1 2), (1 �) and(� 2), but not(1 3) (value

of feature 2 doesn’t match) or(� �) (no specified features). Similarly, the components of
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Figure 5.1:A network whereF = V = 2, lmax = 2, � = fa; bg. Large filled circles represent
nodes with activation of 1, large empty circles represent nodes with activation of 0. The pattern of
activation overNM therefore represents the meaning components(2 1), (2 �) and(� 1), which
all happen to be components of the meaning(2 1). The pattern of activation overNS represents
the signal componentsa, bb andb�.

the signal represented by the stringbd arebd, b� and�d, but note� (first character doesn’t

match),�� (no specified characters) ora (not of correct length).

Each nodeMi in NM represents a component of a meaning, and there is a single node

in NM for each component of every possible meaning. Similarly, each nodeSi in NS

represents a component of a signal and there is a single node inNS for each component

of every possible signal. In order to represent the meaning componentcm the activation,

aMcm , of nodeMcm is set to one. In order to represent the signal componentcs, aScs is

set to 1. This representational scheme is illustrated in Figure 5.1. Note that, unlike in the

associative network model outlined in Chapter 3, there is no restriction that only a single

node inNM andNS can be active.

5.2.2.2 Learning

During a learning event, a learner observes a meaning-signal pairhm; si. The activations

of the nodes corresponding to all possible components ofm and all possible components

of s are set to 1. The activations of all other nodes are set to 0. The weights of the
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connections inW are adjusted according to some weight-update ruleW where, as before,

W is specified as a 4-tuple(� � 
 Æ), where�, �, 
 andÆ take integer values in the range

[�1; 1]. The storage process is illustrated in Figure 5.2.

5.2.2.3 Production and reception

An analysis of a meaning or signal is an ordered set of components which fully specifies

that meaning or signal. More formally, an analysis of a meaningm is a set of components

fc1m; c
2

m; : : : c
n
mg that satisfies two conditions:

1. If cim [j] = �, ckm [j] 6= � for some choice ofk 6= i

2. If cim [j] 6= �, ckm [j] = � for any choice ofk 6= i

The first condition states that an analysis may not consist of a set of components which

all leave a particular feature unspecified — an analysis fully specifies a meaning. The

second states that an analysis may not consist of a set of components where more than

one component specifies the value of a particular feature — analyses do not contain

redundant components. Valid analyses of signals are similarly defined.

During the process of producing utterances, agents are prompted with a meaning and

required to produce a meaning-signal pair. Production proceeds via a winner-take-all

process. In order to retrieve a signalsi 2 S based on an input meaningmi 2 M

every possible signalsj 2 S is evaluated with respect tomi. For each of these possible

meaning-signal pairshmi; sji, every possible analysis ofmi is evaluated with respect to

every possible analysis ofsj. The evaluation of a meaning analysis-signal analysis pair

yields a scoreg. The meaning-signal pair which yields the analysis pair with the highest

g is returned as the network’s production for the given meaning. The score for a meaning

analysis (which consists of a set of meaning components) paired with a signal analysis (a

set of signal components) is given by:

g
�n
c1m; c

2

m : : : cnm

o
;
n
c1s; c

2

s : : : c
n
s

o�
=

nX
i=1

!
�
cim

�
� wcim;cis

wheren is the number of components in the analysis of meaning and signal,wcim;cis
gives

the weight of the connection between the nodes representing theith component of the

meaning analysis and theith component of the signal analysis and! (x) is a weight-

ing function which gives the non-wildcard proportion ofx. The production process is

illustrated in Figure 5.3.
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Figure 5.2: Learning of the meaning-signal pair h(2 1) ; bai using the weight-update rule W = (a b c d). In (a), the nodes in NM and

NS have been set to the patterns of activation representing the components of (2 1) and ba. All connections have weight 0. In (b) the result
of the application of the learning process is shown — all connections now have weights of a, b, c or d, depending on the activations of the
nodes they connect.
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Figure 5.3: Evaluation of two meaning analysis-signal analysis pairs, encoded as patterns of activation over NM . In (a) the pair

hf(2 �) ; (� 1)g ; fb�; �agi is evaluated by taking the connection weights wM(2�);Sb� and wM(�1);S�a (highlighted in grey) and calculating g.

g (f(2�) ; (�1)g ; fb�; �ag) = 1. In (b) this process is repeated for the pair hf(2 �) ; (� 1)g ; f�a; b�gi, yielding g (f(2�) ; (�1)g ; f�a; b�g) =

1:5.
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Figure 5.4: Parse trees corresponding to four of the possible 169 analyses pairs of the meaning-
signal pair h(2 1 3) ; baci. (a) gives the parse tree for the analysis pair hf(2 1 3)g ; fbacgi. There
is a single node in the tree, which is labelled with the single component from both meaning and
signal analysis. (b) gives the parse tree for the analysis pair hf(2 � �) ; (� 1 3)g ; fb � c; �a�gi.
The left daughter node is labelled with the 1st component of both analyses, and the right
daughter node is labelled with the 2nd component of both analyses. (c) and (d) give
the parse trees for the analyses pairs hf(2 � �) ; (� 1 �) ; (� � 3)g ; f� � c; �a�; b � �gi and
hf(2 � �) ; (� 1 �) ; (� � 3)g ; f� � c; b � �; �a�gi respectively. These differ in the order of the
second and third components of the signal, which leads to different interpretations of the seman-
tics of string-initial b and medial a.

How is this process to be interpreted? A meaning analysis-signal analysis pair can be

interpreted as a parse tree where each terminal node of the tree is labelled with both a

component of meaning and a component of signal. The ith node of the tree is labelled by

the ith component of the meaning analysis and the ith component of the signal analysis.

This yields the fairly natural interpretation that the ith component of the meaning analysis

is conveyed by the ith component of the signal analysis. This is illustrated in Figure 5.4.

Given this interpretation, we can justify the simplifying assumption implicit in the g mea-

sure above that meaning analysis-signal analysis pairs consist of a meaning analysis and a

signal analysis with the same number of components. We can make a further simplifying

assumption during production and reception that, in the case where two or more meaning

analysis-signal analysis pairs would produce equivalent trees, only one is evaluated. For

example, hf(1 �) ; (� 2)g ; fa�; �bgi and hf(� 2) ; (1 �)g ; f�b; a�; gi produce equivalent

trees, therefore there is no need to evaluate both.

5.2.3 The Iterated Learning Model

In previous Chapters, I presented ILMs with fairly large population sizes (100). Here

we will look at the simplest possible case, where the population consists of a single

individual at any one time. That individual produces some observable behaviour and

then is removed. This observable behaviour is then observed and learned from by a new

individual, and the process iterates.

Initialisation Create a population of one agent using the weight-update rule W and

possessing communication system L.

207



Iteration

1. Generate a set of meaning-signal pairs for the single agent in the population by

applying the network production process to every meaning m 2 E .

2. Remove the current agent.

3. Create a new population consisting of a single agent with connection weights of 0

who uses weight-update rule W .

4. The new agent receives e exposures to the observable behaviour produced by the

preceding agent. During each of these e exposures the new agent observes a sin-

gle meaning-signal pair and updates their connection weights according to the

observed meaning-signal pair and their weight-update rule W .

5. Return to 1.

One key difference should be noted between this ILM and the ILMs outlined in Chapter

3. In previous ILMs each of the e exposures consisted of the observation of the complete

set of meaning-signal pairs produced by a particular agent — if e = 3 then the learner

observes three complete sets of meaning-signal pairs. In this ILM, each of the e exposures

consists of the single observation of a single meaning-signal pair. There is therefore a

potential bottleneck (as defined by Kirby) on cultural transmission — learners are not

guaranteed to make observations of every meaning in the environment, and therefore

may subsequently be required to produce a signal for a meaning which they themselves

have not observed paired with a signal. We can calculate the expected coverage for a

given E and e, c (E ; e) (Equation taken from Brighton (2002)):

c (E ; e) = 1�

 
1�

1

jEj

!e

c (E ; e) gives the expected proportion of the meanings in E that will be observed given

e random selections of meanings from E , and therefore the severity of the bottleneck

on cultural transmission. As e ! 1, c ! 1 and the bottleneck virtually disappears.

However, there will still be a (possibly remote) chance that an individual will be called

upon to produce a meaning for a signal that they themselves have not observed. It is

impossible to remove the bottleneck completely by increasing e. I will therefore replace

step 4 in the iteration algorithm given above with one of two options:

4 (no bottleneck) The new agent receives e = jEj exposures to the observable behaviour

produced by the preceding agent. During each of these exposures the new agent

observes a single meaning-signal pair and updates their connection weights ac-

cording to the observed meaning-signal pair and their weight-update rule W . Each
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m 2 E is selected in turn, therefore the learner observes the full set of observable

behaviour produced by the preceding agent.

4 (bottleneck) The new agent receives e exposures to the observable behaviour pro-

duced by the preceding agent. During each of these exposures the new agent ob-

serves a single, randomly selected, meaning-signal pair and updates their connec-

tion weights according to the observed meaning-signal pair and their weight-update

rule W . The agent will therefore observe approximately jEj �c (E ; e) distinct mean-

ings, paired with their corresponding signals.

5.2.4 Environments

As discussed in Section 5.2.1, a distinction has been made between the meaning space

M and the environment E , the set of meanings for which agents are required to produce

signals. In Brighton’s model, described in Section 5.1, meanings in the environment are

selected at random from the meaning space — E is random subset of M. However,

it is not necessarily the case that meanings in the environment should be selected at

random from the space of possible meanings. I will introduce a notion of environment

structure, in contrast to Brighton’s notion of meaning space structure. In an unstructured

environment, meanings in E are selected at random fromM. In a structured environment,

meanings in the environment are drawn from a hypercube subset of the space of possible

meanings.

In addition to this notion of environment structure, we can define a measure of environ-

ment density. This is simply the proportion of the space of possible meanings which are

contained in E , and can be defined as p (E):

p (E) =
jEj

jMj
=
jEj

V F

Low p corresponds to low density, and high p corresponds to high density.

Figure 5.5 shows three unstructured environments, of various densities. Figure 5.6 shows

three structured environments, of various densities1.
1Recall that values within a feature are unorganised. Therefore, structured environments are not simply

smaller than unstructured environments — each structured environment could be rearranged so as to appear
to more fully fill the meaning space. It is the degree of sharing of feature values which defines environment
structure, not apparent closeness.
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(a) (b) (c) (d)

Figure 5.5: Unstructured environments. F and V define a meaning space M. For F = 3 and
V = 5 the meaning space can be visualised as a cube, as in (a). The three dimensions of the cube
each correspond to the three feature values. The five subdivisions on each dimension correspond
to the five values for each feature. Each point in this cube corresponds to a particular meaning.
(b) is a sparse, unstructured environment (p = 0:096), where the meanings in E are highlighted in
grey. (c) is a medium density, unstructured environment (p = 0:248). (d) is a dense, unstructured
environment (p = 0:504).

(a) (b) (c) (d)

Figure 5.6: Structured environments. (a) is the meaning space. (b) is a sparse, structured en-
vironment (p = 0:096). (c) is a medium density, structured environment (p = 0:248). (d) is a
dense, structured environment (p = 0:504).

5.2.5 Measuring compositionality

In Chapter 1 compositionality, one of the fundamental design features of language, was

defined in fairly loose, impressionistic terms — in a compositional language the meaning

of an expression is a function of the meanings of its parts and the way in which they are

combined. In contrast, in a non-compositional (or holistic) system, the meaning of an

expression is not dependent on the meaning of its parts. In Chapter 2 this impressionistic

definition was applied to the computational models of Kirby and Batali, who demonstrate

that compositional languages can emerge through cultural processes — in the final, stable

emergent systems in these models, the meaning of expressions depends on the meanings

of subparts of those expressions (syntactic subtrees in Kirby’s model, sub-exemplars in

Batali’s model) and the way in which those subparts are combined. I will define two

measures of compositionality here, both drawing on slightly different interpretations of

the informal definition given above.

Compositionality is a property that can be observed in externalized language, without

knowing the language-user internal manipulations which lead to the produced language.

In this sense, a compositional language is a mapping between meanings and signals

210



which preserves neighbourhood relationships — neighbouring meanings will share struc-

ture, and that shared structure in meaning space will map to shared structure in the signal

space. For example, the sentences John walked and Mary walked have parts of an un-

derlying semantic representation in common (the notion of someone having carried out

the act of walking at some point in the past) and will be near one another in semantic

representational space. This shared semantic structure leads to shared signal structure

(the inflected verb walked) — the relationship between the two sentences in semantic

and signal space is preserved by the compositional mapping from meanings to signals.

A holistic language is one which does not preserve such relationships — as the structure

of signals does not reflect the structure of the underlying meaning, shared structure in

meaning space will not necessarily result in shared signal structure.

The external compositionality measure which I describe here captures this notion, and

is based on the measure developed in Brighton (2000) for Euclidean meaning and sig-

nal spaces. The measure of external compositionality is simply the degree of correlation

between the distance between pairs of meanings and the distance between the corre-

sponding pairs of signals. If shared meaning structure leads to shared signal structure

then there will be a positive correlation between the distance between pairs of meanings

and the distance between the corresponding pairs of signals. If shared structure does not

necessarily lead to shared signal structure then there will be no correlation. This mea-

surement will be referred to as external compositionality, or e-compositionality, given

that it refers to the agent-external, observable behaviour resulting from production.

In order to evaluate the e-compositionality of an agent’s communication system, the pro-

duction process is applied to every m 2 E to produce the setO, the observable meaning-

signal pairs produced by that agent. In order to measure the degree of external composi-

tionality we measure the degree to which the distances between all the possible pairs of

meanings correlates with the distances between their associated pairs of signals. More

formally, we first take all possible pairs of meanings hmi; mj 6=ii, where mi 2 E and

mj 2 E . We then find the signals these meanings map to in the set of observable meaning-

signal pairs O, hsi; sji. This will give us a set of n meaning-meaning pairs and a set of n

signal-signal pairs. Let �mn = HD (mi; mj) be the Hamming distance between the two

meanings in the nth pair of meanings and �sn = LD (si; sj) be the Levenstein distance

between the nth pair of signals. Furthermore, let �m =
P

n

i=1
�mn

n
be the average inter-

meaning Hamming distance and �s =
P

n

i=1
�sn

n
be the average inter-signal Levenstein

distance. We can then compute the Pearson correlation coefficient for the distance pairs

hmn; sni, which gives the e-compositionality of a set of observable behaviour, E (O):
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E (O) =

Pn
i=1

�
�mi ��m

� �
�si ��s

�
s�Pn

i=1

�
�mi ��m

�2Pn
i=1

�
�si ��s

�2�

E (O) � 1 for a compositional system and E (O) � 0 for a holistic system.

The e-compositionality measure makes no reference to the agent-internal representations

which lead to the observable behaviour that an agent produces. This is something of a

shortcoming, as can be illustrated by two simple thought experiments. Firstly, imagine a

speaker of a language, say English, who produces what appear to be entirely grammatical,

normal sentences of English. However, under a suitably sophisticated set of experimen-

tal conditions it is revealed that this speaker of English has in fact simply memorised

hundreds of thousands of unanalysed sentences of English, paired with their meanings,

in a massive lexicon. While from their external behaviour we might conclude that the

meaning of an expression for this speaker was a function of the meaning of its parts,

this would not be the case — for this speaker, complete meanings are stored paired with

complete sentences, and those sentences as a whole stand for the whole meaning. The

imaginary speaker is in fact producing English as a holistic system, with no real, internal

compositional knowledge. It has been suggested (Wray & Perkins 2000) that much of

language used for social interaction is in fact processed in this way. However, it would

be undesirable to say that our imaginary speaker possesses a compositional knowledge of

English, even if their external behaviour appears to comply to a compositional analysis.

As a second thought experiment, imagine a speaker who has a thorough knowledge of

several hundred thousand languages. Each time this individual speaks, they choose a

language from their massive arsenal at random, and produce their utterance in that lan-

guage. Internally, this imaginary speaker is behaving compositionality for each utterance

they produce — just like a native speaker of whichever language they happen to be using,

the meaning of their utterance is a function of the meaning of the parts of that utterance

and the way those parts are combined. However, to an external observer, their language

would appear to be non-compositional — even closely related meanings would be com-

municated by radically different expressions, with no obvious structure-preserving map-

ping between meanings and signals.

Our second measure of compositionality, which I will term internal compositionality,

or i-compositionality, addresses these deficiencies of the e-compositionality measure by
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quantifying the degree to which utterances are constructed by the combination of agent-

internal representations.

During production or reception the set of possible meaning analysis-signal analysis pairs

are evaluated, with the meaning-signal pair which yields the analysis pair with the highest

g being returned as the network’s production or reception behaviour. In order to evaluate

the i-compositionality of an agent’s communication system, the production process is

applied to every m 2 E to produce the set A, the set of meaning analysis-signal analysis

pairs which yield the highest g for each meaning. The i-compositionality of a set of

meaning analysis-signal analysis pairs A, I (A), is:

I (A) =
k=jAjX
k=1

1

jAj
i (Ak)

where i (Ak) is the i-compositionality of the kth meaning analysis-signal analysis pair

ham; asi, and is given by:

i (ham; asi) =
jamj � 1

min (lmax; F )� 1

i (ham; asi) = 0 when the meaning analysis and signal analysis consist of a single com-

ponent, and i (ham; asi) = 1 where each analysis consists of the maximum number of

components, which is constrained by the smaller of the maximum string length and the

dimensionality of the meaning space. I (A) = 0 for an i-holistic mapping, and 1 for a

perfectly i-compositional language.

5.3 The impact of transmission bottleneck and environment structure

I will begin by presenting results for an ILM where every agent uses the weight-update

rule W = (1 � 1 � 1 0). The agents in the initial generation of each ILM have con-

nection weights of 0, and therefore use the maximum entropy system where every mean-

ing analysis-signal analysis pair occurs with equal probability — the initial language

L is random. The meaning space (F = 3 and V = 5) and six environments illus-

trated in Figures 5.5 and 5.6 were used. The signal space is given by lmax = 3, � =

fa; b; c; d; e; f; g; h; i; jg.

5.3.1 Linguistic evolution in the absence of a bottleneck

Runs of the ILM were carried out, using the no-bottleneck variant of step 4 — each

individual observes the full set of observable behaviour produced by the preceding agent.
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Figure 5.7: I-compositionality of initial and final, stable systems in sparse environments, when
there is no bottleneck on cultural transmission. The initial systems are partially i-compositional.
The final systems are less i-compositional, although highly i-compositional systems (circled) do
occur with very low frequency when the environment is structured.

1000 runs were carried out for each of the six environments. Each run was allowed to

proceed to a stable state, where parent and child produce identical observable behaviour.

At this point, in the absence of a bottleneck on cultural transmission, further change is

impossible. Figures 5.7 and 5.8 give the distributions of systems with respect to I (A) and

E (O), for the 1000 runs of the ILM with the sparse unstructured and sparse structured

environments2.

In Figure 5.7, values of I (Ainitial) are distributed around 0.6, while values for I (Afinal)

are typically lower. This is due to the random behaviour of the initial agents — each

meaning analysis-signal analysis pair occurs with equal probability, and given that there

are more multi-component analyses pairs than single-component analyses pairs, the ini-

tial random behaviour scores highly in terms of internal compositionality. The final stable

systems tend to have lower internal compositionality. In structured environments, the i-

compositionality of the final systems tends to be around 0. In unstructured environments,
2The plotting style requires some justification. The measures of i-compositionality and e-

compositionality are real numbers. We are interested in the frequency of systems exhibiting a given degree
of compositionality. Such information is typically conveyed using a histogram or frequency polygon. I
have chosen to use a histogram, given the problems with edge effects arising from using a frequency poly-
gon. Bins of width 0.05 are used for all results plotted here. The y-axis gives relative, rather than absolute
frequency — the relative frequency is simply absolute frequency divided by the absolute frequency of the
most frequent value. The most frequent value therefore has a relative frequency of 1.
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Figure 5.8: E-compositionality of initial and final, stable systems in sparse environments, when
there is no bottleneck on transmission. The initial systems have low e-compositionality. The final
systems are also of low or medium e-compositionality. Highly e-compositional systems (circled)
occur infrequently, and only when the environment is structured.

final i-compositionality tends to be somewhat higher. Highly i-compositional systems

occur very infrequently and only where the environment is structured.

In Figure 5.8, values of E (Oinitial) are distributed around 0, indicating that the initial,

random systems are not highly e-compositional. As with the internal compositionality

measure, the final stable systems tend not to be highly compositional according to the

external measure, with unstructured environments leading to a slightly higher level of

compositionality. Highly e-compositional systems occurring infrequently and only when

the environment is structured.

The i-compositionality measure has the somewhat undesirable property of treating the

random initial behaviour as partially compositional. However, for the stable states the

internal and external measures are equivalent — for the data in Figures 5.7 and 5.8,

there is a high degree of correlation between I (Afinal) and E (Ofinal) (r = 0:842,

p < 0:001). This reflects the fact that agents produce an e-compositional language in an

i-compositional manner, and similarly produce an e-holistic system in an i-holistic man-

ner — i-compositional internal representation leads to e-compositional language. For the

remaining results I will focus on the external compositionality measure, and unless other-

wise indicated, “compositional” will mean “e-compositional” . The internal measure will

be returned to below in Section 5.4.
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Figure 5.9: E-compositionality of initial and final, stable systems in medium density environ-
ments, when there is no bottleneck on transmission. The initial systems and the vast majority of
the final systems have low e-compositionality. Partially e-compositional final systems (circled)
occur with very low frequency, and only when the environment is unstructured.

Figures 5.9 and 5.10 give the distributions of systems with respect to E (O), for 1000

runs of the ILM with the medium and dense environments.

Comparison of Figures 5.8, 5.9 and 5.10 shows that, as environment density increases

the frequency of final non-compositional systems increases. In the sparse environments,

partially compositional systems do occur, and are more frequent in the unstructured en-

vironment. Highly compositional systems occur with very low frequency in the sparse,

structured environment. Partially e-compositional systems occur with very low frequency

in the medium, unstructured environment. In the dense environments all systems are non-

compositional, regardless of the degree of environment structure.

These results suggest three questions. Firstly, why are highly compositional systems so

infrequent? Previous results (e.g. Kirby (2002), Brighton (2002)) lead us to expect that,

in the absence of a bottleneck on cultural transmission, compositional and holistic sys-

tems will be equally stable. Given that the initial random systems are holistic we would

expect these systems to remain stable over time. This is what happens in dense environ-

ments, or medium density, structured environments. The emergence of partially or highly

compositional systems in low density environments, or medium density unstructured en-

vironments, is therefore somewhat surprising, which leads us on to the second and third

questions.
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Figure 5.10: E-compositionality of initial and final, stable systems in dense environments,
when there is no bottleneck on transmission. Both the initial and final systems have low e-
compositionality.

Secondly, why does environment density impact on the compositionality of the emergent

systems? Figure 5.11 plots the values of E (Oinitial) against E (Ofinal) for the simulation

runs in the sparse, structured environment. As can be seen from the Figure, the runs can

be split into three groups:

� runs where E (Oinitial) = E (Ofinal) (group (a) in the Figure).

� runs where E (Oinitial) 6= E (Ofinal), where E (Ofinal) is below 0.9 (group (b) in

the Figure).

� runs where E (Oinitial) 6= E (Ofinal), where E (Ofinal) is close to 1 (group (c) in

the Figure).

All environments exhibit runs falling into groups (a) and (b). Only when the environment

is sparse and structured do group (c) points occur, representing runs which converge on

highly compositional languages. Is E (Ofinal) related to E (Oinitial)? Table 5.1 gives the

mean and standard deviations of the initial values of E (Oinitial), categorised according

to which group they fall into.

As can be seen from the first column of the Table, runs in all environments have a mean

value of E (Oinitial) of approximately 0. However, these initial values are much more

tightly distributed around the mean in the more densely filled environments. The second

column gives the mean E (Oinitial) for simulation runs where E (Oinitial) = E (Ofinal).
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Figure 5.11: Initial e-compositionality against final e-compositionality for runs in the sparse
structured environment. Each point represents a single run. The runs can be separated into three
groups. Points labelled as (a) have the same initial and final e-compositionality. For points la-
belled as (b) the e-compositionality of the initial and final systems is different, but the final system
is not highly e-compositional. Points labelled (c) represent runs where the final language is highly
e-compositional.

Initial e-compositionality by group
Environment all a b c

sp, us � = 0:0013, � = 0:1246 � = �0:0512 � = 0:0160 NA
sp, s � = �0:0029, � = 0:1246 � = �0:0136 � = 0:0536 � = 0:1603
m, us � = �0:0004, � = 0:0470 � = �0:0047 � = 0:0209 NA
m, s � = �0:0011, � = 0:0457 � = �0:0017 � = 0:0306 NA
d, us � = 0:0002, � = 0:0221 � = 0:0002 � = �0:0009 NA
d, s � = �0:0011, � = 0:0232 � = �0:0010 � = �0:0040 NA

Table 5.1: Sensitivity to initial conditions. The table gives the mean (�) and standard deviation
(�) of the e-compositionality of the initial systems in the various environments (sp = sparse, m =
medium, d = dense, us = unstructured, s = structured), broken down by the three groups identified
in Figure 5.11. Standard deviation is given once only, as � for each subgroup is approximately the
same as that for all groups combined. The mean for group c points is higher than that for group b
points, which is generally higher than that for group a points. As environment density increases,
the initial values are clustered more tightly around the mean.
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These are somewhat lower than the overall mean, and are lower than the meanE (Oinitial)

for simulation runs which move away from initial value (excluding the values for the

dense environments, which buck the overall trend). Also, for the group b runs in sparse

and medium environments, the mean value of E (Oinitial) is lower for unstructured envi-

ronments than for structured environments. Finally, the mean E (Oinitial) for simulation

runs which converge on highly compositional languages is higher still.

These results suggest that there is a degree of sensitivity to the compositionality of the ini-

tial, random system. Where this initial mapping exhibits compositional tendencies, yield-

ing E (Oinitial) above the mean, there is an increased likelihood of the system moving,

over iterated learning events, towards more compositional languages. The compositional

tendencies of the initial system spread to other parts of the system over time, resulting

in an increase in compositionality. However, this progression is not guaranteed — not

all simulation runs where E (Oinitial) is above the mean eventually converge on more

compositional systems. For the more densely-filled environments, partially or highly

compositional systems emerge infrequently due to the fact that the initial systems tend

to be clustered more tightly around the non-compositional mean. When the environment

contains few meanings the initial system may, by chance, exhibit some compositional

tendencies. However, when the environment contains a large number of meanings such

tendencies are likely to be drowned out by the majority non-compositional mapping.

Thirdly, why does environment structure impact on the e-compositionality of systems at

the lower densities? This is related to the previous question. At lower densities, as dis-

cussed above, compositional tendencies in the initial system spread, over time, to other

parts of the system. In structured environments, distinct meanings tend to have feature

values in common with a large number of other meanings. In unstructured environments

distinct meanings have feature values in common with few other meanings. If the initial

random system has a tendency to express a given feature value with a certain substring

then this can spread to cover all meanings involving that feature value — the system

becomes consistent with respect to that feature value, which can have knock-on conse-

quences for other values at that feature and other features. In structured environments the

potential for spread of the substring associated with a particular feature value is wider

than is the case in unstructured environments, given that more meanings will share that

feature value. Any initial compositional tendency will therefore spread more widely in

structured environments, with more possible follow-on consequences, resulting in the

more frequent emergence of highly compositional languages.

However, while shared feature values allow the possibility of the spread of composition-

ality, they also inhibit it — in a structured environment, any compositional tendency in
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the initial random mapping has to cover a large number of meanings which share feature

values. If only some of these meanings share a character for a particular feature value,

then the other meanings, which do not share the character, are likely to outweigh the

slight compositional tendency. In contrast, in unstructured environments fewer mean-

ings share feature values, therefore the initial random system has to be less ‘ lucky’ in

the assignment of characters to feature values. This is reflected in the fact that the mean

E (Oinitial) has to be higher in structured environments before E (Ofinal) moves away

from E (Oinitial), and also in the fact that the average E (Ofinal) in unstructured envi-

ronments is higher (see Figure 5.8). In structured environments, the initial compositional

tendency has to be strong to escape the attraction of the overall non-compositional map-

ping, but once this attraction has been escaped highly compositional systems can emerge.

In contrast, in unstructured environments the attraction of the initial non-compositional

mapping is weaker, due to the reduced degree of feature-value sharing, but the potential

spread of compositionality is reduced.

5.3.2 Linguistic evolution in the presence of a bottleneck

The simulation results outlined in the previous Section show that, in the absence of a bot-

tleneck on cultural transmission, highly compositional languages emerge infrequently.

Their emergence is dependent on the density and structure of the environment, and

there is a degree of sensitivity to the compositionality of the original, random system

of meaning-signal mappings. It is now time to investigate how a transmission bottleneck

impacts on the compositionality of the emergent systems.

To this end, runs of the ILM were carried out, with step 4 of the iteration algorithm

being replaced by the bottleneck condition — each individual observes e meaning-signal

pairs, randomly selected from the set of observable behaviour produced by the preceding

agent. e will be experimentally varied. Selection of a value of e depends on the desired

degree of coverage c (E ; e), but also on the number of distinct feature values included

in the meanings in E and the rate of seeing distinct feature values with respect to the

rate of seeing distinct meanings. For example, in the sparse unstructured environment

(see Figure 5.5 a) there are 12 distinct meanings, and 15 distinct feature values (values

1,2,3,4 and 5 for each feature). In the case where e < 12 in this environment it is

therefore impossible for a learner to observe all possible feature values paired with a

(sub)signal. This will have consequences for the stability of the communication systems

through the bottleneck. Consequently, as a simplifying rule of thumb we will not consider

the case where e < 12. This rules out simulation runs in the sparse environments where

c (E ; e) < 0:65.
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100 runs of the ILM were carried out for:

� the sparse unstructured and structured environments given in Figures 5.5 (b) and

5.6 (b) with c = 0:8 (e = 19).

� the medium unstructured and structured environments in Figures 5.5 (c) and 5.6 (c)

with c = 0:4 (e = 16), c = 0:6 (e = 28) and c = 0:8 (e = 49).

� the dense unstructured and structured environments in Figures 5.5 (d) and 5.6 (d)

with c = 0:25 (e = 18), c = 0:4 (e = 32), c = 0:6 (e = 57) and c = 0:8 (e = 101)

The distribution of the initial and final systems for these runs in terms of e-compositionality

is given in Figures 5.12–5.19.

When there is a bottleneck on cultural transmission, the compositionality of the emer-

gent languages is far less sensitive to the compositionality of the initial meaning-signal

mappings. Consequently, 100 runs, rather than 1000 runs, were sufficient. While in the

absence of a bottleneck runs were allowed to proceed until a stable state was reached, in

the bottleneck condition runs were terminated after a fixed number of generations (200).

The random selection of meanings from the environment for which to produce utterances

means that, as with any stochastic system, a skewed distribution of meanings could lead

to the loss of structure. The results reported here accurately reflect the behaviour of the

system — allowing the runs to proceed for several hundred more generations gives a sim-

ilar distribution of languages. In other words, the distribution of systems is stable, while

individual languages may oscillate between varying levels of compositionality.

The main result apparent from these Figures is that, in the presence of a bottleneck, highly

compositional languages emerge with high frequency, and emerge most frequently when

the environment is structured. The nuances of this general result will be returned to

below. First, however, the main result must be explained.

Brighton’s (2002) mathematical model predicts that, in the presence of a bottleneck on

cultural transmission, compositional language will be more stable than holistic language.

The results from the computational model bear this out, but also show that it is possible

to move from an initially holistic system to a highly compositional system over time

— compositional languages can emerge from initially holistic communication through

purely cultural processes, provided there is a bottleneck on cultural transmission.

Why are compositional languages so strongly preferred when there is a bottleneck on

transmission? Holistic languages cannot persist in the presence of a bottleneck. The

meaning-signal pairs of a holistic language have to be observed to be reproduced. When
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Figure 5.12: Compositionality of initial and final languages in sparse environments, in the pres-
ence of a bottleneck on cultural transmission (c (E ; e) = 0:8). Highly compositional languages
are highly frequent, and are most frequent when the environment is structured.
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Figure 5.13: Compositionality of initial and final languages in medium density environments,
in the presence of a bottleneck on cultural transmission (c (E ; e) = 0:4). As in Figure 5.12,
highly compositional languages are highly frequent, and are most frequent when the environment
is structured.
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Figure 5.14: Compositionality of initial and final languages in medium density environments,
in the presence of a bottleneck on cultural transmission (c (E ; e) = 0:6). There is less disparity
between unstructured and structured environments.
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Figure 5.15: Compositionality of initial and final languages in medium density environments, in
the presence of a bottleneck on cultural transmission (c (E ; e) = 0:8).
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Figure 5.16: Compositionality of initial and final languages in dense environments, in the pres-
ence of a bottleneck on cultural transmission (c (E ; e) = 0:25). While the majority of final lan-
guages are highly compositional, some partially compositional systems do exist when the envi-
ronment is unstructured.
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Figure 5.17: Compositionality of initial and final languages in dense environments, in the pres-
ence of a bottleneck on cultural transmission (c (E ; e) = 0:4).
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Figure 5.18: Compositionality of initial and final languages in dense environments, in the pres-
ence of a bottleneck on cultural transmission (c (E ; e) = 0:6).
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Figure 5.19: Compositionality of initial and final languages in dense environments, in the pres-
ence of a bottleneck on cultural transmission (c (E ; e) = 0:8).
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a learner only observes a subset of the holistic language of the previous generation then

certain meaning-signal pairs will not be preserved — the learner, when called upon to

produce, will produce some other signal for that meaning, resulting in a change in the

language. In contrast, compositional languages are generalisable, due to their structure,

and remain relatively stable even when the learner observes a small subset of the language

of the previous generation. Over time, language adapts to the pressure to be generalisable.

Eventually, particularly when the environment is structured, the language becomes highly

compositional, highly generalisable and consequently highly stable.

In a structured environment the advantage of compositionality is at a maximum. In such

environments, meanings share feature values with several other meanings. A language

mapping these feature values to a signal substring is highly generalisable. When the en-

vironment is unstructured, meanings share feature values with few or no other meanings.

In the most extreme case, a meaning may have a value for a particular feature which

no other meaning has. The signal associated with that meaning cannot then be deduced

from observations of the signals associated with other meanings, and has to be observed

to be learned. Consequently, compositional language in an unstructured environment is

less stable through the transmission bottleneck. The resultant languages are a compro-

mise between the push towards compositionality introduced by the bottleneck and the

pull back towards randomness resulting from the possibility of not observing a particular

feature value paired with a subsignal.

The severity of transmission bottleneck, c (E ; e), does appear to have an impact on the

compositionality of the emergent languages — for example, comparison of Figure 5.13

with Figures 5.14 and 5.15 suggests that the difference between structured and unstruc-

tured environments is most pronounced when c is low. However, consideration of all

the results taken together suggests that variation in c alone may not explain the observed

patterns of behaviour. The results presented here can be split into two groups on gross

qualitative grounds:

1. Situations where highly compositional systems are highly frequent for both struc-

tured and unstructured environments, with emergent languages in structured en-

vironments tending to be slightly more compositional. This occurs in the medium

density environments for c (E ; e) = 0:6 or 0:8 (Figures 5.14 and 5.15), and in dense

environments for c (E ; e) = 0:4, 0:6 or 0:8 (Figures 5.17–5.19)

2. Situations where highly compositional systems emerge with high frequency in

structured environments, and the emergent systems in unstructured environments

exhibit a range of compositionality, from partial to high. The sparse environment
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runs where c (E ; e) = 0:8 (Figure 5.12) match this description, as do the results for

the medium density environment where c (E ; e) = 0:4 (Figure 5.13) and the dense

environment where c (E ; e) = 0:25 (Figure 5.16).

The general trend is that the difference between structured and unstructured environments

is at a maximum when c (E ; e) is low, and decreases as c (E ; e) increases. In the presence

of any bottleneck on cultural transmission (c < 1), there will be a pressure for composi-

tional language. There is pressure acting on languages to be generalisable from a subset,

discussed above. For high values of c, there will be little difference between structured

and unstructured environments. However, for low c a difference will emerge. When c

is low a learner will only see a small subset of the language of the previous generation.

Provided c is not too low, this is not a problem when the environment is structured —

a learner need only observe a few meanings to get an idea of the substring each feature

value should map to. However, in unstructured environments low c is more of a problem

— some meanings have feature values which are shared with few other meanings and

as a consequence the substrings associated with these feature values in a compositional

language are prone to being lost during transmission. The pressure for compositionality

is counteracted to some extent by randomness reintroduced at each generation to cover

feature values which have not been observed. This results in the emergence of partially

stable, partially compositional systems. When c gets very low this problem begins to af-

fect structured environments too. Eventually, when c gets low enough, no stable language

is possible, regardless of the degree of structure in the environment.

This explanation, based purely on c (E ; e), breaks down when confronted with the re-

sults for sparse environments, with high c (Figure 5.12). While the theory predicts little

difference between the compositionality of the languages in structured and unstructured

environments, the results show a large difference. The importance of environment struc-

ture is greater than the theory predicts for that level of c. The theory also fails somewhat

to account for the results for dense environments with c (E ; e) = 0:25. In this case the

theory predicts a wider disparity between structured and unstructured environments than

observed in the medium density environment where c (E ; e) = 0:4, given the lower value

of c. However, the structure of the environment in fact has slightly less impact.

A more satisfying analysis can be gained by adapting Brighton’s (2002) equations for

calculating the probability of seeing a particular feature value given a particular number

of exposures. After e observations a learner will have accumulated a set of observations

of values for the particular ith feature fi. Let us call this set of observations Ofi . Brighton
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gives the probability of a particular value v being in this set of observations, Pr (v 2 Ofi),

as:

Pr (v 2 Ofi) =
NX
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where there are N meanings (N = jEj) and V distinct values for the feature fi. x in this

equation represents the number of objects labelled with v, the feature value of interest.

The first two terms of the product
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give the probability of seeing at least 1 occurrence of v, given that there are x objects

labelled with v. The remainder of the equation simply sums over the probabilities of

labelling x out of N objects with v. This part of the equation is not required for our

analysis, given that the number of objects labelled with a particular feature vale is given

by the predefined environment. We can therefore simplify Brighton’s equation to:

Pr (v 2 Ofi) =
x

N
�

 
eX

�=1

�
N � x

N

���1!

where x is simply the number of meanings in the environment E which have value v for

feature fi. We can then calculate the probability of being able to express a particular

meaning m = (v1 v2 v3), where v1 is the value for f1 and so on, Pr (mjOf1; Of2; Of3):

Pr (mjOf1 ; Of2; Of3) = Pr (v1 2 Of1) � Pr (v2 2 Of2) � Pr (v3 2 Of3)

In other words, the probability of being able to express a given meaning composition-

ally is the product of the probabilities of having seen each feature value paired with a

subsignal. We can then average Pr (mjOf1 ; Of2; Of3) for all m 2 E , to give the average

probability of being able to produce an utterance compositionally. Table 5.2 compares

the values of Pr (m) (the value of Pr (mjOf1; Of2; Of3), averaged over all meanings in

E) for structured and unstructured environments, for various values of e.

The difference between values of Pr (m) for structured and unstructured environments

provide a useful measure of the relative stability advantage of compositional language in

structured environments over compositional language in unstructured environments. This
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Density e c Difference

sparse 19 0:8 6� 10�2

medium 16 0:4 9� 10�2

medium 28 0.6 9� 10�3

medium 49 0:8 2� 10�4

dense 18 0:25 4� 10�2

dense 32 0:4 2� 10�3

dense 57 0:6 1� 10�5

dense 101 0:8 2� 10�9

Table 5.2: Comparison of Pr (m) for structured and unstructured environments of various den-
sities, for various values of e. The Difference column gives Pr (m) for structured environments
minus Pr (m) for unstructured environments, and is a measure of the relative stability advantage
of compositional systems in the structured environment — the greater the difference, the greater
the stability advantage of compositionality in structured environments.

size of this value corresponds fairly well to the differences between the final systems in

structured and unstructured environments observable in Figures 5.12–5.19. For example,

the observable difference is greatest in Figure 5.12, followed by Figure 5.13, and these

two settings of environment density and e yield the largest and second-largest differences

in the Table.

5.3.3 Summary

To summarise the results presented so far, it has been shown that environment density,

environment structure, and bottleneck impact on the cultural evolution of compositional-

ity. In the absence of a bottleneck, highly compositional language is unlikely to evolve.

Highly compositional languages only evolve in structured environments, due to the in-

creased potential for spread of compositionality arising from the large number of shared

feature values between meanings. The emergence of such systems is highly sensitive to

the initial, random assignment of signals to meanings.

In the presence of a bottleneck on cultural transmission, highly compositional languages

reliably emerge from initially random, holistic mappings, in both structured and unstruc-

tured environments. This is due to the pressure on the evolving languages to be generalis-

able, introduced by the transmission bottleneck. Compositional languages emerge most

frequently in structured environments, as generalisations in such environments have a

higher yield than in unstructured environments. Finally, the advantage of compositional

language in structured environments over compositional language in unstructured envi-

ronments can be quantified by applying Brighton’s equations for the probability of ob-

serving feature values given a certain number of exposures. In structured environments,
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the high degree of shared structure between meanings increases the probability that the

subsignals paired with each feature value will have been seen after a small number of

observations.

5.4 Exploring the impact of learning bias

In the previous section the impact of environment structure and bottleneck on the cultural

evolution of compositional language was investigated. The learning bias of the associa-

tive network was kept constant for all these experiments — all results reported were for

the case where every network used the weight-update rule (1 � 1 � 1 0). In this Sec-

tion, I will investigate the impact of using different weight-update rules, with different

associated learning biases, while keeping the severity of the transmission bottleneck and

the degree of environment density and structure constant.

The investigations outlined in this Section will roughly follow the format of the experi-

ments outlined in Chapter 3, Section 3.4 — the ability of networks with various weight-

update rules to acquire, maintain and construct an optimal system will be explored in

Sections 5.4.1–5.4.3. In Section 5.5 I will describe the key properties of the learning bias

required to acquire, maintain and construct optimal compositional languages.

5.4.1 Acquisition of a compositional system

The first issue is to ascertain whether individual agents, in isolation, can acquire a per-

fectly compositional, unambiguous communication system. Such a language, L, was

constructed according to the feature value–character mapping given in Table 5.3. As

in the previous section, F = 3, V = 5, lmax = 3 and � = fa; b; c; d; e; f; g; h; i; jg.

The medium density, structured environment illustrated in Figure 5.6 (c) provided the set

of meanings E . With respect to this environment (or indeed any other), L is perfectly

e-compositional — E (L) = 1.

Agents using each of the 81 possible weight-update rules (�; �; 
; Æ 2 [�1; 1]) were then

trained on L, by storing each meaning-signal pair in L in their network. The agents were

then evaluated to see if they a) successfully acquired the meaning-signal mapping in L

and b) would reproduce L in an i-compositional or i-holistic manner.

Agents were judged to have acquired the meaning-signal mapping if, for every hmi; sji 2

L, both:
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FeatureValue
1 2 3

1 j e h
2 h i f
3 a c e
4 b a d
5 e d b

Table 5.3: A feature value lookup table for a compositional language. The signal characters are
concatenated in the order of the feature values — for example, (1 1 1) would be expressed as jeh.

� Production of the signal associated with mi always3 resulted in sj being produced,

i.e. hmi; sji can be reproduced in production.

� and reception of sj always resulted in the interpretation mi, i.e. hmi; sji can be

reproduced in reception, meaning that the agent would communicate optimally

with itself or another agent using the same weight-update rule exposed to L.

18 of the 81 possible rules succeeded in the acquisition task, with the remaining 63

failing to reproduce the observed system. These 18 successful rules were classified as

[+maintainer, �constructor]4 in the simple associative network tests outlined in Chapter

3.

Note that there is both a degree of continuity with the previous classification — the

same 18 rules are separated out in both classifications — and a discontinuity — 31 rules

were able to acquire unambiguous systems in the previous classification, whereas in the

new classification only 18 can. Rules which were [+learner, �maintainer] in the earlier

categorisation5 are incapable of acquiring L. This is due to the fact that the learning

procedure for the structured communication systems requires that learners be able to

handle multiple active input nodes when learning — all components of a meaning and

signal are presented simultaneously to the learner. As discussed in Chapter 3, [+learner,

�maintainer] weight-update rules are biased in favour of many-to-one mappings, and

this bias, given the multiple active units present in each exposure, leads to an inability to

acquire L.
3As before, the term “always” is reduced to “ for every one of 1000 trials” .
4As in Chapter 4, I will avoid where possible specifying redundant features of weight-update rules —

[+maintainer] implies [+learner].
5Bear in mind that the terms +learner, +maintainer and so on are based on the classification given in

Chapter 3, and are shorthands for a set of restrictions on the relationship between the values of �, �, 

and Æ in the weight-update rules. While the mnemonic of +learner was quite transparent in Chapter 3,
it is less so here — certain weight-update rules which fit the pattern glossed as +learner cannot learn a
compositional system. However, these terms will be preserved, for reasons which will become obvious.
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Of those rules which were classified as capable of acquiring L, a further evaluation was

made as to whether they reproduced their acquired mapping in an i-compositional or

non-i-compositional manner. Agents using the 18 [+maintainer] rules were trained on

L, as before. They were then called upon to produce for each m 2 E to give a set of

meaning-signal pairs, with an associated underlying set of winning meaning analysis–

signal analysis pairs Ap. Similarly, they were prompted with each s used in L, to yield

a set of meaning analysis-signal analysis pairs Ar. Ap and Ar were evaluated according

to the internal compositionality measure given in Section 5.2.5. Weight-update rules

which yielded sets of analysis pairs where I (Ap) = I (Ar) = 1 were classified as [+ic-

preserver], otherwise they were classified as [�ic-preserver].

7 weight-update rules were classified as [+ic-preserver], of which 2 were classified as

[+constructor] and 5 were classified as [+maintainer,�constructor] in the previous clas-

sification. The remaining 11 rules (7 [+constructor] and 4 [+maintainer,�constructor])

were classified as [�ic-preserver].

5.4.2 Maintenance through a bottleneck

Next, maintenance tests, similar to those outlined for the associative network model in

Chapter 3, were carried out to assess the ability of the various weight-update rules to

maintain an optimal system. In Chapter 3 the maintenance tests assessed whether pop-

ulations of agents using the weight-update rules were able to acquire an optimal system

in the presence of noise, without a bottleneck. The maintenance test here measures the

ability of populations of agents using these weight-update rules to preserve the optimal

system through a bottleneck on cultural transmission.

Recall from the description of the ILM given in Section 5.2.3 above that the agents in

the initial population use some predefined communication system L. For the experi-

ments outlined in this section, the initial population’s set of weightsW were constructed

such that the p(m) of the initial L generates the unambiguous, perfectly e-compositional

meaning-signal pairs encoded in L, described above — in other words, the initial lan-

guage in these simulations is predefined and perfectly compositional. ILMs were run

with each of the 81 possible learning rules, with each learning receiving 28 exposures

to the communication system of the previous generation (e = 28, c (E ; e) = 0:6). Pop-

ulations were defined as having maintained a compositional system if E (O) and I (A)

remained above 0.95 for every generation of ten 100 generation runs.

No [�maintainer] rules succeeded in this task. All [+maintainer,�ic-preserver] weight-

update rules exhibited behaviour similar to run (a) in Figure 5.20, and failed to maintain
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Figure 5.20: Three characteristic patterns of behaviour in populations using the 81 weight-update
rules when attempting to maintain a perfectly compositional language. The population in run (a)
rapidly collapses from using the initial system to an i- and e-holistic system. This behaviour char-
acterises [+maintainer, �ic-preserver] rules. The population in run (b), which is using a weight-
update rule classified as [+maintainer, �constructor, +ic-preserver], loses the initial language,
although its final language is i-compositional. The population in run (c), which characterises
[+constructor, +ic-preserver] weight-update rules, maintains the perfectly compositional initial
language.

the perfectly compositional system. Of the seven [+maintainer, +ic-preserver] rules,

five behaved in a similar fashion to run (b) in Figure 5.20. Only two [+maintainer,

+ic-preserver] weight-update rules succeeded in maintaining a compositional system.

Populations using these two weight-update rules behaved like run (c) in Figure 5.20.

The five [+ic-preserver] rules which failed to maintain the perfectly compositional sys-

tem were of the [+maintainer,�constructor] classification, whereas the two [+ic-preserver]

rules which maintained the perfectly compositional system were of the [+constructor]

classification. The one-to-one bias associated with [+constructor] rules is clearly crucial

in maintaining a perfectly compositional system.

5.4.3 Construction through a bottleneck

Finally, the 81 weight-update rules were tested to see whether they could construct a

compositional system from an initially random, holistic system, in the presence of a

bottleneck on transmission.
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Figure 5.21: Three characteristic patterns of behaviour in populations using the 81 weight-update
rules when attempting to construct a compositional language. The population in run (a) con-
verges to an i- and e-holistic system. This behaviour characterises [+maintainer, �ic-preserver]
rules. The population in run (b), which is using a weight-update rule classified as [+maintainer,
�constructor, +ic-preserver] converges on a language which is i-compositional but e-holistic.
The population in run (c), which characterises the two [+constructor, +ic-preserver] weight-
update rules, constructs a language which is highly i- and e-compositional.

In the previous section the initial population’s communication system, L, was perfectly

compositional. In the ILMs outlined in this section the connection weights of every

individual in the initial population are set to 0, resulting in an initial L with maximum

entropy. As with the maintenance simulations outlined in the previous Section, each

learner receives 28 exposures to the communication system of the previous generation

(e = 28, c (E ; e) = 0:6). Populations were defined as having constructed a compositional

system if E (O) and I (A) rose above 0.95 in every one of ten 100 generation runs.

Perhaps unsurprisingly, only the two weight-update rules which were capable of main-

taining a preexisting optimal system were capable of constructing a compositional system

from random initial behaviour. As mentioned earlier, these rules have the [+constructor,

+ic-preserver] classification. Populations using these weight-update rules behaved in a

similar fashion to population (c) in Figure 5.21. The [+maintainer, �ic-preserver] and

[+maintainer, �constructor, +ic-preserver] weight-update rules were incapable of con-

structing an optimal system, and behaved similarly to population (a) and (b) respectively

in Figure 5.21.
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5.4.4 The classification hierarchy

The numbers of weight-update rules with the various complete classifications are given in

Table 5.4. Note that it is no longer possible to draw up a neat hierarchy of weight-update

rules — while the hierarchy relating the [�learner], [�maintainer] and [�constructor]

features persists, the [�ic-preserver] distinction cuts across this neat division, grouping

[+maintainer, �constructor] rules together with [+constructor] rules.

5.5 The key bias

What pattern of assignment of values to �, �, 
 and Æ results in some weight-update rules

being able to construct compositional languages from scratch, whereas other weight-

update rules cannot maintain or learn such a system? In Chapter 3 this type of question

was tackled by considering the connection weights in a small network before and after

exposure to a single meaning-signal pair. A similar strategy is pursued here. I will con-

sider the simple case where F = V = 2, lmax = 2, � = fp; qg. A network of appropriate

dimensions was trained on two meaning-signal pairs, h(1 1) ; ppi and h(1 2) ; pqi, using

the weight-update rule (a b c d). The connection weights in this network after observing

these two meaning-signal pairs are given in Figure 5.22.

5.5.1 An overview of the learning biases

In this Section I will focus on the g values for the various possible analyses in the network

as a whole, in fairly broad terms, returning in more detail to smaller parts of the network

in Section 5.5.2.

The g for a particular meaning analysis–signal analysis pair depends on one or two con-

nection weights from the network shown in Figure 5.22. Table 5.5 gives the g values for

various meaning analysis-signal analysis pairs. To simplify matters, only one possible

ordering of components in the signal is given in the Table. For example, there are three

possible analyses of the signal pp — fppg, fp�; �pg and f�p; p�g, but only the first two

are included in Table 5.5.

5.5.1.1 [+maintainer, �constructor, �ic-preserver] rules

We have already established that [+maintainer] rules are characterised by the restriction:

A weight-update rule is [+maintainer] if � > � ^ Æ � 
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Classification Number Acquire? Acquire i-compositionally? Maintain? Construct?

[�learner, �maintainer, �constructor, �ic-preserver] 50 no no no no
[+learner, �maintainer, �constructor, �ic-preserver] 13 no no no no
[+learner, +maintainer, �constructor, �ic-preserver] 4 yes no no no
[+learner, +maintainer, �constructor, +ic-preserver] 5 yes yes no no
[+learner, +maintainer, +constructor, �ic-preserver] 7 yes no no no
[+learner, +maintainer, +constructor, +ic-preserver] 2 yes yes yes yes

Table 5.4: The number of weight-update rules of each particular complete classification, from the sample of 81, and a summary of their
properties with respect to compositional languages. “Acquire?” indicates whether agents using rules with this classification can acquire a
perfectly compositional language. “Acquire i-compositionally?” indicates whether they can reproduce an acquired system in a perfectly i-
compositional manner. “Maintain?” indicates whether agents using a weight-update rule with this classification can maintain a perfectly
compositional language through a bottleneck, in the context of the ILM. “Construct?” indicates whether such agents can construct a highly
compositional system from random initial behaviour in the presence of a bottleneck, in the context of the ILM.
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Signal analysis
Meaning fpg fqg fppg fpqg fqpg fqqg fp�; �pg fp�; �qg fq�; �pg fq�; �qg

(1 1) b+ d b+ d a+ d b+ c b+ d b+ d 1
2 (a+ a+ a+ d) 1
2 (a+ a+ b+ c) 1
2 (a+ b+ b+ d) 1
2 (b+ b+ b+ c)

(1 2) b+ d b+ d b+ c a+ d b+ d b+ d 1
2 (a+ a+ b+ c) 1
2 (a+ a+ a+ d) 1
2 (b+ b+ b+ c) 1
2 (a+ b+ b+ d)

(2 1 ) d+ d d+ d c+ d c+ d d+ d d+ d 1
2 (a+ c+ d+ d) 1
2 (b+ c+ c+ c) 1
2 (a+ d+ d+ d) 1
2 (b+ c+ d+ d)

(2 2 ) d+ d d+ d c+ d c+ d d+ d d+ d 1
2 (b+ c+ c+ c) 1
2 (a+ c+ c+ d) 1
2 (b+ c+ d+ d) 1
2 (a+ d+ d+ d)

Table 5.5: The g values of various meaning analysis -signal analysis pairs in the network after storing h(1 1) ; ppi and h(1 2) ; pqi using
learning rule (a b c d). Meanings which have not been observed paired with a signal are given in italics. Note that only one ordering
of two-component signal analyses is given — there are in fact another 4 two-component signal analyses (f�p; p�g, f�q; p�g, f�p; q�g,

f�q; q�g), but these other analyses can be safely ignored for the purposes of this analysis.
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b+ d b+ d b+ c a+ d b+ d b+ d a+ c b+ c b+ d a+ d

d+ d d+ d c+ d c+ d d+ d d+ d c+ c c+ d d+ d c+ d

b+ d b+ d a+ d b+ c b+ d b+ d a+ c a+ d b+ d b+ c

b+ b b+ b a+ b a+ b b+ b b+ b a+ a a+ b b+ b a+ b

d+ d d+ d c+ d c+ d d+ d d+ d c+ c c+ d d+ d c+ d

d+ d d+ d c+ d c+ d d+ d d+ d c+ c c+ d d+ d c+ d

b+ d b+ d b+ c a+ d b+ d b+ d a+ c b+ c b+ d a+ d

b+ d b+ d a+ d b+ c b+ d b+ d a+ c a+ d b+ d b+ c

Figure 5.22: Connection weights after observing and learning the meaning-signal pairs
h(1 1) ; ppi and h(1 2) ; pqi using weight-update rule (a b c d).

Such rules are neutral with respect to one-to-one mappings between meanings and signals

(if Æ = 
) or biased in favour of one-to-one mappings (if Æ > 
, which yields the

classification [+maintainer,+constructor]). Is there any pattern of assignment of values

to �, �, 
 and Æ which distinguishes these rules on the [� ic-preserver] feature? Yes.

A weight-update rule is [+maintainer,+ic-preserver] if

� > � ^ Æ � 
 ^ � > Æ

Why does this pattern of weight changes lead to the network exploiting the internal com-

positional representations? I will focus first on weight-update rules which are charac-

terised as [+maintainer,�constructor]. For these rules, Æ = 
. Table 5.6 gives the g

values for various analyses for [+maintainer, �constructor, �ic-preserver] rules.
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Tables 5.6 (a) and (b) highlight the relevant values of g for [+maintainer, �constructor,

�ic-preserver] rules. For these rules, � < Æ (as is the case in Table 5.6 (a)) or � = Æ (as

is the case in Table 5.6 (b)). In the former case, the networks are strongly biased against

compositional systems — the compositional representational capacities of the network

are not exploited due to the fact that Æ dominates �. In the latter case, the networks are

neutral with respect to compositionality — both one- and two-component analyses are

possible, due to the fact that � = Æ. Finally, Table 5.6 (c) highlights the relevant values

of g for [+maintainer,�constructor,+ic-preserver] rules. For these rules, � dominates Æ.

Consequently, analyses involving multiple components are preferred to those involving

single components, indicating a bias in favour of i-compositional systems.

These weight-update rules, as we might expect, are neutral with respect to the one-to-one

nature of the mapping between meanings and signals. For the meanings (2 1) and (2 2),

which have not been observed paired with any signal, there are several possible candidate

signals, including pp and pq, which have already been observed paired with a meaning.

5.5.1.2 [+constructor, �ic-preserver] rules

[+constructor] rules are characterised by the restriction:

A weight-update rule is [+constructor] if � > � ^ Æ > 


Such rules are biased in favour of one-to-one mappings between meanings and signals.

[+constructor, +ic-preserver] rules are characterised as:

A weight-update rule is [+constructor,+ic-preserver] if

� > � ^ Æ > 
 ^ � > Æ

Why does this pattern of weight changes lead to the network exploiting the internal com-

positional representations? Tables 5.7 (a) and (b) highlight the relevant values of g for

[+constructor,�ic-preserver] rules. For these rules, � < Æ (as is the case in Table 5.7

(a)) or � = Æ (as is the case in Table 5.7 (b)). The parallels with the [+maintainer,

�constructor, �ic-preserver] rules are clear. In the case where � < Æ, the networks are

strongly biased against i-compositional systems — the compositional representational

capacities of the network are not exploited due to the fact that Æ dominates �. In the

case where � = Æ, the networks are neutral with respect to i-compositionality — both

one- and two-component analyses are possible. Finally, Table 5.7 (c) highlights the rel-

evant values of g for [+constructor,+ic-preserver] rules. For these rules, � dominates Æ.
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(a)
Signal analysis

Meaning fpg fqg fppg fpqg fqpg fqqg fp�; �pg fp�; �qg fq�; �pg fq�; �qg

(1 1) b+D b+D a+D b+D b+D b+D 1
2

(a+ a+ a+D) 1
2

(a+ a+ b+D) 1
2

(a+ b+ b+D) 1
2

(b+ b+ b+D)

(1 2) b+D b+D b+D a+D b+D b+D 1
2

(a+ a+ b+D) 1
2

(a+ a+ a+D) 1
2

(b+ b+ b+D) 1
2

(a+ b+ b+D)

(2 1 ) D+D D+D D+D D+D D+D D+D

1
2

(a+D +D +D) 1
2

(b+D +D +D) 1
2

(a+D +D +D) 1
2

(b+D +D +D)

(2 2 ) D+D D+D D+D D+D D+D D+D 1
2

(b+D +D +D) 1
2

(a+D +D +D) 1
2

(b+D +D +D) 1
2

(a+D +D +D)

(b)
Signal analysis

Meaning fpg fqg fppg fpqg fqpg fqqg fp�; �pg fp�; �qg fq�; �pg fq�; �qg

(1 1) b+D b+D a+D b+D b+D b+D 1
2

(a+ a+ a+D) 1
2

(a+ a+ b+D) 1
2

(a+ b+ b+D) 1
2

(b+ b+ b+D)

(1 2) b+D b+D b+D a+D b+D b+D 1
2

(a+ a+ b+D) 1
2

(a+ a+ a+D) 1
2

(b+ b+ b+D) 1
2

(a+ b+ b+D)

(2 1 ) D+D D+D D+D D+D D+D D+D 1
2

(a+D +D +D) 1
2

(b+D +D +D) 1
2

(a+D +D +D) 1
2

(b+D +D +D)

(2 2 ) D+D D+D D+D D+D D+D D+D 1
2

(b+D +D +D) 1
2

(a+D +D +D) 1
2

(b+D +D +D) 1
2

(a+D +D +D)

(c)
Signal analysis

Meaning fpg fqg fppg fpqg fqpg fqqg fp�; �pg fp�; �qg fq�; �pg fq�; �qg

(1 1) b+D b+D a+D b+D b+D b+D 1
2

(a+ a+ a+D) 1
2

(a+ a+ b+D) 1
2

(a+ b+ b+D) 1
2

(b+ b+ b+D)

(1 2) b+D b+D b+D a+D b+D b+D 1
2

(a+ a+ b+D) 1
2

(a+ a+ a+D) 1
2

(b+ b+ b+D) 1
2

(a+ b+ b+D)

(2 1 ) D +D D +D D +D D +D D +D D +D 1
2

(a+D +D +D) 1
2

(b+D +D +D) 1
2

(a+D +D +D) 1
2

(b+D +D +D)

(2 2 ) D+D D+D D+D D+D D+D D+D 1
2

(b+D +D +D) 1
2

(a+D +D +D) 1
2

(b+D +D +D) 1
2

(a+D +D +D)

Table 5.6: The g values for meaning analysis–signal analysis pairs in the network after training on two meaning-signal pairs using the weight-update
rule (a b c d). This table focuses on [+maintainer, �constructor, �ic-preserver] rules, for which c = d = D and a > b. The highest g values in
each row are highlighted in grey. Meanings which have not been observed paired with a signal are given in italics. (a) The [+maintainer, �constructor,

�ic-preserver] rule where D > a. The observed meaning-signal mappings can be reproduced. Only the one-component analyses are used, indicating
a bias against i-compositionality. Meanings which have not been observed map to any single-component analysis with equal probability, indicating no
bias against many-to-one meaning-signal mappings. (b) The [+maintainer,�constructor,�ic-preserver] rule where a = D. The observed meaning-signal
mappings can be reproduced, with both one-component and two-component analyses being equally probable. This indicates neutrality with respect to i-
compositionality. The non-observed meanings map to both one- and two-component analyses, again with no bias against many-to-one mappings. (c) The
[+maintainer,�constructor,+ic-preserver] rule where a > D. The observed meaning-signal pairs are reproduced using two-component analyses, indicating
a bias in favour of i-compositionality. Signals for the unobserved meanings are also produced using two-component analyses, but once again many-to-one
mappings are not avoided.
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Consequently, analyses involving multiple components are preferred to those involving

single components, indicating a bias in favour of i-compositional systems.

These weight-update rules are also biased in favour of one-to-one mappings between

meanings and signals. This is reflected in the possible productions for the meanings (2 1)

and (2 2), which have not been observed paired with any signal. For the [+constructor,�ic-

preserver] rules there are several candidate signals. However, the signals pp and pq are

ruled out, indicating a bias against many-to-one mappings between meanings and signals.

For the [+constructor,+ic-preserver] weight-update rules, there is a single candidate sig-

nal for each of the non-observed meanings — an unambiguous, compositional system

is constructed based on the exposure to the two meaning-signal pairs. This arises from

the network’s one-to-one bias. This highlights the need for the alphabet to be larger than

the number of values for each feature (j�j > V ), as is the case in all the simulation re-

sults reported earlier in this Chapter. If this is not the case, then the one-to-one bias of

[+constructor, +ic-preserver] agents allows them to reliably reconstruct the signal char-

acter associated with feature values they have not actually seen, provided that they have

seen all other values for that feature. When j�j > V this cannot be done reliably.

5.5.2 The two parts of the bias

The maintenance or construction of a compositional language through a bottleneck in

a population of networks requires two elements. Firstly, the networks must be able

to make generalisations from observed meaning-signal pairs to meanings which have

not been observed. This requires that the compositional representational capacity of the

networks is exploited — signals must be produced using multi-component analyses, in

an internally-compositional fashion. If the networks consistently produce using single-

component analyses, in an internally-holistic fashion, then generalisation from seen to

unseen meanings is impossible.

In addition to this, there must be a principled system of mapping from feature values

of meanings to signal characters. If, for example, a network produces utterances using

multi-component analyses, but every distinct feature value maps onto the same signal

character then an e-compositional system will not be constructed or maintained — the

resulting, highly ambiguous system will not preserve neighbourhood relationships when

mapping between meanings and signals.

The learning biases of the weight-update rules can be characterised along these two dis-

tinct dimensions — a bias in favour of (or against) exploiting internally compositional

representations, and a bias in favour of (or against) a principled system of mappings from
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(a) Signal analysis
Meaning fpg fqg fppg fpqg fqpg fqqg fp�; �pg fp�; �qg fq�; �pg fq�; �qg

(1 1) b+ d b+ d a+d b+ c b+ d b+ d 1
2

(a+ a+ a+ d) 1
2

(a+ a+ b+ c) 1
2

(a+ b+ b+ d) 1
2

(b+ b+ b+ c)

(1 2) b+ d b+ d b+ c a+d b+ d b+ d 1
2

(a+ a+ b+ c) 1
2

(a+ a+ a+ d) 1
2

(b+ b+ b+ c) 1
2

(a+ b+ b+ d)

(2 1 ) d+d d+d c+ d c+ d d+d d+d

1
2

(a+ c+ d+ d) 1
2

(b+ c+ c+ c) 1
2

(a+ d+ d+ d) 1
2

(b+ c+ d+ d)

(2 2 ) d+d d+d c+ d c+ d d+d d+d 1
2

(b+ c+ c+ c) 1
2

(a+ c+ c+ d) 1
2

(b+ c+ d+ d) 1
2

(a+ d+ d+ d)

(b) Signal analysis
Meaning fpg fqg fppg fpqg fqpg fqqg fp�; �pg fp�; �qg fq�; �pg fq�; �qg

(1 1) b+ d b+ d a+d b+ c b+ d b+ d 1
2

(a+ a+ a+ d) 1
2

(a+ a+ b+ c) 1
2

(a+ b+ b+ d) 1
2

(b+ b+ b+ c)

(1 2) b+ d b+ d b+ c a+d b+ d b+ d 1
2

(a+ a+ b+ c) 1
2

(a+ a+ a+ d) 1
2

(b+ b+ b+ c) 1
2

(a+ b+ b+ d)

(2 1 ) d+d d+d c+ d c+ d d+d d+d

1
2

(a+ c+ d+ d) 1
2

(b+ c+ c+ c) 1
2

(a+ d+ d+ d) 1
2

(b+ c+ d+ d)

(2 2 ) d+d d+d c+ d c+ d d+d d+d 1
2

(b+ c+ c+ c) 1
2

(a+ c+ c+ d) 1
2

(b+ c+ d+ d) 1
2

(a+ d+ d+ d)

(c) Signal analysis
Meaning fpg fqg fppg fpqg fqpg fqqg fp�; �pg fp�; �qg fq�; �pg fq�; �qg

(1 1) b+ d b+ d a+d b+ c b+ d b+ d 1
2

(a+ a+ a+ d) 1
2

(a+ a+ b+ c) 1
2

(a+ b+ b+ d) 1
2

(b+ b+ b+ c)

(1 2) b+ d b+ d b+ c a+d b+ d b+ d 1
2

(a+ a+ b+ c) 1
2

(a+ a+ a+ d) 1
2

(b+ b+ b+ c) 1
2

(a+ b+ b+ d)

(2 1 ) d+ d d+ d c+ d c+ d d+ d d+ d 1
2

(a+ c+ d+ d) 1
2

(b+ c+ c+ c) 1
2

(a+ d+ d+ d) 1
2

(b+ c+ d+ d)

(2 2 ) d+d d+d c+ d c+ d d+d d+d 1
2

(b+ c+ c+ c) 1
2

(a+ c+ c+ d) 1
2

(b+ c+ d+ d) 1
2

(a+ d+ d+ d)

Table 5.7: The g values for meaning analysis–signal analysis pairs in the network after training on two meaning-signal pairs using the weight-update
rule (a b c d). This table focuses on [+constructor,�ic-preserver] rules, for which a > b and d > c. (a) The [+constructor,�ic-preserver] rule where

d > a. The observed meaning-signal mappings can be reproduced. Only the one-component analyses are used, indicating a bias against i-compositionality.
Meanings which have not been observed map to signals which have not been observed paired with any meaning, indicating a bias in favour of one-to-one
mappings. (b) The [+constructor,�ic-preserver] rule where d = a. The observed meaning signal mappings can be reproduced, with both one-component
and two-component analyses being equally probable. This indicates neutrality with respect to i-compositionality. As with (a), non-observed meanings map
to non-observed signals, indicating a one-to-one bias. However, both one- and two-component analyses are possible. (c) The [+constructor,+ic-preserver]
rule where a > d. The observed meaning-signal pairs are reproduced using two-component analyses, indicating a bias in favour of i-compositionality. As
before, non-observed meanings map to non-observed signals, with only the two component analyses being used. The mapping is in fact perfectly one-to-one.
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Relationship Average I (A) Average I (Ap) Average I (Ar)
� > Æ 0.98 0.98 0.98
� = Æ 0.47 0.48 0.47
� < Æ 0.16 0.17 0.14

Table 5.8: Average internal compositionality of production and reception behaviour combined
(I (A)), production behaviour alone (I (Ap)) and reception behaviour alone (I (Ar)). Results are
for all 81 weight-update rules, organised according to the relationship between � and Æ

feature values to signal characters. Only when the correct biases for both aspects of the

problem are in place will compositional languages be maintained or constructed.

5.5.2.1 The internal compositionality bias

Comparison of Sections 5.5.1.1 and 5.5.1.2 reveals a common element to the rules which

are [+maintainer, �constructor, +ic-preserver]:

A weight-update rule is [+maintainer, +ic-preserver] if

� > � ^ Æ � 
 ^ � > Æ

The � > � ^ Æ � 
 : : : part of this constraint relates to the [+maintainer] bias, which is a

bias regarding the one-to-one nature of the mapping between meanings and signals. The

: : : � > Æ part dictates that the i-compositional representational capacity of the network

will be exploited. Both components of the bias are required in order to be classified

as [+maintainer, +ic-preserver], as the [+ic-preserver] classification requires that the

networks can reproduce an observed, unambiguous language. However, it is possible to

abstract away from the actual meaning-signal mapping acquired, and investigate whether

weight-update rules exploit the compositional representational capacity. This will reveal

whether, as hypothesised, � > Æ leads to the use of multi-component analyses.

The acquisition tests outlined in Section 5.4.1 were repeated for all 81 weight-update

rules. However, on this occasion the ability to reproduce the observed mapping was

ignored, and the internal compositionality of their production (I (Ap)) and reception

(I (Ar)) behaviour was measured. The results are summarised in Table 5.8.

This Table shows that the relationship between � and Æ largely determines i-compositionality

during production and reception. When � > Æ internal compositionality is high, indicat-

ing that the compositional representational capacities of the network are being exploited.

When � = Æ internal compositionality is at an intermediate level, indicating that both

the holistic and compositional representational capacities are used with approximately
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equal frequency. When � < Æ internal compositionality is low, indicating that holistic

representations are preferred. The results for � > Æ and � < Æ are less clear cut than

when the analysis is restricted to [+maintainer] rules, due to some of the more esoteric

weight-update rules. However, the main point still stands:

Networks will tend to behave in an i-compositional manner if � > Æ

5.5.2.2 The one-to-one bias

As discussed above in Sections 5.5.1.1 and 5.5.1.2, the biases of weight-update rules

identified in Chapter 3 carry over into the more complex model — [+maintainer,�constructor,

�ic-preserver] agents are neutral with respect to the one-to-one nature of the meaning-

signal mapping, whereas [+constructor, �ic-preserver] agents are biased in favour of

acquiring one-to-one mappings.

The relative values of � and Æ determine whether an agent produces or receives in

an internally-compositional manner. Parallel to this are the (�,�) and (Æ,
) relation-

ships, which determines the bias with respect to the one-to-one quality of mappings. In

other words, the (�,�) and (Æ,
) relationships determine whether internally-holistic and

internally-compositional mappings are one-to-one or not, then the (�,Æ) relationship de-

termines which of the internally-holistic or internally-compositional analyses is actually

used.

The learning biases with respect to holistic analyses and compositional analyses can

therefore be looked at separately. In the previous Sections connection weights in a net-

work exposed to two meaning-signal pairs were examined. In this Section it is sufficient

to look at a network, identical in structure to the network given in Figure 5.22, which

has been trained on the meaning-signal pair h(1 1) ; aai. The g values of interest for the

i-holistic analyses are summarised in Table 5.9 (a).

Table 5.9 (b) highlights the dominant connection weights for [+maintainer,�constructor,

�ic-preserver] weight-update rules. The observed meaning-signal pair can be reproduced

holistically. The other meanings map to every possible holistic analysis with equal prob-

ability, including the already-observed signal pp. This indicates neutrality with respect

to the one-to-one nature of the meaning-signal mapping, and is an identical result to that

reported in Chapter 3 for the simpler associative network model.

Table 5.9 (c) highlights the dominant connection weights in a network using a [+constructor,

�ic-preserver] weight-update rule. The observed meaning-signal pair h(1 1) ; aai can be
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(a)
Signal

Meaning Seen? p q pp pq qp qq

(1 1) yes b b a b b b

(1 2) no d d c d d d

(2 1) no d d c d d d

(2 2) no d d c d d d

(b)
Signal

Meaning Seen? p q pp pq qp qq

(1 1) yes b b a b b b

(1 2) no D D D D D D

(2 1) no D D D D D D

(2 2) no D D D D D D

(c)
Signal

Meaning Seen? p q pp pq qp qq

(1 1) yes b b a b b b

(1 2) no d d c d d d

(2 1) no d d c d d d

(2 2) no d d c d d d

Table 5.9: (a) The g values for i-holistic meaning analysis–signal analysis pairs after learning
the meaning–signal pair h(1 1) ; ppi using the weight-update rule (a b c d). (b) The g values for
a network using a [+maintainer, �constructor, �ic-preserver] weight-update rule. In such rules
a > b and c = d = D. The highest g value in each row is highlighted in grey. The observed
meaning–signal pair can be reproduced, but there is no bias against many-to-one mappings from
meanings to signals. (c) The g values for a network using a [+constructor, �ic-preserver] weight-
update rule. In such rules a > b and d > c. The observed meaning–signal pair can be reproduced,
and there is a bias against many-to-one mappings from meanings to signals — signal pp is avoided
for all meanings apart from (1 1).

245



reproduced. The other meanings map to p, q, pq, qp or qq with equal probability — pp

is avoided. The results for the associative network model outlined in Chapter 3 still hold

in the more complex model — [+constructor] agents are biased in favour of acquiring

one-to-one mappings.

[�maintainer] weight-update rules, as discussed in Chapter 3, either cannot acquire ob-

served holistic meaning-signal mappings (in the case of [�learner, �maintainer] rules)

or can acquire such systems but are biased in favour of many-to-one mappings between

meanings and signals (in the case of [+learner, �maintainer] rules). In the context of the

i-holistic analyses part of structured networks, this has the consequence that networks

using such rules either:

� cannot reliably reproduce the mapping from (1 1) to pp or

� can reliably reproduce this mapping, but prefer to produce pp for all unobserved

meanings.

In either case, an e-compositional system cannot be maintained or constructed.

Table 5.10 (a) gives the weights of the connections in the network between partially-

specified components of meaning (organised according to the feature value which is

specified) and partially-specified signal components (once again, different orderings are

ignored — the subsignals given in the Table refer to signal components where the spec-

ified character is in the same position in the signal as the specified feature value — for

example, row 1 column 1 of the Table gives the connection weight between f(1 �)g and

fp�g).

Table 5.10 (b) highlights the dominant connection weights in the relevant portion of

the network after learning using a [+maintainer, �constructor, �ic-preserver] weight-

update rule. The observed pairings of (1 �) with p� and (� 1) with �p can be reproduced.

Meaning components which have not been observed paired with any signal map to both

possible signal substrings with equal probability — there is no bias against having a

many-to-one mappings from feature values to signal substrings.

Table 5.10 (c) shows the dominant connection weights in a network trained on the meaning-

signal pair h(1 1) ; aai using a [+constructor,�ic-preserver] weight-update rule. As with

the [+maintainer,�constructor,�ic-preserver] rule outlined above, the observed feature

value-subsignal pairs can be reproduced. Unlike the [+maintainer, �constructor, �ic-

preserver] rules, use of a [+constructor, �ic-preserver] weight-update rule results in a

one-to-one mapping between feature values and subsignals — the subsignal q is preferred
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(a)
Subsignal

Feature Value Seen? p q

1 1 yes a b
1 2 no c d
2 1 yes a b
2 2 no c d

(b)
Subsignal

Feature Value Seen? p q

1 1 yes a b

1 2 no D D

2 1 yes a b

2 2 no D D

(c)
Subsignal

Feature Value Seen? p q

1 1 yes a b

1 2 no c d

2 1 yes a b

2 2 no c d

Table 5.10: (a) The g values for meaning component–signal component pairs after learning
the meaning–signal pair h(1 1) ; ppi using the weight-update rule (a b c d). As before, alterna-
tive orderings of signal components can be safely ignored — it is assumed that the value of
the nth feature maps on to the nth character in the signal. (b) The g values for a network us-
ing a [+maintainer, �constructor, �ic-preserver] weight-update rule. In such rules a > b and
c = d = D. The observed feature value–signal character pairs can be reproduced, but there is
no bias against many-to-one mappings from feature values to signal characters. (c) The g values
for a network using a [+constructor, �ic-preserver] weight-update rule. In such rules a > b and
d > c. The observed feature value–signal character pairs can be reproduced, and there is a bias
against many-to-one mappings from feature values to signal characters — signal character p is
reserved for feature value 1.
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to p for unseen feature values. This bias results in the preferential acquisition of perfectly

compositional, perfectly one-to-one mappings for networks using [+constructor, +ic-

preserver] weight-update rules.

[�maintainer] weight-update rules, as discussed above, either cannot acquire observed

holistic meaning-signal mappings (in the case of [�learner, �maintainer] rules) or can

acquire such systems but are biased in favour of many-to-one mappings between mean-

ings and signals (in the case of [+learner, �maintainer] rules). In the context of compo-

sitional analyses, this has the consequence that networks using such rules either:

� cannot reliably reproduce the mapping from (1 �) to p� and (� 1) to �p or

� can reliably reproduce this mapping, but prefer to produce p� and �p for (2 �) and

(� 2).

In either case, an e-compositional language cannot be maintained or constructed — if

observed meaning-signal mappings cannot be reproduced then no stable language is pos-

sible, and if many-to-one mappings are preferred then the only stable language is highly

ambiguous and therefore not e-compositional.

5.5.3 The bias in other models

These two biases, in favour of exploiting compositional representations and in favour of

one-to-one mappings between elements of meaning and elements of signals, are evident

in other models of the cultural evolution of linguistic structure.

Learners in the ILM described in Kirby (2002) extract meaningful, recurring chunks from

the utterances they observe wherever possible — they are biased in favour of acquiring

internally compositional representations. They are also biased towards exploiting such

meaningful chunks as much as possible during invention of signals — if an individual

cannot express a whole meaning directly from its grammar then it invents a random

signal for those subparts of the meaning which are not covered by the grammar, rather

than inventing a random signal for the meaning as a whole.

In addition to this bias in favour of internally compositional representations, Kirby’s

learners are biased against synonyms and homonyms. Unlike in the associative network

model, these biases act as pre- and post-learning filters, rather than applying during the

learning process itself. However, the net effect is the same. Kirby’s learners will not

incorporate an observed utterance into their grammar if that utterance consists of a string

which is already generable by the rules of their existing grammar — they have a global
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bias against acquiring homonymous utterances. The net effect of this bias, in combina-

tion with the chunking process, will be to prevent learners from acquiring homonymous

lexical items.

The bias of Kirby’s agents against synonyms is rather less direct. During production,

agents conduct a depth-first search through their grammars to find a combination of rules

which allow them to express a given meaning. Consequently, when repeatedly called

upon to express a meaning, they will reliably do so using the same signal — even if their

grammar allows the possibility of utterance-level synonymy, their production behaviour

will not be synonymous. This bias also leads to a bias against synonymy below the level

of the whole utterance — if an individual has several ways of expressing the same atomic

element of meaning they will, all other things being equal, express this atomic meaning

consistently with a single element of the signal.

Batali’s (2002) exemplar-based learners are similarly biased. Recall that Batali’s learners

induce a set of exemplars, where each exemplar has an associated cost. Exemplars which

are used during learning have their costs reduced. This means that exemplars which en-

code small meaningful chunks will be used frequently during learning (as small elements

of meaning and small parts of signals are more likely to recur in observed linguistic be-

haviour), will have their costs reduced rapidly and consequently will be even more likely

to be used in future learning events. This has the effect of biasing learners to extract ex-

emplars which associate small elements of meaning with parts of signals, and recombine

these exemplars during learning, production and reception — Batali’s agents are biased

in favour of acquiring internally compositional representations.

Batali’s scheme for manipulating exemplar costs also builds in biases against synonymy

and homonymy. The bias against homonymy during learning is fairly explicit — af-

ter each learning event, learners search through their set of exemplars and increase the

costs of exemplars which have a common signal but different meanings — homonymous

exemplars are penalised, and therefore less likely to be used.

The bias against synonymy is less direct. Consider the case where there are two possible

ways of expressing a given meaning, both with equal costs. During production of an

utterance, the agent will be neutral with respect to these two variants, and will select one

randomly. Another agent will learn from that production, and may reuse that exemplar

when speaking to the agent who produced the utterance. The original agent may then

learn based on that production (given the negotiation framework, agents can learn from

individuals who they themselves have taught), in which case the exemplar they used in

the first place will have its cost reduced. This exemplar will then be used more frequently
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than its synonymous alternative. The reduction in costs leads to the reinforcement of one

way of expressing each meaning, leading to the elimination of synonymy.

As a final example from the symbolic models of grammar induction, the learners used

in Hurford (2000) are biased in favour of using internally compositional representations.

As discussed in Section 5.1, Hurford’s learners are strongly biased towards acquiring

compositional rules — they can acquire such rules on the basis of a single observation,

and also invent in a compositional manner. Hurford also includes a direct bias against

synonymy, operating at the production level — if an individual has several ways of ex-

pressing a meaning, it uses the expression it acquired first. This production bias will

lead to the rapid elimination of synonymy in the population’s language. The bias of Hur-

ford’s learners with respect to homonymy is less clear. There is no obvious bias against

homonymy built into the learning model — unlike Kirby and Batali’s models, there is

no prohibition on acquiring homonymous utterances. However, homonymy is perhaps

less of a problem in Hurford’s model due to the extremely large character alphabet avail-

able to his agents. While Kirby and Batali use the 26 letters of the alphabet, Hurford’s

agents have access to 2000 distinct ‘syllables’ , which are combined to form utterances.

The probability of homonymous utterances occurring by chance is therefore very low. I

would anticipate that, assuming there is no hidden bias against homonymy in Hurford’s

learning model, a smaller syllable inventory would lead to the more frequent emergence

of homonyms in his model, with a concomitant loss of e-compositionality in the emergent

systems.

Finally, the learners in Brighton’s (2002) model are biased to exploit internally compo-

sitional representations as much as possible — when acquiring a compositional system,

they require a single observation of a feature value (paired with a signal substring) to

be able to express that element of meaning. Biases with respect to homonymy and syn-

onymy are not really relevant in Brighton’s model — he assumes that such features are

not present in the system presented to learners, and is not concerned with how they might

be introduced due to misacquisition or invention.

Biases against homonymy and synonymy also determine the behaviour of ILMs involv-

ing neural network learners. Batali (1998) and Kirby & Hurford (2002) use feedforward

networks with the obverter architecture. As discussed in Chapter 3, Section 3.5.2, this

network architecture leads to a bias in favour of one-to-one mappings between whole

meanings and whole signals. This bias also applies at the level of individual parts of

meanings and parts of signals. Parts of meanings are represented by individual output

nodes in these networks, and parts of signals are either represented by patterns of acti-

vation over the input nodes (in Batali’s (1998) model) or as individual input nodes (in
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Kirby & Hurford’s (2002) model). In either case, the obverter network architecture leads

to a pressure for one-to-one mappings between individual input nodes, or patterns over

groups of such nodes, and individual output nodes — many-to-one mappings are unsta-

ble, whereas one-to-many mappings are unlearnable.

In contrast, Hare & Elman (1995) use an imitator feedforward network architecture. As

discussed in Chapter 3, Section 3.5.3, this choice of network architecture leads to the

loss, rather than emergence, of linguistic structure. This is a consequence of the many-

to-one bias inherent in the imitator architecture, which applies at both the level of whole

meanings and signals and at the level of subparts of meanings and signals.

The bias with respect to internally compositional representations of these networks is not

clear — there is a continuum running from internally holistic to internally compositional

representations. However, the well-established ability of feedforward networks to ex-

tract regularities from observed input-output mappings and generalise to unseen inputs

using these regularities suggests a bias in favour of internally compositional representa-

tions. Indeed, this bias may form a general requirement for learning devices which can

generalise.

5.5.4 Summary

In order to acquire, maintain and construct a compositional language, two components of

learning bias must be in place. Firstly, learners must be biased towards using internally

compositional representations. Secondly, they must be biased towards acquiring one-to-

one mappings from feature values to signal substrings — they must prefer each distinct

part of a meaning to be expressed by a distinct, unambiguous part of the signal. These

two components of the necessary learning bias are found to be present in most other

models where cultural evolution leads to the emergence of linguistic structure.

5.6 One-to-one biases and the acquisition of linguistic structure

In Chapter 3 I discussed evidence from vocabulary acquisition research that suggests that

children are biased in favour of one-to-one mappings between meanings and words. This

type of bias, as demonstrated by the computational models outlined in Chapter 3, will

result in the emergence of functional communication through purely cultural processes.

In this Chapter we have seen that a one-to-one bias, in combination with a tendency to

exploit internally-compositional representations and a bottleneck on transmission, leads
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to the cultural emergence of compositional language. In this Section I will argue that hu-

man language learners bring one-to-one biases to the acquisition of linguistic structure,

as well as to the acquisition of unstructured lexical items. I will have less to say about the

tendency of humans to exploit internally compositional representations — this capacity

is fairly uncontroversially present in humans, and may form the basis for most learning

capacities in most species. Most, if not all, models of learning assume that neural ar-

chitecture is biased to exploit similarity structures in the environment (Rosenblatt 1958).

The computational models outlined earlier in the Chapter suggest that the application of

these two learning biases will lead to the cultural emergence of a communication system

with some of the characteristic structure of human language.

There is in fact a large body of evidence that children, when acquiring morphological

and syntactic systems, are biased in favour of acquiring one-to-one mappings. I will first

present a general overview of this argument, which is based on work by Dan Slobin and

John Haiman. I will then present more specific empirical and theoretical arguments that

these one-to-one biases apply both on the sub-word level, in the acquisition of morpho-

logical systems, and on the super-word level, in the acquisition of syntactic structures.

5.6.1 One-to-one biases in general: clarity and isomorphism

On the general level, under the guise of the maxim “be clear” , Slobin (e.g. Slobin (1973),

Slobin (1977), Slobin (1985)) suggests that children “strive to maintain a one-to-one

mapping between underlying semantic structures and surface forms” (Slobin 1977:186).

For Slobin, this bias on the part of learners is evident during language acquisition. He

gives several examples, both from morphology and syntax. Italian children go through

a phase of never omitting optional pronouns, thereby preserving the argument which ap-

pears in the underlying semantic representation. Similarly, English-speaking children

avoid zero-morphemes in inflectional paradigms, and as a result over-generalise in irreg-

ular cases. Slavic-speaking children use an inflectional suffix for each grammatical case,

even when some cases are supposed to remain unmarked in certain genders, thereby

maintaining an overt realisation of case. English-speaking children go through a period

of avoiding contracting auxiliaries, preferring the more analytic “ I will not” to “ I won’ t” .

Slobin also claims that systems which conform to the one-to-one bias are easier to ac-

quire. In Serbo-Croat relative clause formation, the surface form preserves the underlying

semantic representation fairly clearly, the only changes necessary being insertion of a rel-

ative pronoun and the deletion of a repeated object. The same could be said to be true in

English — “ I lost the ball which Henry bought” corresponds reasonably closely with the
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(presumed) underlying semantic representation 9x (ball (x)) ^ lost (me; x) ^ bought (henry; x)).

In contrast, in Turkish the relationship between the relative clause and the underlying

semantic representation is highly opaque. Slobin claims that the lack of a one-to-one,

structure-preserving mapping between meaning and surface form in the Turkish system

explains why Turkish children do not reliably acquire the system until the age of five,

whereas Serbo-Croat speaking children master the one-to-one mapping by the age of

two.

Slobin also gives evidence, again from Turkish and Serbo-Croat, that language-learners

are biased against many-to-one, homonymous mappings when acquiring morphological

systems and systems conforming to these biases are easier to learn. In Turkish, the agglu-

tinating inflectional morphology system is very regular — each acoustically-salient suffix

bears one element of the meaning (e.g. person, number, case) of the word. In contrast the

Serbo-Croat inflectional system is “a classic Indo-European synthetic muddle . . . there are

many irregularities, a great deal of homonymy, and scattered zero morphemes” (Slobin

1977:191). The Turkish morphological system conforms more closely to the one-to-one

mapping principle than the Serbo-Croat system. Slobin suggests that this explains why

the entire Turkish morphological system is mastered well before the age of two, whereas

the Serbo-Croat system is not mastered until around age five — morphological systems

which conform closely to learner biases are easier to acquire than systems exhibiting

numerous many-to-one mappings.

John Haiman (e.g. Haiman (1980), Haiman (1985)) pursues a similar line of argument to

Slobin, under the banner of isomorphism. According to Haiman, isomorphism, “whose

existence is universally (though often implicitly) recognized in practice, is that of a one-

to-one correspondence between the signans and the signatum, whether this be a sin-

gle word or a grammatical construction . . . such a bi-unique correspondence must exist”

(Haiman 1980:515). Whereas Slobin is keen to emphasise the importance of the one-to-

one bias and its implications for learnability, Haiman is less concerned with why one-to-

one mappings are preferred and more concerned with defending the idea and identifying

when it can be overridden. The majority of Haiman (1980) is devoted to a fairly de-

tailed account of specific conditions under which this bias can be overridden, based on

an intricate analysis of the systematically homonymous medial verb morphology in Hua,

a language of Papua New Guinea. However, Haiman does provide some more general

defences against classic attacks on theories proposing a one-to-one bias in syntax acqui-

sition:
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“ In the realm of syntax, the Katz-Postal hypothesis (Katz & Postal 1964)

that transformations do not change meaning has entailed a commitment to

the belief that both neutralization (many deep structures, one surface struc-

ture) and diversification (many surface structures, one deep structure) must

exist. Recently, this view has come under attack from two fronts . . . First, it

is claimed that different surface structures invariably do correspond to differ-

ent meanings, however fine-grained [there is no syntactic synonymy]. . . . A

somewhat different approach has been taken in the study of neutralization

[syntactic homonymy]. Syntactic targets, or structurally ambiguous forms,

do exist, and in one sense are violations of isomorphic bi-unique correspon-

dence. But there is another sense in which they are not violations, and it is in

this sense that neutralization itself is iconic [reflecting underlying semantic

similarity]” (Haiman 1980:517).

Some theoretical arguments against the syntactic equivalent of synonymy will be outlined

below. Haiman’s second point is that distinct deep structures sharing a single surface

structure is a reflection of underlying shared semantic structure. He gives several exam-

ples, two of which I will outline briefly here. Firstly, he highlights the case of the modal

auxiliaries in English, which are all similar morphologically and syntactically, and are

similar semantically, conveying the idea of futurity or potentiality. His second example

is based on the semantic similarities between relative clauses and cleft clauses, such as

“That’s the room that I found it in” (relative clause) and “ It’s Max’s room that I found it

in” (cleft). Haiman claims that relatives and clefts are similar cross-linguistically, reflect-

ing a shared element of meaning.

5.6.2 One-to-one biases in morphology

Mańczak (1980) presents a set of “ laws of analogical evolution” for morphological change,

the first of which is that “ [t]he number of morphemes having the same meaning more

often diminishes than increases” (Mańczak 1980:284) — paradigms tend to lose syn-

onymous morphemes. Mańczak bases his laws on a survey of historical grammars and

etymological dictionaries, and his laws (including the first law) have had some statistical

verification.

McMahon (1994) presents an account of the change of the inflectional system in English,

which I have also mentioned briefly in connection with Hare & Elman (1995). In modern

English, plurality is generally marked with the suffix -s. The system in Old English

was rather more complex, and plurality was bound up in inflections which also marked
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gender and case. McMahon argues that the -s suffix was reinterpreted as the marker for

the plural and possessive in certain paradigms. “Analogical extension next stepped in,

gradually generalising the new /s/ plural marker to many nouns . . . which had never used

/s/ to mark the plural in any case” (McMahon 1994:72) — multiple ways of expressing

the plural were replaced by a single dominant strategy, and furthermore, as predicted by

Slobin, this suffix singled plurality only, rather than a bundle of features.

McMahon’s account is one of historical change, and is only implicitly based on an acqui-

sition bias in learners in favour of regular, one-to-one morphological paradigms. Venne-

mann (1978) presents several pieces of empirical evidence which suggest that, for chil-

dren acquiring language, “ [s]uppletion is undesirable, uniformity of linguistic symbol-

ization is desirable: Both roots and grammatical markers should be unique and constant”

(Vennemann 1978:259).

It has long been acknowledged that, as alluded to earlier in discussion of Slobin’s general

argument, children learning English go through a phase of over-generalising the regular

past tense form to words which should correctly be marked in an irregular fashion or not

at all — for example, “goed” rather than “went” or “keeped” rather than “kept” (Brown

1973). This indicates a preference for a uniform system of markers of tense. This type

of over-generalisation is of course not unique to English. Vennemann presents several

examples of similar phenomena in other languages. I will summarise his examples from

Russian, which shows a preference by learners for uniform roots, and Spanish, which

shows a preference for uniform stems.

Russian marks nouns for one of three genders and one of six cases. The Russian paradigm

for three cases of interest and the three genders can be summarised as:

Masculine Neuter Feminine

Nominative null -o -a

Accusative null -o -u

Instrumental -om -om -oy

There are additional complications in that masculine nouns are further subdivided into

animate and inanimate classes, which follow slightly different inflectional paradigms.

However, that need not concern us here. Vennemann reports that Russian children typi-

cally generalise from the feminine to mark the Accusative case in every noun class with

the -u suffix, leading to a uniform marker of the Accusative and getting rid of the homony-

mous -o and null suffixes. It could be argued that this is due to a frequency effect —

according to Vennemann, 70% of the forms a child sees will be of the feminine gender,

255



partly because diminutives are feminine. However, children learning Russian also gen-

eralise the -om marker of instrumental case, originating outside the feminine, across all

noun classes. This is later replaced by the -oy suffix from the feminine, again across all

classes, before the final system is settled on. This acquisition behaviour indicates the

presence of a learning bias in favour of a one-to-one mapping from aspects of morpho-

logical meaning (case) to surface realisations of those markers.

Vennemann’s second example concerns a learner preference for uniform roots. Span-

ish underwent a process known as “velar softening” , whereby [k] changed to [s] and [g]

changed to [x] prior to [i] or [e]. This change should have led to the partial paradigm:

’mark’ ’ pay’

Indicative mar[k]amos par[g]amos

Subjunctive �mar[s]emos �par[x]emos

However, the attested paradigm is in fact:

’mark’ ’ pay’

Indicative mar[k]amos par[g]amos

Subjunctive mar[k]emos par[g]emos

Vennemann argues that velar softening did not take place in the subjunctive paradigm

due to a learner preference for uniformity of roots — during the process of change, where

both alternatives were presumably available, children preferentially acquired the second

paradigm, which has a one-to-one mapping from meanings to roots.

These accounts of morphology acquisition are completely compatible with my model

of one-to-one biases — learners prefer mappings where elements of meaning map, in a

one-to-one fashion, onto morphemes, sub-parts of words.

5.6.3 One-to-one biases in syntax

There is also a body of evidence that one-to-one biases apply to the acquisition of gram-

matical systems, which is compatible with my account of one-to-one biases, in particular

the work by Slobin and Wanner & Gleitman on mappings from meanings to function

words. There is also a body of theoretical work which assumes a more global one-to-one

bias, between complete deep structures and surface structures.
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Slobin (1985) reports on two examples from French of children exhibiting a preference

for explicit one-to-one mappings between grammatical functions and grammatical con-

structions. The first case is based on data from a single child. In the adult system in

French, the preposition “de” is used for both partitive and possessive uses. When the

preposition occurs with a masculine complement NP the preposition and the article from

the NP are contracted. With feminine NPs the preposition and article are not contracted.

This contraction proceeds regardless of the partitive/possessive distinction:

Masculine Feminine

Partitive J’ai du pain Y’a de la neige

I have some bread There is some snow

Possessive le chapeau du monsieur le soulier de la dame

the man’s hat the woman’s shoe

The child discussed by Slobin mistakes the contraction device for an explicit marker of

the partitive use of the preposition and produces:

Masculine Feminine

Partitive J’ai du pain *Y’a da neige

Possessive *le chapeau de le monsieur le soulier de la dame

This appears to be a case of a child expecting a one-to-one correspondence between

a semantic distinction (partitive versus possessive) and an aspect of the surface form,

where in fact this correspondence does not exist in the target language.

Slobin’s second, more general, example from French concerns the use of “que” and “qui” .

In the adult French system, “qui” functions as a relative pronoun, used for relative clauses

where the pronoun is the subject of the verb in the relative clause (for example, “L’homme

qui a tué le chien” , glossed in English as “The man who killed the dog” ). “que” is

also used as a relative pronoun, for relative clauses where the relativizer is the object of

the verb in the relative clause (for example, “L’homme que nous avons vu” , glossed as

“The man who(m) we saw” ), and also as a complementizer (for example, “Je pense que

l’homme est mort” , glossed as “ I think that the man is dead” ). Slobin outlines two general

stages in the typical acquisition of these function words in French. In the first stage, “que”

is acquired and used for both complementizer and relativizer. In the second stage, the

child acquires “qui” and uses this exclusively for relatives, with “que” used exclusively

as a complementizer (resulting in production of the ungrammatical �“L’homme qui nous

avons vu” ). This deviation from the adult system on the part of the child appears to be a
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consequence of a preference for a clear, one-to-one mapping from grammatical functions

to grammatical function words.

Wanner & Gleitman (1982) make a similar point to Slobin, arguing that in general chil-

dren find it difficult to acquire systems which mark negation morphologically. They at-

tribute this to a preference for explicit one-to-one mappings from grammatical functions

to grammatical function words, rather than polyfunctional morphemes.

Turning to syntactic theory, it can be noted that formal studies of learnability tend to make

an assumption, equivalent to the Contrast or ME principles, that for any underlying repre-

sentation there is at most one surface structure — one-to-many mappings from structured

semantic representations to structured signals are ruled out, or dispreferred, by learners.

Wexler & Culicover (1980) make the strong form of this assumption — their Uniqueness

principle states that every deep structure has a single possible surface structure. Pinker

(1984) makes a weaker statement, that the bias against one-to-many mappings can be

overridden given sufficient evidence. In both cases, the Uniqueness principle is given as

a necessary method for children to solve the “no negative evidence problem” , an aspect

of the poverty of the stimulus. Given this principle, as soon as a child hears a particular

surface structure it can rule out all transformations that would have generated a different

surface structure for the underlying semantic representation.

Theories based around isomorphism, the assumption of a preference for one-to-one map-

ping between meanings and words or grammatical structures, are typically seen (not least

by the proponents of such theories) as antagonistic to the generative tradition in linguis-

tics. Newmeyer (1998), however, rightly points out that most generative theories, starting

with Chomsky’s (1965) standard theory, assume that syntactic structure and propositional

content are intimately related at deep structure — deep structure determines both surface

syntactic structure and semantic interpretation. In earlier versions of the classical gen-

erative paradigm, movement operations deriving surface structure from deep structure

can presumably perturb the isomorphism of meaning and syntactic structure. Later the-

ories (e.g. Chomsky (1995)) abandon the distinction between deep structure and surface

structure — there is a single derivation to a level of Logical Form and at some point dur-

ing that derivation (Spell Out) phonological form is stripped out to provide the input to

the phonological system. While the semantic and phonological interpretation processes

may also conceal some underlying isomorphism, the main point is that generative theo-

ries typically assume an intimate, roughly isomorphic relationship between meaning and

signal.
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The projection principle, one of the basic assumptions of generative syntax, also suggests

that semantic and syntactic structures should be closely related. The projection principle

states that lexical information is represented syntactically — the syntactic properties of

lexical items project up through the syntax, and determine, in conjunction with structural

restrictions, the syntactic structure of sentences. The syntactic properties of lexical items

are frequently related to their semantic properties — for example, the argument structure

and theta-role assignments of lexical items are dependent on the semantic properties of

those items, and have consequences for the surface forms of sentences involving those

items. There is therefore a general assumption in syntactic theory that semantics and

surface forms are closely related and dependent on the same underlying information.

Langacker (1977), in a paper on grammatical change through reanalysis, bases much of

his argument around a notion of “ transparency” :

“ the ideal or optimal linguistic code, other things being equal, will be one in

which every surface unit . . . will have associated with it a clear, salient, and

reasonably consistent meaning or function, and every semantic element in

a sentence will be associated with a distinct and recognizable surface form.

Languages are thus optimal along this parameter to the extent that they show

a one-to-one correspondence between units of expression and units of form,

and languages should therefore tend to change towards this situation rather

than away from it” (Langacker 1977:110)

Langacker sees this pressure acting in direct opposition to two other tendencies, a pref-

erence for signal simplicity, or economy of production, and code simplicity, a preference

for fewer fixed expressions which have to be memorised (for example, lexical items —

see the Langacker quote in Chapter 3, Section 3.6.2). While Langacker clearly sees sig-

nal simplicity as a real-time preference by speakers, and code simplicity as a preference

by learners, he is less explicit on the source of the transparency preference. However, this

preference, as we have seen in this Chapter, can naturally be expressed as a preference

by learners, in the form of a bias in favour of one-to-one mappings between elements of

meaning and elements of signal.

My final example of an appeal to one-to-one biases will come from Bever & Langendoen

(1971). Bever & Langendoen are concerned with how pressures acting on language

use and language learning effect linguistic evolution. As such, their aims are highly

compatible with this thesis and one quote from their paper would be equally at home in

most recent papers on computational modelling approaches to linguistic evolution: “ the
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linguistic future is highly constrained by the structural and behavioral systems implicit

in the linguistic present. One consequence of this is that certain universals of language,

which appear to be aspects of synchronic ‘ linguistic structure’ have sources in the ways

in which language is learned and used” (Bever & Langendoen 1971:451–452).

Bever & Langendoen’s argument is based around an analysis of changes in the way in

which relative clauses are formed between Old English and modern English. As the in-

flectional system of Old English changed, overt relativizers on relative clauses became

obligatory in certain contexts. Bever & Langendoen argue that the overt relativizers be-

came obligatory in order to solve ambiguity introduced by the loss of inflections — “ the

loss of inflections created certain perceptually ambiguous constructions which were ruled

out of the language by the changes in relative clause formation . . . one cannot require of

a language that it never generates a sentence which violates a perceptual generalization,

only that the internal organization of actually uttered sentences be perceptually recov-

erable in general” (Bever & Langendoen 1971:444–445). Bever & Langendoen assume

that the change in the OE inflectional system was a consequence of a combination of pres-

sures for signal simplicity and a learner tendency to regularize inflectional paradigms (as

discussed above). In contrast, they claim that the restructuring of relative clauses was a

consequence of language use, based on concerns of perceptual ambiguity and processing

difficulty. However, these two distinct pressures can be unified if we assume, as I have

done here, that learners bring a one-to-one bias to the acquisition of all levels of linguistic

structure — while simultaneously normalising morphological paradigms, a bias against

structural ambiguity (many-to-one mappings from meanings to structures) lead learners

to reinterpret, restructure, and restrict the structure of relative clauses.

There therefore appears to be a bias, applying at all levels of language acquisition, in

favour of one-to-one mappings between meanings and signals. The simulation results

outlined in this Chapter show that without such a bias compositional structure cannot

emerge through cultural processes, or be maintained in the presence of a bottleneck on

cultural transmission. However, given such a bias compositional structure can emerge,

but only in the presence of a bottleneck on cultural transmission.

5.7 Summary of the Chapter

In this Chapter I have shown that compositional language reliably emerges when there

is a bottleneck on cultural transmission, the environment is structured and learners are

appropriately biased. The transmission bottleneck forces languages to be generalisable,

and the generalizability of languages is maximised when the environment is structured.
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The appropriate learning bias consists of two components — a bias to exploit internally

compositional representations, and a bias to map each element of meaning to a single,

unambiguous element of the signal. This first part of the bias may be a general property

of learning — learning exploits regularities in the environment. I have presented evi-

dence that the second element of the bias, a preference for one-to-one mappings between

elements of semantic representations and elements of surface form, applies during chil-

dren’s acquisition of morphology and syntax — humans possess the learning bias which

can lead, through cultural processes, to compositionality.

261




