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ABSTRACT

We present a new Bayesian-based probabilistic approach to modelling segmental duration in a text-to-speech system. Segment duration
is influenced by a number of contextual factors such as segment identity, stress, accent, local context within a syllable, position of a
target segment within a syllable, word, and utterance. The factors that affect segmental duration interact with each other in a complex
way. Databases of speech data are often imbalanced with respect to frequencies of different factors’ combinations. A model of segment
duration should account for these problems. We propose a probabilistic Bayesian belief network (BN) approach to tackle data sparsity
and factor interaction problems. In our work, we model segment duration as a hybrid Bayesian network consisting of discrete and
continuous nodes; each node in the network represents a linguistic factor that affects segmental duration.

The interaction between the factors is represented as conditional dependence relations in the graphical model. For the purposes of
the current research we used a database of over 1000 prosodically rich sentences from the speakers of American and RP English. We
contrasted the results of the BN model with those of the sums of products (SoP) model by van Santen and the CART model implemented
in the Festival text-to-speech system. We trained and tested all three models on the same data. The results have shown that our new
model outperforms the CART model; it compares in performance with the SoP model. However, we think our model has many other
advantages compared to SoP, for instance it is much easier to configure and experiment with new features. This should make it easier
to adapt to new languages.

1. INTRODUCTION

Segment duration is influenced by a number of contextual factors such as segment identity, stress, accent, identity of preceding and
following segments, position of a target segment within a syllable, word, and utterance. If a machine learning approach is taken, a
database is used to infer the parameters of the algorithm making the duration prediction. This presents a number of problems for
current text-to-speech systems. In general, databases that are used to model segment duration suffer from data imbalance problem. On
the one hand, only a small and uneven fraction of linguistically allowed factor combinations is present in a training database; different
factor combinations occur with unequal frequencies. Yet as was shown by [1] rare combinations of factor levels occur quite often in
any given text. Furthermore, factors affecting segmental duration interact; a set of two or more factors may amplify or attenuate the
affect of other factors.

Previous researchers applied various computational techniques to segmental duration modelling from rule-based [2], to statistical (clas-
sification and regression trees [3]), to supervised data-driven approaches (the Sums-of-Products, or SoP duration model by [1]). In
the rule-based model by [2] a segment duration was modified by applying a set of rules that described contextual effects influencing a
segment’s inherent duration. These rules were tailored to fit data the best; data sparsity problem was not part of the model. Likewise,
the CART approach [4] applied to modelling of segment duration, underperformed when the percent of missing data was too high [1].
It also responded badly to noise in the data.

Among the above mentioned models, the SoP model of segment duration accounts for data imbalance and factor interaction problems
the best. It is an example of a general linear model whereby segment duration is represented as a sum of factors’ product terms that effect
segment duration. In the SoP model by [5] segment duration was modeled as a log-transformation of factor terms. Other researches
reported to have successfully applied root sinusoidal transformation [6] to modelling durational data. Furthermore, SoP model had also
been applied to model segment duration of languages other than English, e.g., Japanese [7].

One of a few drawbacks of SoP approach is that the number of different sums-of- products models grows hyper-exponentially with
the number of factors. Therefore, one has to apply some clever techniques to finding a particular SoP model that describes data the
best; brute force approach of exhaustive enumeration is infeasible. In addition, when modelling segment duration with a SoP model a
substantial amount of data preprocessing is required to correct for factor interaction and data imbalance. Consequently, Bayesian belief



network (BN) approach seems like a good alternative to conventional deterministic techniques of data modelling.

The structure of the paper is the following. We give a theoretical motivation behind a BN approach in section 2. We explain the details
of applying BN analysis to segment duration modelling in section 3. We proceed with describing the databases used for the present
research in section 4. We describe the experiments and discuss the results in section 5. We conclude with discussing future work in
section 6

2. THEORETICAL MOTIVATION

These considerations lead us to try and develop an general statistical framework for data prediction in which we could take principled
approaches to tackling these problems. The approach was to use Bayesian belief networks. These networks are ideal for duration
modelling because the basic topology of the model is flexible, which allows the model designer to use knowledge to control which
factors can be considered independent. The consequence of this is that factor interactions can be captured by indicating the causal
relationships of the factors in the connectivity of the nodes in a directed acyclic (DAG) graph. This in turn allows a significant reduction
in the number of parameters to be estimated.

Formally a Bayesian network is defined by a triple(G, Ω, P ), whereG = (Φ, E) is a directed acyclic graph with a node setΦ repre-
senting a problem domain information;E is a set of edges that describes conditional dependency relations among domain variables;Ω
is a space of possible instantiations of domain variables andP is a joint probability distribution for all of the nodes of the graphG.

The most important property of a Bayesian network, called Markov property, states that each variable in a network is independent of
its non-descendants given its parents. This allows to factorise the joint probability distributionP into a set of univariate conditional
distributions over variables of a network. Given a set of problem domain variablesP (X1, X2, ..., XN ) the joint probability distribution
P factorises like so:

P (X1, X2, ..., XN ) =

NY
i=1

P (Xi|pa(i)) (1)

whereN is a size of a BN,pa(i) is a set of parents of a nodeXi.

3. DURATIONAL BAYESIAN BELIEF NETWORK MODEL

In our work, we model duration of a vowel segment as a hybrid Bayesian network consisting of discrete and continuous nodes; each node
in the network represents a linguistic factor that affects segmental duration. Interactions between factors are represented as conditional
dependency relations in a graphical model. Duration estimation is accomplished via learning the parameters of the Bayesian network in
a ”from cause to effect” fashion; given a set of causal factors that affect segment duration, we find the most probable value of duration.

For the convenience of probabilistic analysis, the node setΦ of a hybrid BN is partitioned into a set of discrete variables∆ and a
set of continuous variablesΓ. In case of durational BN, the setΓ consists of just one scalar nodeD that corresponds to the duration
values of a segment. The set∆ consists of discrete variables corresponding to contextual factors that affect vowel duration,∆ =
(V, Wpost, S, A, Utt, Cpre, Cpost, Wpre).

The vowel BN of size 9 is shown in Figure 1.V is a vowel identity node (it takes on 15 values according to the number of the vowel
phones chosen for analysis).Wpost is a within word position node; it takes on values corresponding to initial, medial, and final position
of a syllable with a target vowel in a word.S is a stress node, taking on stressed and unstressed values.A is a node describing an
accent status of a word; it takes on accented and unaccented values.Utt node describes phrasal position of a word with a target vowel,
taking on values initial , medial, and final.Cpre describes the class of preceding consonant. We limited possible values forCpre to
two, voiced stop and other.Cpost variable corresponds to the class of the following consonant. Values forCpost node were based
on voicing and manner of production features for consonant; voiceless stops, voiceless affricate, liquids, voiceless fricatives, nasals,
voiced stops, voiced affricate, and voiced fricatives.Wpre node corresponds to the number of consonants that precede a target vowel;
zero, one, and more than one.

According to Markov property, the joint probability distributionP over the variblesV, Wpost, S, A, Utt, Cpre, Cpost, Wpre, D
factorises like so:

P (V, Wpost, S, A, Utt, Cpre, Cpost, Wpre, D) = P (D|V, Wpost, S, A, Utt, Cpre, Cpost, Wpre)×
P (V )× P (Wpost)× P (S|V, Wpost)× P (A|S)× P (Utt)× P (Cpre)× P (Cpost)× P (Wpre)(2)



Figure 1: Duration Bayesian network of size 9; boxes represent discrete nodes, oval represents a continuous node.

The joint distributionP for a hybrid BN can be expressed as a conditional (CG) Gaussian (see [8] for details). In particular,
we are interested in estimating the parameters of the conditional probability of a continuous duration nodeD given its parents
P (D|V, Wpost, S, A, Utt, Cpre, Cpost, Wpre). For every instantiation of discrete nodesδ ∈ ∆ the distribution over the duration
nodeD is given:

p(D(δ)|δ ∈ ∆) = N (d, µ(δ), Σ(δ)) (3)

whereD(δ) is a value of a vowel duration,N (·) is a Gaussian pdf of the duration nodeD.

We estimated duration values in the following fashion. We initialised parameters of the Gaussian pdfN (·) to prior values calculated
as marginal means for every instantiation of the values of∆ in the training set. We applied EM algorithm to estimate the parameters
of a junction tree, a secondary structure obtained from a BN [8]), based on the train set. Finally, we calculated the predicted values of
duration for the test set.

4. SPEECH DATABASES

Speech databases consisted of phonetically rich sentences recorded from an American male speaker of English. We used two sets of
data corresponding to two types of speaking styles, read speech and news commentary. The former consisted of 452 (22 minutes)
isolated sentences (TIMIT); for our analysis, we selected 3900 vowels. The latter consisted of over 200 excerpts (18 minutes) from
broadcast news; we chose 6102 vowels for our analysis. Each database was divided into training (90%) and test sets (10%). Each
segment in the database was marked with segment and syllable-level phonetic information. The databases were also labeled with word
boundaries, lexical stress, and word-level accent information. We conducted our experiments on each database separately, so as to
exclude from the analysis the effects of speaking rate and speaking style variation.

5. EXPERIMENTAL RESULTS

One of the advantages of a BN approach is its flexibility in selecting problem domain variables and defining independence relations
among these. Therefore, we can experiment with the networks of different sizes and varying connectivity. We tested the models on
databases of different sizes, with sole database being twice as large as TIMIT database. BN parameter estimation was done in z-scores
domain; values of duration nodeD were transformed to z-scores, model’s parameters were estimated, then backward transform was
performed, with predicting duration values of a test set based on a vowel’s(µ, Σ) class. In our experiments, we compared the results of
the BN model prediction with those of the SoP and CART models.

5.1. Single vowel analysis

We studied the quality of duration prediction on the networks of different sizes. We selected 5 subsets of discrete ”causal” variables
from the node set∆. Table 1 shows the subsets of nodes selected for the analysis. The problem of hybrid BN structure learning is
NP- hard, therefore, we can not claim that our heuristic selection approach exhaustively selects all optimal subsets of ”causal” nodes.
We based our choice of factors selection upon the results reported by other researches (see for example, [1]). Initially, we performed



# Subset Nodes BN Space Size
1 D V S A 4 60
2 D V Wpost S A 5 180
3 D V Wpost S A Utt 6 540
4 D V Wpost S A Utt Cpost Wpre 8 12,960
5 D V Wpost S A Utt Cpre Cpost Wpre 9 25,920

Table 1: BN’s of different sizes selected for duration analysis.

Figure 2: RMSE values of predicted durations for BN of different sizes; 378 train and 41 test /iy/ vowels, sole database. For subset of nodes see Table
1.

our analysis for a single vowel/iy/, extending the approach to all vowels afterwards. Figures 2 and 3 show the results of duration
prediction for vowel/iy/. Figure 2 shows the values of RMSE for predicted duration depending on the BN complexity for sole database
(378 train and 41 test segments). As can be seen from Figure 2, the RMS error ranges from 4.4 to 6.1 msec, with median RMSE value
of 5 msec (compared to 11 ms as estimated from the SoP model). For TIMIT database, the RMS error of 5 msec for the BN model
compares against 7 ms for the SoP model.

Figure 3 shows the values of correlation coefficient with respect to different BN structures. As can be seen from Figure 3, the correlation
coefficient values change slightly with increasing BN complexity. For sole database, the median correlation of 0.94 compares against
0.91 for the SoP model); for TIMIT, the median correlation values were 0.95 and 0.94 for the BN and SoP models respectively.

5.2. All vowels analysis

One of the advantages of the BN approach is that it can be easily extended to tailor particular network architecture. In particular, we
performed a BN analysis for all vowels for networks of different sizes, similar to the one we just described, by changing the number of
possible values of the nodeV from 1 to 15. The results of duration estimation using the network of 9 nodes (see Figure 1) for sole
database are shown in Figures 4 and 5. As can be seen from Figure 4, the RMSE values of duration predicted by the BN model are
lower than those for the SoP and CART models, with median RMSE value of 5 msec compared to 9 msec for the SoP and 20 msec
for the CART model. Figure 4 shows that for vowels/aw/ and/ow/ the SoP model gives better RMSE values (2 msec and 8 msec
compared to BN’s value of 12 and 13 msec for /aw/ and/ow/ vowels respectively). This effect may had to do with the fact that some
local computations in the network may be non-optimal due to the uneven probability mass distribution for particular vowels.

In Figure 5 the values of correlation coefficient for sole database are shown; the median correlation of 0.94 for the BN model compares
to the values of 0.9 and 0.7 for the SoP and CART models respectively. It can be concluded that on average the BN model gives a better
prediction of vowel durations than the SoP and CART models.



Figure 3: Correlation values of predicted durations for BN of different sizes; /iy/ vowel, sole database.

Figure 4: RMSE values of predicted durations; all vowels, sole database, BN of size 9.

6. CONCLUSIONS

We showed that Bayesian approach to modelling segment duration produces promising results in terms of RMSE and correlation values.
The results are better or comparable to those produced by the SoP and CART models. Across the vowel classes, the BN model gives
the median RMSE value of 5 msec and correlation value of 0.94; corresponding values are 9 msec and 0.9 for the SoP and 20 msec
and 0.7 for CART models. One of the advantages of the BN approach is its flexibility; in the future, we plan to apply the BN approach
to modelling duration of consonants. Given the abundance of existing speech databases, we also plan to do BN structure learning for
durational networks.
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