
CHAPTER 6

The evolution of compositionality in populations

In the previous Chapter the cultural evolution of compositionality was investigated in

the context of a single individual learning their communication system from a single

cultural parent, and transmitting their system to another single individual. In such a

context the notion of communication has no place, as solitary individuals have no-one to

communicate with. It is also meaningless to study genetic transmission in such a context,

as a population consisting of a single individual will be genetically homogeneous by

definition.

In this Chapter I will investigate the transmission of structured communication systems in

the context of populations of individuals. Do the findings outlined in the previous Chapter

hold in the context of cultural transmission within populations? What consequences

does this have for communication within such populations? And how does the dual

transmission of communication systems by cultural transmission and weight-update rules

by genetic transmission impact on the population’s communicative behaviour?

A review of population-level ILMs and EILMs which deal with the evolution of struc-

tured communication is carried out in Section 6.1. This review suggests that the ILM

and EILM approaches can be extended to a consideration of linguistic evolutions in pop-

ulations. However, they also highlight the fact that studies of the evolution of learning

bias have typically been restricted to parameter-setting models of learning, or variants

thereof. In Section 6.2 I discuss methods of measuring communicative accuracy among

populations of individuals using the type of languages discussed in the previous Chapter.

In Section 6.3 I go on to describe an extension of the ILM from the previous Chapter to

non-trivial population sizes. Finally, in Section 6.4, I expand this model to a full Evo-

lutionary Iterated Learning simulation, and outline results pertaining to the evolution of

learning biases which support communicatively optimal, compositional language.
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6.1 Models of the evolution of linguistic structure in populations

Iterated Learning Models of the cultural evolution of structured communication in popu-

lations do exist, and are discussed in Section 6.1.1. The population approach also leads

fairly naturally to the use of Evolutionary Iterated Learning Models, and examples of

these models are discussed in Section 6.1.2.

6.1.1 Cultural evolution in populations

I have discussed three models which demonstrate that the repeated expression and in-

duction of linguistic form within a population can lead to the emergence of structured

systems of meaning-signal mappings. Two models by John Batali (Batali (1998), de-

scribed in Section 2.3.3.4 of Chapter 2, and Batali (2002), discussed in Section 2.3.6.2 of

Chapter 2) demonstrate that morphological and syntactic structure can emerge in popula-

tions. However, as discussed earlier, the Negotiation Model framework makes it difficult

to isolate the relative importance of learning bias and transmission bottleneck in shap-

ing linguistic behaviour in these populations. Hurford (2000), covered in Section 5.1

of Chapter 5, demonstrates that recursively compositional language can emerge in small

populations (Hurford uses a population size of 5) in a gradual ILM population model.

Similarly, Kirby (2000) demonstrates that compositional language can emerge in small

populations through purely cultural processes. Kirby’s (2000) model is an earlier version

of the model described in Kirby (2002). A gradual turnover ILM is used, with a simple,

non-embedding semantics and a stochastic grammar inducer.

Parameter-setting models of language acquisition have also been used in population-level

ILMs. Niyogi & Berwick (1997), using a mathematical model, consider the spread of lin-

guistic variants in populations through Iterated Learning. In Niyogi & Berwick’s model,

there are two competing linguistic variants, L1 and L2, which differ with respect to the

setting of a particular parameter1. Learners sample the languages of the adult popu-

lation and decide, using a parameter-setting procedure known as the Trigger Learning

Algorithm (Gibson & Wexler 1994), on which variant to acquire. Niyogi & Berwick

demonstrate that, if one language, say L1, produces triggers which are consistent with

both L1 and L2, while L2 produces triggers which are only consistent with L2, then L2

will come to dominate the population.
1Niyogi & Berwick’s model need not be interpreted as a parameter-setting model — we could take

the two linguistic variants to represent linguistic systems which differ arbitrarily from one another. How-
ever, the single parameter interpretation is the most natural one, given their use of the Trigger Learning
Algorithm.
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Briscoe (2000a) (discussed in Section 2.3.5.2, Chapter 2) and Kirby (1999) (described in

Section 2.3.3.2, Chapter 2) present models which are similar to that of Niyogi & Berwick,

which demonstrate the convergence of populations on shared parameter settings. This

convergence is driven by a frequency-dependent bias in Briscoe’s model, whereas a direct

bias in favour of parsability drives populations in Kirby’s model to a parameter setting

which is yields optimally parsable utterances.

6.1.2 Gene-culture coevolution in populations

Parameter-setting approaches have also been used to model the co-evolution of languages

and parameter-setting language acquisition devices. Kirby & Hurford (1997) describe an

extension to Turkel’s (2002) model of the evolution of co-ordination. As in Turkel’s

model, each individual’s genotype consists of a string of 1s and 0s (representing invio-

lable principles) and ?s (representing settable parameters). An individual’s mature phe-

notype is a string of 1s and 0s, with all genotype ?s being set to either 1 or 0. Unlike

in Turkel’s model, Kirby & Hurford use a generational EILM, with the setting of pa-

rameters in an individual’s mature phenotype being determined by cultural transmission.

Immature individuals receive a number of trigger utterances from mature individuals in

the previous generation. Triggers specify the setting of a single parameter (as either 1 or

0), and mature individuals produce triggers consistent with their own grammar. Learners

then set the values of ?s in their phenotype according to observed triggers and a learning

procedure based on the Trigger Learning Algorithm. Mature individuals breed according

to communicative success. Communicative success between two individuals is depen-

dent on the number of matching settings they share in their mature phenotypes, but also

on the ‘parsability’ of the utterances they produce — an arbitrary subset of the set of

possible mature phenotypes were considered to produce more parsable utterances.

Kirby & Hurford report that, under these conditions, maximally functional (parsable)

grammars do not emerge — the simulated populations converge on mature phenotypes

which do not produce maximally parsable utterances. Not only does the population con-

verge culturally on suboptimal grammars, but they nativize those suboptimal grammars

— the Baldwin effect leads to the emergence of disfunctional, inviolable principles which

prevent learners in the population from acquiring an optimal system. Kirby & Hurford

attribute this to the overriding pressure for learners to learn the language of their commu-

nity, regardless of whether it is optimally parsable or not.
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In a second set of experiments, Kirby & Hurford introduce selection for parsability on

cultural transmission. With a certain small probability, learners preferentially retain pa-

rameter settings which yield higher parsability over settings which yield lower parsability.

Learners are therefore directly biased in favour of acquiring optimal parameter settings.

Under this revised setup, the simulated populations converge on optimal grammars, and

nativize those optimal grammars via the Baldwin effect.

Briscoe (2000b) presents an extension of his Iterated Learning Model (Briscoe (2000a),

discussed above), which also demonstrates the role of the Baldwin effect in the na-

tivization of linguistic structure, with languages which minimise working memory load

and therefore improve parsability being preferentially nativized. His model shows that

Kirby & Hurford’s (1997) second result still stands under more realistic assumptions

about grammars, parsability and population dynamics — more parsable and learnable

languages emerge culturally, and the LADs of learners evolve a default setting which

matches the dominant language in the population.

A paper by Martin Nowak and colleagues is of particular relevance to this Chapter, and

merits discussion in detail. Nowak et al. (2000) compare the fitnesses of individuals pur-

suing two possible learning strategies — holistic learners and compositional learners. In

their model, events consist of an action and an object acted upon. Nowak et al. vary the

number of possible objects and actions, and also the possible combinations of objects

with actions — for example, events involving action 1 and object 1 may occur with a cer-

tain frequency, whereas events involving action 1 and object 2 may never occur. Nowak

et al.’s model of events is therefore equivalent to (and formed the basis for) my model of

meaning spaces and environments — their event space corresponds to a two-dimensional

meaning space, with V for each dimension given by the number of possible objects and

actions, and their event rate matrix (which specifies which action-object combinations

may occur) is equivalent to an environment in my model.

Nowak et al. assume there are two possible types of learners — holistic learners, who

attempt to learn a single word for each event, and compositional learners, who learn sep-

arate words for actions and objects and then combine those words to form descriptions

of events. Nowak et al. calculate the equilibrium frequency of words in populations con-

sisting solely of holistic or compositional learners, calculate the levels of communicative

accuracy associated with these word frequencies and compare these values across popu-

lations.

In populations of holistic learners, the frequency of individuals who use a word Wij to

refer to an event Eij is given by x (Wij). Nowak et al. assume a generational ILM
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where each individual receives b exposures to the linguistic behaviour of the previous

generation. During each of these exposures, a holistic learner successfully learns a word

with probability q. � (Eij) gives the frequency of occurrence of event Eij . After a single

generation, the frequency of word Wij to refer to event Eij is given by:

x0 (Wij) = R (Wij) � x (Wij) � (1� x (Wij))� x (Wij)

where x0 (Wij) is the proportion of individuals who know the word after transmission,

x (Wij) is the frequency of individuals who know the word prior to transmission and

R (Wij) is the reproductive rate of the word, and is given by:

R (Wij) = bq� (Eij)

In other words, the reproductive rate of word Wij is the product of the number of ex-

posures each individual receives (b), the probability of learning that word after a sin-

gle exposure (q) and the probability that you hear someone talking about the event Eij

(� (Eij)). In the population equation, the change in the proportion of people who know

the word depends on this reproductive rate and the cultural variance in the population

(x (Wij) � (1� x (Wij))). The term . . .�x (Wij) simply keeps the population size con-

stant.

Given this equation, Nowak et al. go on to calculate the equilibrium frequency of in-

dividuals who know word Wij for event Eij — the frequency which, possibly infinitely

many, iterated learning events will lead to, assuming that the word has a reproductive rate

of greater than 1. This quantity, x� (Wij), is given by:

x� (Wij) = 1�
1

R (Wij)

In other words, the equilibrium frequency of Wij will depend on its reproductive rate.

If the reproductive rate of a word is very high then virtually everyone in the popula-

tion will know the word. As all events which actually occur are assumed to occur with

equal frequency, the key factors in determining R (Wij) are number of exposures b and

learnability q.
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The communicative accuracy, and therefore fitness, of a population of such holistic learn-

ers at equilibrium is simply the probability that any two individuals will know the word

for an event, summed over all possible events:

Fholistic =
X

i;j

ij � [x
� (Wij)]

2

where ij is 1 if event Eij is allowed by the event rate matrix (environment) and 0 oth-

erwise. Note two things about this measurement. Firstly, it is implicit in this measure

that there is only ever one word for each event in the population — the measure is not

summed over all possible words for each event. Secondly, it is also implicit that each

event is associated with a unique word — words for one event are never confused with

words for other events.

Nowak et al. go through a similar processes for calculating word frequencies in popula-

tions of compositional learners. Compositional learners learn separate words for objects

Oi and actionsAj of eventsEij . The word associated with objectOi is Ni (a noun), while

the word associated with action Aj is Vj (a verb). The assumption is made that learners

spend half their time learning nouns and half their time learning verbs. The reproductive

rates of Ni and Vj are given by:

R (Ni) = (b=2) qc� (Ei)

R (Vj) = (b=2) qc� (Ej)

where qc is the probability of learning a noun or verb after a single exposure (taken to be

lower than q), � (Ei) gives the frequency of events involving object Oi and � (Ej) gives

the frequency of events involving action Aj . These equations are clearly variants of the

holistic learner equations. The equilibrium frequency of individuals who know both N i

and Vj is given by:

x� (NiVj) =
(1� 1=R (Ni)) � (1� 1=R (Vj))

1� 1= (R (Ni) +R (Vj))

This leads to a communicative accuracy at equilibrium of:

Fcompositional =
X

i;j

ij � [x
� (NiVj)]

2
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In other words, as for the holistic learners, communicative accuracy depends on the prob-

ability of two individuals being able to make a signal for each event, multiplied by the

probability of that event occurring.

Based on these equations, Nowak et al. go on to identify the conditions under which

compositional learners will be preferred to holistic learners — the circumstances under

which Fcompositional > Fholistic. To do this they make several more assumptions. Firstly,

they assume that there are n objects and n actions — there are as many objects as actions.

This yields n2 possible events. Suppose some fraction p of these events occur (for exam-

ple, if p = 0:5 then only half of all possible combinations of objects and actions actually

occur in the environment), and further assume that these events are distributed randomly

through the space of possible events. Under these conditions, compositional learners will

be preferred when:

n >
3q

pqs

In other words, there is a critical value for the number of objects and actions that must

be exceeded before compositional learners are favoured. Nowak et al. give the following

illustrative example. If nouns and verbs are twice as hard to memorise as holistic words

(qc = q=2) and if one third of all possible events actually occur in the environment

(p = 1=3), then n must be greater than 18 before compositional learners are favoured.

This is an interesting result, and Nowak et al. successfully demonstrate that mathemat-

ical techniques can be fruitfully applied to the investigation of the evolution of learning

apparatus underlying language. However, several criticisms of their model can be made.

Firstly, as noted above, they assume that the relationship between events and words,

or nouns and objects, or actions and verbs, is perfectly one-to-one. As we have seen

throughout this thesis, arriving at this situation is far from straightforward. Secondly,

they also rule out any gene-culture coevolution — they calculate the communicative ac-

curacy of genetically homogeneous populations at equilibrium, then compare across pop-

ulations. The situation is likely to be more complex in heterogeneous populations, and

more complex still in heterogeneous populations undergoing selection for communica-

tive success. Finally, they assume that events are randomly scattered in the event matrix

— as we saw in Chapter 5, a non-random sampling from the space of possible meanings

can have consequences for cultural evolution in populations, and therefore might have

implications for gene-culture coevolution.
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6.2 Languages, communication and communicative agents

The model of structured languages is identical to that used in the previous Chapter. A

language L consists of a production function p (m), mapping from meaningsm to signals

s, and a reception function r (s), mapping from signals s to meanings m. Each m 2 M

is a vector drawn from an F -dimensional space, where each dimension has V possible

values, and each signal s 2 S is a string of characters of length 1 to lmax, where the

characters are drawn from the alphabet �.

We can calculate the communicative accuracy of two individuals in exactly the same way

as that outlined in Chapter 3, Section 3.2. If p(m) is converted to a probabilistic function

p(sjjmi), which gives the probability of producing signal sj given meaning mi, and r(s)

is similarly viewed as a probabilistic function r(mijsj) then the communicative accuracy

of a producer P with production function p(sjm) signalling to a receiverR with reception

function r(mjs), averaged over all meanings, is:

ca (P;R) =

Pi=jMj
i=1

Pj=jSj
j=1 p (sjjmi) � r (mijsj)

jMj

In a population possessing an optimal communication system ca(P;R) = 1 for any

choice of P and R.

Note that, given the distance function between meanings given in Chapter 5, based around

Hamming distance, it would be possible to have a communicative accuracy measurement

which awarded partial credit for getting a proportion of the meaning across to the receiver.

This is the approach taken in Batali (1998) and Batali (2002). In this case ca (P;R) would

be defined as:

ca (P;R) =

Pi=jMj
i=1

Pj=jSj
j=1

Pk=jMj
k=1 p (sjjmi) � r (mkjsj) � sim (mi; mk)

jMj

where sim (mi; mk) gives the degree of similarity between two meanings, and is defined

as:

sim (mi; mk) =
(F �HD (mi; mk))

F
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For the moment I will persevere with the all-or-nothing measurement. However, in Sec-

tion 6.4, I will return to the partial payoff measure when considering the dual-transmission

of compositional systems.

The model of a communicative agent is identical to that used in the preceding Chapter

— each individual is modelled by an associative network capable of manipulating map-

pings between structured meanings and structured signals, and each individual acquires

its system based on observation and the application of a weight-update rule W , specified

by the 4-tuple (� �  Æ).

6.3 Cultural evolution in populations

The simulations described in Chapter 5 demonstrate that, in populations consisting of

a single individual, the cultural transmission of meaning-signal mappings leads to the

emergence of compositional language. This is dependent on learners being biased in an

appropriate fashion, the presence of a bottleneck on cultural transmission, and a degree

of structure in the environment. Do these results scale up when we consider populations

which consist of more than one individual at any one time?

This question can be addressed using a gradual population turnover ILM. The model of

languages, communication and communicative agents is as given above in Section 6.2.

The initialisation and iteration processes are given below.

Initialisation Create a population of N agents2, each using the weight-update rule W

and having an initial set of connection weights W , where each w 2 W has a weight of 0.

Iteration

1. Select an agent at random from the population and remove it.

2. For every remaining member of the population, generate a set of meaning-signal

pairs by applying the network production process to every m 2 E .

3. Create a new agent with connection weights of 0 who uses weight-update rule W .
2N = 20 for all ILMs outlined in this Section. In previous Chapters N = 100 was typically used.

However, the more complex models of communication and communicative agents increases the computa-
tional cost of each cohort. In the gradual population turnover model computational complexity is constant
with respect to population size, as each cohort involves replacing a single individual. However, larger
populations take longer to converge on a shared system. N = 20 reduces this factor, while still allowing
meaningful population-level dynamics.
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4. The new agent receives e exposures to the population’s observable behaviour and

updates their connection weights according to the observed meaning-signal pairs

and their weight-update rule W . See below for more detail.

5. The new agent joins the population. Return to 1.

Each pass through the iteration process will be termed a cohort, and as with other ILMs

there is no genetic diversity within the population and no selection based on communica-

tive ability.

Step 4 of the iteration process offers some complications. In the ILM outlined in Chapter

3, each of the e exposures consists of exposure to the complete set of observable be-

haviour generated by a single, randomly selected individual. In the model outlined in

Chapter 5, each of the e exposures consisted of an exposure to a single meaning-signal

pair produced by the individual’s single cultural parent, and the exposures were either se-

lected exhaustively from the environment E (in the no-bottleneck condition) or randomly

(in the bottleneck condition).

In this model, neither of these methods of transmission is entirely suitable. If each of

the e exposures consisted of exposure to the complete set of observable behaviour gener-

ated by a single, randomly selected individual then we immediately rule out a bottleneck

on cultural transmission. If each of the e exposures consists of an exposure to a sin-

gle meaning-signal pair produced by a single cultural parent, then convergence within

the population will occur only by chance — true, non-random convergence requires that

individuals sample the behaviour of several individuals. It is therefore necessary to in-

troduce a new parameter � , which is the number of cultural parents an individual has.

Two versions of step 4 of the iteration process will be defined, one for the no-bottleneck

condition and one for the bottleneck condition.

4 (No-bottleneck) The new agent selects � cultural parents3 at random from the popu-

lation. The new agent receives e = jEj exposures to the communicative behaviour

produced by those � parents. During each of these e exposures the new agent

observes the meaning-signal pairs produced by each parent for a single meaning

m 2 E and updates their connection weights according to the observed meaning-

signal pairs and their weight-update rule W . Each m 2 E is selected in turn, there-

fore the learner observes the full set of observable behaviour produced by each of

the � parents.
3� = 3 for all simulation runs reported here. This means that each individual will observe the behaviour

of three individuals, which was the case for the associative network ILM discussed in Chapter 3.
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4 (Bottleneck) The new agent selects � cultural parents at random from the popula-

tion. The new agent receives e exposures to the communicative behaviour pro-

duced by those � parents. During each of these e exposures the new agent observes

the meaning-signal pairs produced by each parent for a single, randomly selected,

meaning and updates their connection weights according to the observed meaning-

signal pairs and their weight-update rule W . The agent will therefore observe ap-

proximately jEj � c (E ; e) distinct meanings, paired with the corresponding signals

produced by each of the � parents.

The no-bottleneck version leads, as will be discussed in Section 6.3.1, to the emergence

of shared stable communication systems. However, the bottleneck version as given above

does not. This appears to be due to the high level of variability in the behaviour observed

by learners during the early stages of a simulation run. The bottleneck version of step

4 is therefore revised as follows. Each agent selects � individuals at random from the

population, where � is randomly selected from the range [1; � ]. The agent then selects �

cultural parents at random with replacement from among these � individuals — in other

words, learners are exposed to the same size of data set regardless of the number of

distinct cultural parents they have, but the data set can contain the behaviour of between

1 and � individuals. Each individual therefore receives � exposures to each meaning, as

in the bottleneck version of step 4 given above. However, these exposures will be to the

behaviour of at most � distinct individuals. Alternatively, given that � = 3 for all runs

reported here, they will have 2 distinct cultural parents and observe one of them twice, or

have a single cultural parent and observe that individual’s behaviour three times4.

I will consider an ILM where every agent uses the weight-update ruleW = (1 � 1 � 1 0).

As shown in Chapter 5, this is one of the two [+constructor, +ic-preserver] rules. For

the results described in Sections 6.3.1 and 6.3.2, F = 3, V = 5, lmax = 3 and � =

fa; b; c; d; e; f; g; h; i; jg. The initial agents have connection weights of 0, and therefore

use the maximum entropy system where every meaning analysis-signal analysis pair oc-

curs with equal probability. This is the same experimental setup as for the ILM described

in Section 5.3, the only difference being the scaling up to larger populations.
4As part of my current research project, I am working on an extension to Kirby’s (2002) model of the

evolution of recursive syntax. One part of the project involves scaling this model up from populations
consisting of a single individual to larger populations. Interestingly, a similar problem is encountered with
Kirby’s model — the set of cultural parents for each individual must be fairly tightly constrained, otherwise
stable systems of meaning-signal mappings never emerge.
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6.3.1 Linguistic evolution in the absence of a bottleneck

Runs of the ILM described above were carried out, using the no-bottleneck variant of step

4 — each individual observes the complete set of behaviour of � = 3 members of the

population. 100 runs5 of the ILM were carried out for each of the sparse environments

shown in Figures 5.5 and 5.6 in Chapter 5. 50 runs of the ILM were carried out for

each of the medium density environments shown in Figures 5.5 and 5.6 in Chapter 5.

As in Chapter 5, the e-compositionality of the emergent languages (averaged over all

members of the population) is the key measure of linguistic structure. The population’s

communicative accuracy is also measured, to establish whether the emergent languages

are functional and shared by all members of the population. Communicative accuracy

is estimated by evaluating every individual’s average communicative accuracy as both

producer and receiver with two randomly selected partners according to the all-or-nothing

measure ca(P;R) given in Section 6.2, averaging over all individuals in the population.

Runs were allowed to proceed to a stable state, where the population exhibits no linguistic

diversity.

In all simulations runs in each environment the populations converge upon an optimal

shared communication system which yields ca(P;R) = 1 for any choice of P and R.

This is as expected, given the one-to-one learning bias associated with the weight-update

rule used by learners in these populations. Figures 6.1 and 6.2 plot the compositionality

of the initial and final, stable systems for the sparse and medium-density environments.

The results for the medium-density environment are similar to those shown in Figure 5.9

in Chapter 5 (for the same environments with an ILM involving isolated individuals).

The results for the sparse environments are rather different from the results from the

single-individual ILM. In the isolated individual ILM (see Figure 5.8), the majority of

runs converged on non-compositional systems. Partially compositional systems did oc-

cur, with their frequency being greatest when the environment was unstructured. Highly

compositional systems were very infrequent, and occurred only when the environment

was structured.

The results for the population ILM shown in Figure 6.1 show a much stronger tendency

towards compositionality. The majority of the final systems are not holistic. Partially

compositional systems occur with comparatively high frequency in both unstructured
51000 runs were carried out for the no-bottleneck condition of the single-individual ILM. A smaller

number of runs were carried out in the population ILM due to two factors: 1) the increased computational
memory requirements introduced by having 20, rather than 1, associative network in the population and 2)
the increased number of cohorts required for a population to reach a stable state.
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Figure 6.1: E-compositionality of initial and final, stable systems in sparse environments, when
there is no bottleneck on transmission. The initial systems have low e-compositionality. The final
systems are of partial or high e-compositionality. Highly e-compositional systems occur most
frequently when the environment is structured.

and structured environments. Perfectly compositional systems emerge with fairly high

frequency, but only when the environment is structured.

Why does the expansion to non-trivial population size lead to the more frequent emer-

gence of compositionality, but only in the sparse environment? Recall from Chapter 5 that

[+constructor, +ic-preserver] agents are biased in favour of acquiring i-compositional

systems, and are further biased in favour of acquiring one-to-one mappings between fea-

ture values and signal substrings, which leads to a bias in favour of e-compositional lan-

guage. In the single-agent population case, this bias can lead to the emergence of highly

compositional language even in the absence of a bottleneck on cultural transmission, but

only if the initial, random language already exhibits slight compositional tendencies. In

the single-agent population case, learners are essentially stuck with the system of their

single cultural parent. Their learning bias has a reduced impact, due to the absence of

competing variants to select between (recall from B&R’s model given in Chapter 2 that

the rate of increase of the variant favoured by directly-biased transmission is dependent

on the degree of cultural variation present in the population).

In the population ILM, each individual has several cultural parents and therefore biased

acquisition potentially has a greater impact. An individual attempting to acquire two sys-

tems will be more influenced by the system which conforms more fully to their bias. In

the population ILM, this means that highly compositional systems will be preferred to

275



0

0.5

1

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0−1.0 −0.9 −0.8 −0.7 −0.6 −0.5

E−Compositionality

E(O

E(O

E(O

initial)

final)

final)

medium, unstructured

medium, structured

R
el

at
iv

e 
F

re
qu

en
cy

Figure 6.2: E-compositionality of initial and final, stable systems in medium density environ-
ments, when there is no bottleneck on transmission. The initial systems and the vast majority of
the final systems have low e-compositionality. Partially e-compositional final systems occur with
very low frequency, and only when the environment is unstructured.

less compositional systems. This results, in sparse environments, in the frequent emer-

gence of highly compositional systems. The difference between unstructured and struc-

tured sparse environments is due, as discussed in Chapter 5, to the greater potential spread

of compositional mappings in the structured environment, due to the number of feature

values shared between meanings.

The fact that each learner has several cultural parents, and therefore several possible com-

munication systems to choose from, increases the force of the learner’s bias and results

in the emergence of systems which conform to that bias. However, this only happens in

sparse environments — in medium density environments, the final stable systems tend

overwhelmingly to be holistic, with partially compositional systems occurring very in-

frequently and only when the environment is unstructured. Why?

Recall from Chapter 5 that the compositionality of the final system in the single-individual

ILM is sensitive to the compositionality of the initial, random system. Where this initial

mapping exhibits compositional tendencies, yielding E (O initial) above the mean, there

is an increased likelihood of the system moving, over iterated learning events, towards

more compositional languages. The compositional tendencies of the initial system spread

to other parts of the system over time, resulting in an increase in compositionality. For the

more densely-filled environments, partially or highly compositional systems emerge in-

frequently due to the fact that the initial systems tend to be clustered more tightly around
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the non-compositional mean. When the environment contains few meanings the initial

system may, by chance, exhibit some compositional tendencies. However, when the en-

vironment contains a large number of meanings such tendencies are likely to be drowned

out by the majority non-compositional mapping.

In the population ILM, with medium density environments, the lack of compositional ten-

dencies in the early, random mappings of the population prevents highly compositional

systems from ever emerging. Even though each learner observes several individuals,

their set of cultural parents is essentially homogeneous with respect to compositionality

— each parent uses a non-compositional system (although not necessarily the same one).

This lack of cultural variation effectively nullifies the learner preference for composi-

tionality. In contrast, in sparse environments the initial random systems are more widely

distributed, and more likely to exhibit some compositional tendencies which the learner

bias can exploit.

Partially compositional systems do emerge with low frequency in medium density, un-

structured environments. This is due to the fact that, in such environments, fewer mean-

ings share feature values, therefore the initial random system is more likely to exhibit

slight compositional tendencies — the initial systems in unstructured environments has

to be less ‘lucky’ in the assignment of characters to feature values. This can provide

some cultural variation among an individual’s cultural parents, allowing the learner bias

to have some effect.

6.3.2 Linguistic evolution in the presence of a bottleneck

The simulation results outlined in the previous Section show that, in the absence of a

bottleneck on cultural transmission, highly compositional languages can emerge in pop-

ulations. Their emergence is dependent on the density and structure of the environment,

and there is a degree of sensitivity to the compositionality of the original, random systems

of meaning-signal mappings. It is now time to investigate how a transmission bottleneck

impacts on the compositionality of emergent systems in populations.

To this end, runs of the ILM described above were carried out, using the bottleneck

variant of step 4 — each individual observes e meaning-signal pairs, randomly selected

from the set of behaviour produced by � � � = 3 different members of the population.

10 runs of the ILM were carried out for each of the sparse environments shown in Figures

5.5 and 5.6 in Chapter 5, with a bottleneck of c (E ; e) = 0:8 (e = 19) and 10 runs were

carried out for each of the medium density environments shown in Figures 5.5 and 5.6
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(a)

Density c (E ; e)
Proportion

compositional
Average E (Ofinal) Average ca (final)

sparse 0:8 0 0:59 0.51

medium 0:4 0 0:28 0.05
medium 0:5 0.2 0:47 0.26
medium 0:6 1.0 0:99 1.0

(b)

Density c (E ; e)
Proportion

compositional
Average E (Ofinal) Average ca (final)

sparse 0:8 1 1:0 1.0

medium 0:4 1 0:99 0.98
medium 0:5 1 0:99 0.99
medium 0:6 1 0:99 1.0

Table 6.1: Summary of results for the population ILM. (a) gives the proportion of runs con-
verging on a highly compositional system, the average e-compositionality of the final systems
and the average communicative accuracy yielded by the final systems for unstructured environ-
ments. Highly compositional, communicatively-optimal languages only reliably emerge in the
medium density when the bottleneck is wide. (b) gives the same measurements for runs of the
ILM in structured environments. Highly compositional, communicatively-optimal languages al-
ways emerge when the environment is structured.

with bottlenecks of c (E ; e) = 0:4, 0:5 and 0:6 (e = 16, 21 and 28 respectively)6. Runs

were allowed to proceed for 5000 cohorts.

Table 6.1 summarises the results of these simulation runs, in terms of the proportion of

runs converging on a highly compositional system (E (Ofinal) > 0:95), and the average

final levels of e-compositionality and communicative accuracy. Figure 6.3 show com-

positionality and communicative accuracy against time in five representative runs of the

ILM.

As shown in the Table, environment structure has a significant impact on the composition-

ality of the emergent systems. In the unstructured environments, highly compositional,

communicatively-optimal systems only reliably emerge in the medium density environ-

ment with a relatively wide bottleneck (c (E ; e) = 0:6). In contrast, in the structured

environments, highly compositional, optimal systems always emerge.
6This is obviously a significantly smaller number of runs than was carried out for the single-individual

ILM, and is due to the increased computational cost of population-level ILMs, as discussed above. Each
run of the population ILM with a medium density environment takes approximately 36 hours on a 2.5GHz
Pentium 4 processor.
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Figure 6.3: Plots of e-compositionality (top) and communicative accuracy (bottom) against time
in runs of the population ILM. (a) shows the progress of a simulation run in the sparse, structured
environment. (b) is an example of a convergent run in a medium density, structured environment.
(c) is a convergent run from a medium density, unstructured environment where c = 0:6. (d) is a
non-convergent run from the sparse, unstructured environment. (e) is a non-convergent run from
a medium density, unstructured environment with a tight bottleneck on transmission (c = 0:4).
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Learners in the population ILM observe and learn from the linguistic behaviour of be-

tween one and three cultural parents. If these cultural parents have strongly conflicting

languages, or if their languages are non-compositional, then the learner will tend to ar-

rive at a non-compositional or partially compositional system, depending on the number

of meanings in the environment (as discussed above, the e-compositionality of random

systems is sensitive to the number of meanings expressed in that system). If, on the other

hand, there is broad agreement in the linguistic behaviour of a learner’s cultural parents,

then the learner will converge on a system which is similar to that of its cultural parents,

and which exhibits a similar level of compositionality.

Stability and regularity at the individual level therefore form the basis for convergence in

the population. In structured environments, this individual-level stability emerges fairly

straightforwardly. Compositional languages have a strong advantage in such environ-

ments, due to their generalizability. When the environment is structured, individual mem-

bers of the population will converge fairly quickly on systems which are at least partially

compositional. These systems will then spread fairly rapidly through the population,

until the population converges on a communicatively optimal, compositional language.

This is reflected in the reliable emergence of compositional language in structured envi-

ronments, regardless of the degree of environment density or the severity of transmission

bottleneck. These results show that the ILM results from the previous Chapter can scale

up to the case where the population at any one time consists of more than one individual.

However, in unstructured environments stability at the individual level is rather more

difficult to achieve, due to the lack of shared feature values between meanings. This

problem can be overridden by a relatively wide bottleneck. For example, when learners

see 60% of the language of the previous generation, there is very little difference be-

tween structured and unstructured environments, as can be seen in the final distribution

of languages in Figure 5.14 in Chapter 5. The wide bottleneck allows individuals to reach

highly compositional, consistent systems. As shown in the Table, in the population ILM

these systems spread through the population — when the bottleneck is wide (c = 0:6),

highly compositional languages always emerge.

For the lower levels of bottleneck in the medium environments, and in the sparse envi-

ronment, the lack of structure in the environment is more problematic. As can be seen

from Figures 5.12 and 5.13 in Chapter 5, in the single individual ILMs, for tight bottle-

necks, unstructured environments lead to languages which are partially compositional,

and therefore only partially stable.
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What consequences does this have in the multi-agent population model? Each learner ob-

serves and learns from the communicative behaviour of several other individuals. If these

individuals are using a partially compositional system then there will be some random-

ness in their linguistic behaviour — while a learner’s cultural parents may share some

part of the meaning-signal mapping, some of their behaviour will be random and there-

fore unlikely to be shared. This means that the learner will receive contradictory learning

input — each of their cultural parents will produce different signals for certain meanings.

As discussed above, this means that the learner’s bias and the number of meanings in

the environment become important. In the sparse environment, partially compositional

systems can still emerge — based on a set of conflicting observations, the learners tend

to arrive at a partially compositional system. The system never becomes perfectly com-

positional due to the bottleneck, which reintroduces instability.

However, in the medium density environments, such compositional systems never get off

the ground — as can be seen from the Table, highly compositional systems emerge in-

frequently in unstructured environments when the bottleneck is relatively tight (c = 0:4

or 0:5). In these circumstances, learners will be faced with a large set of contradic-

tory input. As a consequence, they will tend to acquire a non-compositional system —

as discussed above, given a large number of meanings, the majority non-compositional

mapping tends to drown out any weak compositional tendencies. As a consequence, par-

tially compositional systems do not emerge in unstructured environments — the system

of meaning-signal mappings remains random, with each individual’s system tending to

be rather different from the systems of other members of the population.

6.3.3 Summary

Communicatively optimal, compositional languages can emerge in populations through

purely cultural processes. When there is no bottleneck on cultural transmission, the fact

that learners make observations of several cultural parents increases the impact of their

learning bias, effectively allowing them to pick the system of meaning-signal mappings

which most closely matches their bias. This leads to the emergence of compositional

languages with reasonably high frequency, although only when the environment is sparse

and structured — in the absence of a bottleneck, the results are sensitive both to the

compositionality of the early systems and to the potential for spread of compositionality.

In the presence of a bottleneck, highly compositional systems emerge with high fre-

quency when the environment is structured. However, when the environment is unstruc-

tured such systems only emerge when the bottleneck is relatively wide. Convergence on
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a compositional language first requires a degree of stability at the individual level. This is

straightforwardly achieved when the environment is structured, due to the high potential

for generalisation. In unstructured environments, this stability can be achieved when the

bottleneck on transmission is not too tight. However, when the bottleneck is tight indi-

vidual members of the population never arrive at stable systems, and as a consequence

the population never converges on a shared language.

6.4 The evolution of learning biases for compositional language

We have established that compositional language can evolve through cultural processes in

a population, provided that learners have the appropriate learning bias (of the [+constructor,

+ic-preserver] classification). The final question is to investigate whether this learning

bias can evolve through natural selection for communicative success. The simulation re-

sults described in Chapter 4 suggest that one-to-one biases for vocabulary acquisition are

unlikely to evolve specifically for their communicative function, due to the time delay

between the emergence of such a bias and a communicative payoff for individuals pos-

sessing it. This should make us skeptical as to whether such a bias can evolve for the

acquisition of a (potentially) structured system of meaning-signal mappings.

The model of languages and communication is as described in Section 6.2. As discussed

in that Section, there are two possible methods of evaluating communicative accuracy

between two individuals — one which counts a communicative episode as a success only

if speaker and hearer arrive at exactly the same meaning, and one which gives partial

credit for speaker and hearer arriving at partially overlapping meanings. I will investigate

both alternatives here.

6.4.1 Genotypes, phenotypes and reproduction

The model of a phenotype communicative agent is as described in Section 6.2 — an

associative network capable of representing structured meaning-signal mappings, with

an initial set of connection weights W and a weight-update rule W .

As in the EILM for the simple associative network outlined in Chapter 4, Section 4.5, I

will assume that an individual’s weight-update rule W is genetically-encoded. A geno-

type is specified by the 4-tuple (a� a� a aÆ) where ax is an allele drawn from the set

f�1; 0; 1g. The process of mapping from a genotype to a phenotype involves converting

such a 4-locus chromosome into a hW;W i phenotype. Each weight-update rule W is

specified by a 4-tuple (� �  Æ). During genotype-phenotype mapping � is set to the
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value of allele a�, � is set to the value of allele a� and so on. The genotype therefore

specifies the phenotype’s weight-update rule. All wi;j 2 W are set to 0 — every agent

has all their initial connection weights set to 0.

To recap, there are 81 possible genotypes, which encode the 81 possible weight-update

rules discussed in Chapter 5, Section 5.4. These 81 weight-update rules can be split into

four classifications:

� 63 are classified as [�maintainer], and are therefore unable to acquire an e-compositional

language.

� 11 are classified as [+maintainer, �constructor, �ic-preserver], and are able to ac-

quire an e-compositional language, but represent it in an internally-holistic fashion.

� 5 are classified as [+maintainer, �constructor, +ic-preserver], and are able to ac-

quire an e-compositional language, but unable to maintain such a language in the

presence of a bottleneck.

� 2 are classified as [+constructor, +ic-preserver], and are able to acquire, maintain

and construct an e-compositional language.

Individuals inherit their genes from their parents. As in earlier EILMs, organisms are

haploid but sexual recombination (involving crossover, in an identical fashion to that

outlined for the previous EILMs) is used. Newly-formed genotypes are also subject to

mutation.7

6.4.2 The EILM

A gradual EILM is used — at each cohort, a single individual is selectively removed

from the population, the remaining members of the population breed according to com-

municative success to produce a new individual, and that new individual acquires its

communication system based on observations of the population’s behaviour.

Initialisation Create a population of N agents8. Each initial agent has a random geno-

type, with the allele at each locus selected randomly from the range of possible alleles.

Each initial individual’s phenotype is determined by their genotype and the genotype-

phenotype mapping.
7Point mutations occur on the newly-formed genotype with probability pm (pm = 0:04

lg
for all simula-

tions outlined in this section, where lg is the length of the genome.) Mutation involves replacing the allele
ai at the mutated locus with another allele aj 6=i, where aj is selected from the set of possible alleles.

8N = 50 for all simulations outlined in this section.
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Iteration

1. Select an individual from the population according to the death procedure outlined

below and remove it.

2. For every remaining member of the population, generate a set of meaning-signal

pairs by applying the network production process to every meaning m in the envi-

ronment E .

3. Create a new agent. The new agent inherits their genotype from their parents, who

are selected from the population according to the reproduction procedure outlined

below.

4. The new agent selects � individuals at random from the population, where � is ran-

domly selected from the range [1; � ]. The agent then selects � cultural parents at

random from among these � individuals9. The new agent receives e exposures to

the communicative behaviour produced by those cultural parents. During each of

these e exposures10 the new agent observes the meaning-signal pairs produced by

each parent for a single, randomly selected meaning and updates their connection

weights according to the observed meaning-signal pairs and their weight-update

rule W . The agent will therefore observe approximately jEj �c (E ; e) distinct mean-

ings, paired with their corresponding signals produced by each of the � parents.

5. The new agent joins the population. Return to 1.

As with the EILM outlined in Chapter 4, Section 4.5, tournament selection is used to

determine reproduction and death. During each tournament T individuals 11 are selected

from the population at random and evaluated. Each individual is scored according to their

average communicative accuracy (according to one of the two measures) when acting as

both producer and receiver with two randomly selected partners. During selection to

decide death, the individual with the lowest communicative accuracy from among the T

selected individuals ‘wins’ the tournament and is removed from the population. During

selection to decide reproduction, the individual with the highest communicative accuracy

wins the tournament and reproduces.

Note from the iteration procedure that each agent observes a subset of the language of its

cultural parents — there is a bottleneck on cultural transmission.
9� = 3 for the runs outlined here.

10e = 24 for all EILMs outlined in this section, which yields a bottleneck of c (E ; e) = 0:6 with respect
to the environment described below — each learner observes approximately 60% of the language of its
cultural parents.

11As in the simple associative network EILM, T = 3.
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6.4.3 The environment

As discussed above with reference to the population ILM, the associative network model

is computationally expensive, both in terms of memory and CPU cycles, particularly

when used in the context of a population. This is largely due to the large size of the

associative network, and the large number of analysis pairs which have to be evaluated

during production and reception.

These problems can be alleviated by reducing the number of feature values (V ) and the

size of the character inventory (j�j). To this end, for all EILMs outlined in this Section

F = 3, V = 3, lmax = 3, � = fa; b; c; d; e; fg.

This selection of F and V means that the environments used in Chapters 5 and Section

6.3 of this Chapter can no longer be used, due to the changed space of possible meanings

M. Instead, an environment is used where E = M — every possible meaning in the

meaning space is present in the environment. This allows us to simplify away from the

structured-unstructured distinction with respect to environments.

The change in environment, number of exposures (e = 24 is used in the EILM) and

also the change in the population size (N = 20 in the population ILM, whereas N =

50 in the population EILM) compared to Section 6.3 makes it necessary to rerun the

ILM with the new environment and population size. Ten runs of the ILM were carried

out, using a [+constructor, +ic-preserver] weight-update rule. All runs converged on a

communicatively optimal, highly compositional (E (O) � 0:95) language, with the mean

time to convergence being 3680 cohorts, although half of the runs converged on a stable

system within 2000 cohorts. These runs are plotted in Figure 6.4. This demonstrates that,

as before, given the appropriate learning bias, communicatively optimal, compositional

language can emerge through cultural processes given this experimental setup.

6.4.4 A negative result

Ten runs of the EILM were carried out, using the all-or-nothing evaluation of commu-

nicative accuracy given in Section 6.2 — a communicative episode was only considered

a success if speaker and hearer arrived at exactly the same meaning. Runs were allowed

to proceed for 10000 cohorts. None of these runs converged on a communicatively-

optimal or compositional communication system — all runs remained stuck with a ran-

dom, e-holistic communication system, which yields chance levels of communicative

accuracy. All populations became fixated on genotypes which encoded [�maintainer]

weight-update rules.
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Figure 6.4: Communicative accuracy against time in the ILM with the parameter setting which
will be used for the EILM. Communicative accuracy was evaluated according to the all-or-nothing
measure. All runs converge on an optimal system, although time to convergence varies consider-
ably from run to run.

These results are unsurprising. We saw in Chapter 4 that appropriate learning biases are

unlikely to evolve, given the time-lag between the emergence of such biases and a payoff

to individuals possessing them. The evolutionary task for the populations here is much

harder — only two of the 81 genotypes are any use (as opposed to nine of 81 in the

associative network EILM in Chapter 4) and cultural convergence, even given the correct

learning bias, is potentially somewhat slow.

6.4.5 A positive result: the evolution of learning biases for compositional language

A further ten runs of the EILM were carried out, using the partial credit evaluation of

communicative accuracy given in Section 6.2 — individuals receive a payoff from com-

munication which is proportional to the similarity between the meaning the speaker was

attempting to convey and the meaning the hearer arrives at.

Figures 6.5 and 6.6 show the progress of a simulation run where the population con-

structs a communicatively optimal, compositional language. This is a typical example of

a successful run. Five of the ten EILM runs were successful in this respect — learning
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Figure 6.5: The evolution of learning bias leading to communicatively optimal, compositional
language. Proportions of various groups of genotypes are given ([�m] stands for [�maintainer],
[�c] stands for [�constructor], [�ic-p] stands for [�ic-preserver]). The population’s commu-
nicative accuracy and compositionality reach maximal values with 2000 cohorts. The popu-
lation comes to be dominated by [+constructor, +ic-preserver] weight-update rules, although
[+maintainer, �constructor, +ic-preserver] weight-update rules do drift in and out after 2000
cohorts.

biases supporting the cultural evolution of a compositional language emerge 50% of the

time. Figure 6.7 shows the relationships between the population’s average communica-

tive accuracy, e-compositionality and the proportion of individuals in the population with

weight-update rules encoding [+constructor, +ic-preserver] weight-update rules. There

is a clear relationship — as the number of [+constructor, +ic-preserver] individuals in

the population increases, so too does compositionality and, latterly, communicative ac-

curacy.

In Chapter 4, we saw that the evolution of one-to-one biases for vocabulary acquisition

consisted of three stages — an initial stage of drift, a stage of selection for the appropri-

ate learning biases, then a further stage of drift. This same three-stage process is evident
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Figure 6.6: The first 2000 cohorts of the simulation run in Figure 6.5. At about 900 cohorts
the population is dominated by [+maintainer, �constructor, �ic-preserver] individuals. There
are also a small number of [+constructor, +ic-preserver] individuals present. The numbers of
the [+constructor, +ic-preserver] individuals increases sharply from 900 cohorts, and as a con-
sequence the communicative accuracy and e-compositionality of the population’s language in-
creases to maximum values.

in runs where learning biases supporting communicatively optimal, compositional lan-

guage emerge. Figures 6.8–6.11 plot the relative communicative accuracies (rcas) for

four classes of genotypes in this run. As can be seen from these Figures, the first 2000

cohorts of the simulation run consists of a stage of drift, followed by a stage of selection.

The initial drift stage lasts from 0 to 900 cohorts. During this time the rca of all four

classes of genotypes remains around 1, indicating that no genotype is associated with

above-average levels of communicative accuracy. Access to breeding in the population is

random for this time. Genetic drift results in an increase in the numbers of [+maintainer,

�ic-preserver] individuals (incapable of constructing an optimal system through a bot-

tleneck), and later an increase in the number of [+constructor, +ic-preserver] individuals

(capable of constructing such a system).
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Figure 6.7: The relationship between communicative accuracy, e-compositionality and propor-
tion of [+constructor, +ic-preserver] individuals in the successful run.

The mini peak of [+constructor, +ic-preserver] individuals results in the beginnings of

a communicatively useful, partially compositional system of meaning-signal mappings.

Consequently, individuals with such genotypes, who are capable of acquiring and con-

tributing to the construction of such a system, receive a communicative payoff — rca

for these genotypes rises above 1, they receive disproportionate access to breeding roles

and their numbers increase sharply in the population. rca for other genotypes (partic-

ularly [+maintainer, �ic-preserver] genotypes, which form a significant proportion of

the population up until 900 cohorts) drops below 1, and their numbers decrease sharply.

Individuals with genotypes which make them capable of acquiring and constructing an

optimal, compositional language are selected for, to the detriment of other genotypes.

This selection proceeds until the population consists entirely of [+constructor, +ic-

preserver] individuals. Shortly after, compositionality and communicative accuracy reach

maximum levels — the population converges on a communicatively optimal, composi-

tional language. A second period of drift then ensues. During this period, as can be

seen in Figure 6.5, [+maintainer,�constructor, +ic-preserver] individuals are introduced
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Figure 6.8: The relative communicative accuracy of individuals with [+constructor, +ic-
preserver] weight-update rules. This value fluctuates around 1, and is clearly above one for the
period from 900 to 1200 cohorts, at which point the numbers of such individuals increase sharply.
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Figure 6.9: The relative communicative accuracy of individuals with [+maintainer,
�constructor, +ic-preserver] weight-update rules. These individuals are not present in signifi-
cant numbers in the early stages of the run.
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Figure 6.10: The relative communicative accuracy of individuals with [+maintainer,
�constructor, �ic-preserver] weight-update rules. The numbers of these individuals increases
from 200 to 600 cohorts. However, the fact that their rca remains at 1 suggests that this in-
crease is due to drift. Their numbers drop sharply from 900 cohorts, at which point the num-
ber of [+constructor, +ic-preserver] individuals increases sharply. The rca of [+maintainer,
�constructor, �ic-preserver] drops below 1 around this point.
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Figure 6.11: The relative communicative accuracy of individuals with [�maintainer] weight-
update rules. Their numbers decline from 200 to 700 cohorts. The fact that their rca remains
around 1 at this point suggests that this is due to drift.
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into the population, and their numbers fluctuate randomly, although generally remain-

ing fairly low. We saw in Chapter 5 that individuals using [+maintainer, �constructor,

+ic-preserver] cannot maintain an optimal compositional system in a single-agent ILM.

However, in a mixed population with [+constructor, +ic-preserver] individuals, given a

reasonably wide bottleneck on transmission, such individuals can maintain the optimal

system, provided their numbers do not get too great. Consequently, drift allows them

to enter the population. At around 7500 cohorts they make up 50% of the population.

At this point, they begin to lose the optimal system, the population’s overall commu-

nicative accuracy drops somewhat, and the [+maintainer, �constructor, +ic-preserver]

individuals are selected against until their numbers drop to lower levels.

The successful runs of the EILM therefore exhibit the same three-stage process of drift-

selection-drift that we saw in Chapter 4, although the second period of drift is somewhat

more constrained. The emergence of the optimal learning bias is therefore dependent on

an initial period of drift. In the EILM in Chapter 4 this resulted in a very low number

of runs converging on optimal system. In this EILM 50% of runs converge on optimal

systems. Why?

The partial-credit measurement of communicative accuracy plays an important role — if

the all-or-nothing measurement is used, optimal systems never emerge. The partial-credit

measurement reduces the time it takes individuals with [+constructor, +ic-preserver]

weight-update rules to get some communicative payoff, and therefore reduces the pe-

riod of vulnerability to drift. Individuals who learn using [+constructor, +ic-preserver]

weight-update rules will not necessarily arrive at the same overall system of meaning-

signal mappings, but they may, based on commonalities in the observable behaviour they

learn from, arrive at a shared system of mappings from one or two feature values to sig-

nal substrings. In the all-or-nothing measurement of communicative accuracy, there is no

reward for this — the whole meaning must be correct. However, under the partial-credit

scheme, these individuals will receive some small communicative payoff, and therefore

be more likely to breed and add more [+constructor, +ic-preserver] individuals to the

population. The partial-credit measurement of communicative accuracy smoothes the

fitness landscape, making the evolution of appropriate learning biases more straightfor-

ward.

A second reason that appropriate learning biases evolve so rapidly is due to the speed

of cultural convergence in the EILM — the population moves from random levels of

communicative accuracy to optimal levels in around 300 cohorts. As discussed in Chapter

4, speed of cultural convergence plays an important role in the EILM, with a reduction in
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the time to cultural convergence leading to less sensitivity to drift and consequently more

frequent genetic convergence.

The fact that the population in the EILM converges so quickly appears to be at odds

with the results from the ILM discussed in Section 6.4.3 above — in a pure ILM, con-

vergence takes on the order of thousands, rather than hundreds, of generations. There

are two factors that can explain this disparity. Firstly, in the EILM there is (weak) natu-

ral selection of cultural variants, which weeds out systems of meaning-signal mappings

which offer below-average communicative accuracy. Secondly, and more importantly, in

the ILM the initial system is completely random. In the EILM, at the point where the

construction of the optimal system takes off, the population’s communication system is

not entirely random — 1000 cohorts of ‘preparatory’ cultural evolution have occurred

in the population. This preparatory stage ensures that new individuals entering the pop-

ulation will observe and learn from linguistic behaviour which has common elements.

These common elements will be tend to be picked out by [+constructor, +ic-preserver]

individuals, who will consequently share some subset of the system of meaning-signal

mappings with other [+constructor, +ic-preserver] individuals, thereby reducing the time

to cultural convergence.

6.4.6 Summary

Learning biases which lead to the evolution of communicatively optimal, compositional

language can evolve through natural selection acting on genetic transmission. However,

this only occurs when the partial-credit measurement of communicative accuracy is used.

This measurement ensures that individuals with appropriate learning biases receive a

fitness payoff fairly rapidly.

Even with the partial-credit measurement scheme, learning biases for compositionality

only emerge 50% of the time. This is due to a dependence on genetic drift — as seen in

Chapter 4, successful runs exhibit a drift-selection-drift pattern, where the initial period

of drift is required to provide appropriate genotypes in sufficient numbers for cultural

evolution to get underway. In the structured model of communication, there is less de-

pendence on this initial period of drift, due to the partial-credit evaluation function and

the rapid cultural convergence observed in the population. However, the fact remains that

this initial period of drift is necessary — there is no immediate advantage in being biased

to acquire a communicatively optimal, compositional language in a population which has

no established communication system.
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6.5 Discussion

What can the results from the Evolutionary Iterated Learning Model tell us about the

evolution of language acquisition biases in humans? Much of the discussion relating to

the evolution of vocabulary acquisition biases given in Chapter 4 remains pertinent. We

can either draw a positive conclusion, and argue that these results show that human-like

learning biases can evolve through natural selection, or we can take a negative position

and argue that these results show that learning biases in humans must have arisen by

(initially) non-adaptive mechanisms.

The negative conclusion remains the strongest one — despite the comparatively high

level of success in the EILM using the partial-credit communicative accuracy evaluation,

the point remains that the evolution of one-to-one biases requires an initial, fortuitous pe-

riod of genetic drift. The natural conclusion to draw from this is that some mechanisms

other than natural selection for communication must have provided appropriate geno-

types in sufficient numbers to allow the cultural construction process to get underway.

As discussed in Chapter 4, perhaps this one-to-one property was an incidental feature of

some learning apparatus which evolved for some other purpose (i.e. the one-to-one bias

is a spandrel). Alternatively, the appropriate learning bias may have evolved for some

other function, then been pressed into service for communication.

These results do suggest an interesting alteration to the positive interpretation, however.

Comparison of the EILM results in this chapter and those in Chapter 4 show that one-to-

one learning biases are more likely to evolve when the communication system is poten-

tially structured, given the partial credit fitness function. This suggests that an appropri-

ate learning bias is more likely to evolve for the acquisition of a structured language than

an unstructured language — the possibility of regularities in subparts of the meaning-

signal mapping smoothes the fitness landscape and simplifies the evolutionary problem.

In other words, if we accept the positive interpretation, the models in this Chapter and

Chapter 4 show that evolution is more likely to go the whole hog and evolve a learning

bias for language, rather than evolving a learning bias for unstructured vocabulary then

later elaborating this bias.

6.6 Summary of the Chapter

In the first part of this Chapter I demonstrated that compositional language can emerge

in populations of linguistic individuals through cultural processes, given a bottleneck on

cultural transmission, a structured environment and the appropriate learning bias. I then
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went on to show that this learning bias can evolve under natural selection for communi-

cation. However, the evolution of this bias is dependent on an initial period of genetic

drift — there is no immediate advantage to individuals possessing the appropriate bias

in a population with no established communication system. The results and discussion

from Chapter 4 therefore pertain to the evolution of learning biases for structured com-

munication — such biases may best be explained as a spandrel or exapted trait.
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