
Machine Learning and Phonological Classification
—

On the Induction of Paradigmatic Decision Trees

Moritz Neugebauer
moritz.neugebauer@ucd.ie

Department of Computer Science
University College Dublin

ABSTRACT
In knowledge-based speech technology components, information on phonological classes
is frequently employed to determine neighbouring units in the process of segmentation of a
given phonetic utterance. In contrast to phonotactic implications of this kind, the focus in
this paper is on dependencies within the segmental unit. Here, we investigate possible
well-formed combinations of phonological features within a single speech sound based on
the assumption that segments are composed of a finite set of phonological features and that
feature combinations are partially predictable.
The notion of machine learning presented in this paper relies on an algorithmic method to
induce sets of sounds and their set-theoretical relations. Despite its generic nature, the
presentation of our algorithm to induce implications among sets of sounds will draw on
articulatory-based features. In addition to the computation of set descriptions the presented
algorithm provides for an automatically generated lattice representation visualizing
inheritance relationships. Selected work on phonological feature theory is reviewed and an
extension concerning typed feature structures is presented along with an implementation as
provided in Neugebauer (2003).

1. INTRODUCTION - PRELIMINARIES OF PARADIGMATIC DECISION TREES
A prominent means to reduce the error-rate in the automatic segmentation of continuous speech consists
of decision trees which are built on a set of linguistic questions concerning the immediate environment
of a single speech sound. Drawing on an example from Hwang (1993), the knowledge-based tree is
constructed from yes/no-questions of the kind displayed in (1):

(1) a. Is the left-phone voiced?

b. Is the left-phone a retroflex?

c. Is the right-phone a nasal?

d. Is the right-phone a velar stop?

This method intends to determine well-formedness of the potential output string and the decisions
made in trees of this kind are based on syntagmatic relations. The short extract of linguistic questions

given above suffices to show that, while the atomic unit of linguistic description in these decision trees
is the phonological segment, a subsegmental layer in terms of articulatory feature structures is assumed
to account for a more detailed distinction among segmental lexical entries. Although this approach also
refers to classes of sounds by reference to feature labels, intelligent decision-making below the segment
is not envisaged. This is due to a system architecture which aims to extract segments from a given signal
rather than features. In contrast to systems built on segment models, this paper pursues another line of
research which inherently builds on feature models. In the following we will argue that if articulatory
features are the primary information achieved in the recognition process, another field of application for
decision trees emerges. Instead of segmental syntagmatic constraints, featural paradigmatic constraints
gain importance. Paradigmatic decision-making of this kind crucially builds on lexical information on
well-formed versus ill-formed cooccurrences of features naturally in addition to constraints on the com-
binatorics of feature bundles (i.e. segments). Constraints of the latter kind are assumed to be accounted
for in terms of phonotactic models which can be built efficiently using finite-state machines (cf. Carson-
Berndsen 2000).
In this paper, classes of speech sounds are presented as the result of generalizations over complex seg-
mental feature structures. It is assumed that logical interdependencies between subsegmental articulatory
features such as set relations can be extracted from representations which are multilinear in nature; ac-
cording to this view the examples in (1) deal with features concerning phonation (a.), place of articulation
(b.), manner of articulation (c.) and combinations of those (d.). In multilinear representations each of
these feature classes would be represented on an individual tier as visualized in Figure 1 below.

Figure 1: Multilinear Representation

The work presented in the following sections is loosely based on the concept of feature geometry in
generative phonology (cf. Clements 1985) as we adhere to the general idea of natural classes of features
(i.e. manner, place, etc. features) along with the claim that these features are highly dependent.1 A
type-theoretic interpretation of multilinearity is applied in section 3.2. building on Neugebauer (2003).
By constructing inheritance hierarchies over the set of given features, we acquire additional knowledge
to our system of articulatory features since now underspecified feature slots can be overcome simply

1Note that natural classes of features are not identical to natural classes of segments.

by reference to our previously built knowledge base. Even in cases where no single solution to an un-
derspecified representation can be delivered, our approach will still put us in a position where we can
compute the set of possible sounds. By this method, we reduce the set of possible well-formed feature
structures significantly. The potential usefulness of lattice theory for phonological classification is ex-
plored in this paper as well as its generic applicability to feature systems. Section 2 introduces necessary
basics for the induction of sets and inheritance hierarchies along with an informal description of our
underlying algorithm. Section 3 presents a case study provides and hints towards its application, section
4 concludes with an outline of directions for further research.

2. FOUNDATIONS FROM MATHEMATICAL INDUCTION
In this paper, familiarity with set-theoretical fundamentals is assumed while general ideas concerning
the inductive method are explained. The following section sketches an efficient algorithm which com-
putes set descriptions together with their explicit lattice representation. For our current purposes the
presentation will be kept in an informal fashion, i.e. aspects like complexity analysis and running time
evaluation will not be the center of investigation. We refer to Neugebauer (ms.) for a thorough treatment
of these issues. In the next subsection we will present the nature of input data to the algorithm which is
exemplified later in section 3.

2.1. Inductively Defined Sets
The method we will apply to deduce sets of speech sounds from a given number of segmental feature
structures is described in the following, drawing on a proof technique known as mathematical induction.
To be able to carry out deductive reasoning of this kind we rely on the (informal) definitions below.
An inductive definition of a set S is a definition that consists of a collection of rules. The rules are of
two types. Basis rules are ones that state unconditionally that certain elements are in the set whereas
inductive rules state that an element is in the set if certain other elements are in the set. The element that
is put into the set by an inductive rule is called the conclusion of the rule. The elements that have to be
in the set in order for the conclusion to be in the set are called the hypotheses of the rule. The elements
of S are those objects that can be shown to be in S by a finite number of the rules.
There are two ways to show whether or not an object is an element of S; one way is with a line-by-line
proof. Each line in the proof is either an element put into S by a basis rule or it is the conclusion of
an inductive rule whose hypotheses appear as earlier lines in the proof. The last line of the proof is the
element that the proof shows is in S.
The second way to show that an object is an element of S is with a labelled tree that shows how the object
is built up using the rules. Each leaf is labelled with an element put into S by a basis rule. Each interior
node is labelled with the conclusion of an inductive rule whose hypotheses are the labels of the children
of the node. The label of the root of the tree is the element that is shown to be in S by the tree. In our
approach, both basis and induction rules are generated automatically from the basic feature structures,
i.e. our data (cf. section 3.1. below). Before we proceed to decribe the induction of lattices the following
example is intended to demonstrate the two kinds of rules described above. Consider a subset S of the
natural numbers by the following inductive definition

(2) a. 0 is ∈ S

b. If n ∈ S, then n + 1 ∈ S

The first rule is a basis rule, and the second one is an inductive one with one hypothesis. The fact
that S is all of N is simply a restatement of the principle of induction for the natural numbers.
When we are dealing with more than one set as in the above example, we need to consider relations be-
tween sets such as subsets and supersets. Besides the computation of set relations another goal might be
to construct a lattice visualizing the subsumption relationships among the sets and elements (or singleton
sets). Just as for a single set defined inductively, there is a principle of structural induction for several
sets defined by simultaneous induction. Let S be a collection of sets defined by simultaneous inductive
definition, and for each S ∈ S, let Ps be a property of the elements of S. Suppose that

(3) a. for every basis rule in the definition of S, if x is put into S by the rule, then Ps(x) is true;

b. for every inductive rule in the definition of S, if each of the hypotheses of the rule has
the property appropriate for the set of which it is a member, then the conclusion has the
property appropriate for the set into which it is put.

Then, for all S ∈ S and x ∈ S, Ps(x) is true.

For the purposes of this paper, the elements of description and the members of sets as described above
are taken to be segmental units of spoken language. Such a segment is defined by a set of properties
which are usually referred to as features in most work in the field of language technology.2 The sets of
segments which can be induced from those individual segmental descriptions are sometimes referred to
as natural classes. The knowledge base - storing a finite set of segments and features - will be referred
to as the lexicon. For a finite lexicon (Seg,Feat,Lex) all set descriptions can be computed by finding
all set descriptions of sets which, of course, entails set relations as subsumption, union and disjunction.
Starting at the smallest set description of a lattice, the algorithm recursively computes all set descriptions
SetDesc(Seg,Feat,Lex). Given a set description (S,F) that is distinct from � of SetDesc, the set E contains
set descriptions greater than the initial description (S,F) where S ∈ Seg and F ∈ Feat. The set E contains
at most |Seg| members; each member is greater than (S,F) but not necessarily an upper node in the lattice.
The algorithm SetDescSet now captures these insights in that it computes the upper nodes of (S,F). For
every set description generated by s ∈ Seg (where s �= S) it tests all other elements with respect to two
questions:

(4) a. Is the element different from s?

b. Does it itself generate an upper node?

If the answer to the second question is ’yes’ then the actual extent may not belong to an upper node in
which case s is removed.
Assume for instance that S1 is the extent of an upper node of (S,F). Both x and y generate S1 and are
considered by the algorithm in that order. Initially, both x and y are members of Up which contains
elements from Seg �= S that generate upper sets (at the end of the algorithm Up is a minimal complete set
of upper nodes). First, all members of S1 different from x - y is among them - are checked against Up. y
is found in Up and so is x (falsely) assumed not to generate an upper node and is removed from Up. Next,
all elements x different from y are checked: x is no longer in Up and thus the set description generated

2This holds at least for all levels of abstraction where some kind of feature logic is assumed.

by y is known to be an upper node. Whenever a (set of) node(s) is generated by a number of elements
from Seg �= S, only the last one considered by the algorithm is detected as set description-generating and
therefore stays in Up.
Given such an automated method for the generation of descriptions, the following subsection introduces
an extension towards lattice generation.

2.2. Induction of Lattices
The above SetDescSet algorithm can be employed to recursively compute all set descriptions SetDesc of a
finite lexicon by starting from the smallest set description of a lattice. Lattices represent certain orderings
between elements of systems or domains of objects and the order-theoretic or topological properties of
such ordered structures. Traditionally, the label� (read top) is assigned to the most general description in
a given context. In the graphical representation it is the top-most node. Daughters of the �-node denote
disjoint sets while the bottom node (written ⊥) of the lattice denotes inconsistency. Lattices can (also)
be read as paradigmatic decision trees (cf. section 1) since every arc that connects to nodes represents an
implication for the feature system in question. Of course, these implications might hold for individual
elements as well as for whole sets. An algorithm such as SetDescSet provides us with all sets present in
a feature system and thus implements the first step in the task of lattice generation.
The previous section introduced a mathematical method to induce partial orderings on sets, i.e. sets
ordered by a reflexive, anti-symmetric and transitive relation. Before we go on to the induction of
lattices, we introduce the notion of posets. Any partially ordered set A together with its ordering, i.e.
〈 A, ≤ 〉 is called a poset. Lattices are now special cases of posets and the route taken in this paper is to
define lattices which rely on a given poset.
A lattice can be regarded as a special case of a poset 〈 A, ≤ 〉 if a σ{a,b} (called supremum) and ι{a,b}
(called infimum) exist for all a, b ∈ A. With meet and join we introduce two lattice operations; these
operations are always binary. This allows us to characterize a lattice as an algebra, i.e. a non-empty
set with two operations with certain algebraic properties. The operations are the following: the meet of
a and b is given by a ∧ b = ι{a,b}, and a ∨ b = σ{a,b} is called the join. The first three out of four
properties of lattice operations are: idempotent law, commutative law and associative laws. The fourth
property connects the two operations and we will refer to it as absorption laws. Note that if a ≤ b, then
ι{a,b} = a, i.e. a ∨ b = a, and dually, if a ≥ b, then σ{a,b} = a, i.e. a ∧ b = a. Since a ≤ a ∧ b by
definition of σ{a,b}, we let a ∧ b substitue for b in the first equations to derive a ∧ (a ∨ b) = a. Similarly,
since a ≥ a ∧ b by definition of ι{a,b}, we derive from the second equations a ∨ (a ∧ b) = a. Thus we
have established the two absorption laws of logic as given in (5):

(5) a. a ∧ (a ∨ b) = a

b. a ∨ (a ∧ b) = a

Any algebra with two binary operations that has these four properties (i.e. idempotent law, com-
mutative law, associative and absorption laws) constitutes a lattice. The figure below shows the lattice
L=〈{1,2},≤〉.

�

{}

�
{2}
S3

�
{1}
S2

�
{1 , 2}

S1

Figure 2: Example Lattice

We can see that the two pictured subsets are labelled with S2 and S3, respectively. These arbitrary labels
give a hint as to the computation of sets from feature descriptions in our approach. It is assumed that
the above lattice corresponds to a description in which a set description including two elements (here
{1,2}) is further described by the assignment of subset relations which we might interpret as features.
Following this interpretation, the element {1} carries the feature labels S1 and S2 while differing from
{2} with respect to the feature assignment of S3.
Coming back to our algorithm which we will call Solus (which stands for Sorted-order Logic underlying
Speech and is a reformulation of our algorithm SetDescSet), we are already at a stage where we know
that every set description s has two lists associated with it: the list s∗ of its upper nodes and the list s∗ of
its lower nodes.
One set description may be shared by two different set descriptions as their upper nodes (a set description
on a set). While the algorithm processes each of the two set descriptions, their shared upper node must
be detected in order to get the correct relationship. For this purpose, all set descriptions are stored in a
search tree SetDesc. Each time the algorithm finds a node, it searches (via lookup) in the tree SetDesc
to find previously inserted instances of that set decription. In case the set description is found the ex-
isting lists of nodes are updated. Otherwise, the previously unknown set description is inserted into the
tree. Due to lack of space we will not investigate further important issues regarding lattice generation
concerning lattice order and complexity issues. As mentioned before we direct the reader to Neugebauer
(ms.) for these details.
To sum up our final algorithm Solus has two algorithms as its basis which are employed to facilitate the
following:

(6) a. calculate all set descriptions contained in a given lexicon

b. draw a sorted lattice corresponding to a given lexicon

Equipped with these automated methods the next section focusses on the specific problem of lattice
generation from a set of feature structures. We consider the following to present an automated means for

the acquisition of inheritance relationships as an extension to a linguistic knowledge base. Although the
focus in the remaining section will be on speech related information, it should be clear that the algorithm
presented above is generic in its architecture.

3. APPLICATION IN THE FIELD OF PHONOLOGICAL CLASSIFICATION: A CASE STUDY
The specific knowledge required to process speech automatically can grow immensely especially taking
into account multiple languages, speakers and domains. The strategy in this paper so far has been to
account for efficient knowledge acquisition by calculating all dependencies even in a complex feature
system with the aim of inducing inheritance hierarchies. While the next section will exemplify the
process of automated lattice building for a small vowel set, we will then proceed with an integration of
our sorted lattice with a type discipline.

3.1. A lattice for a small vowel set
According to the format of multilinear representations introduced earlier in this paper, we assume that
individual phonological segments are characterized by - in this case - five articulatory features which can
be interpreted each as instances of five classes of features. Each of these feature classes is represented
on a separarte tier. Set descriptions are now computed by Seg × Feat, i.e. all binary relations defined in
the lexical knowledge base. As a working example we define the five vowel system given in (7):

(7) a. ah : {voi,voc,semilo,cen,nrd}
b. eh : {voi,voc,semilo,frt,nrd}
c. ih : {voi,voc,semihi,frt,nrd}
d. oh : {voi,voc,semihi,bak,rd}
e. uh : {voi,voc,semihi,cen,rd}

For our example, the algorithm delivers in a first step the set descriptions starting with the ones
displayed above. Further steps include the set description for � which is computed as: ({ah, eh, oh, ih,
uh}; {voc, voi}). Here we learn that all segments of our sample lexicon share the two features denoting
vocalic manner and voiced phonation. Contrastively, ⊥ is imposed by our algorithm as consisting of
the empty set description ({},{}). In the previous section we referred to � as supremum and to ⊥
as infimum. Two interesting cases which result from the computation of all set descriptions should be
mentioned additionally. Apart from featural information that is relevant for all segments and can in
consequence be considered as being redundant (such as voc and voi, some features or feature (sub)sets
refer to intermediate nodes in the sorted lattice. As a first example we consider the feature {bak}. A brief
look at the above vowel set reveals that only one segment carries this particular feature. Accordingly, the
algorithm computes a set description which shows that we can induce the vowel oh given only the featural
information {bak}. As a second case we focus on the feature set {voc,voi,cen}. The set of segments
which corresponds to this (underdetermined) feature structure consists in the segments {ah,uh} (for a
more precise treatment of feature constraint inheritance refer to section 3.2.). Once all set descriptions
are obtained, lattice generation is possible. If we assume that for each segment and for each feature one
node is created in addition to ⊥ and �, we expect a maximum of sixteen nodes. For our current example
thirteen nodes are created which can be easily confirmed by hand in this case as we are dealing with a
very restricted lexicon: joint nodes are created for ({oh}; {bak}) and ({}; {voc, voi}) while the latter

also labels the top node. This turns out to be the reason for the three nodes missing from the maximal
number. All nodes created are listed below.

node ⊥
node ({ah}; {})
node ({eh}; {})

node ({oh}; {bak})
node ({ih}; {})
node ({uh}; {})

node ({}; {voc,voi})
node ({}; {cen})

node ({}; {semilo})
node ({}; {nrd})
node ({}; {frt})

node ({}; {semihi})
node ({}; {rd})

node �
Figure 3: Lattice node generation for the sample lexicon

The above minimal complete set of upper nodes is achieved at the end of the algorithm and has been
introduced earlier as Up. From the induction of sets we now turn to the induction of lattices. Since
we kept track of the overall structure by means of our search tree SetDesc all nodes can be created at
the appropriate position in the lattice. Consequently, the set relations among the descriptions of sound
classes can be visualized with the following lattice.

�

�

eh
�

ah
�

ih
�

uh
�

bak

oh

�
frt

�
semilo

�
rd

�
cen

�
nrd

�
semihi

�
voi,voc

Figure 4: Lattice for the five vowels {ah,eh,ih,oh,uh}

Regarding an application of this represention as a paradigmatic decision tree (cf. section 1), we notice
that we would need at least {cen,rd} as the minimal featural information to deduce a fully specified
vocalic segment uh. The remaining features {voc,voi,semihi} are inherited from upper nodes. The topic
of inheritance is now formulated applying a typed feature structure logic (cf. Carpenter 1992).

3.2. An integration with Typed Feature Structures
Taking the generated sorted lattice as a starting point, explicit type labels and constraints will now be
assigned to the given structure. A previous implementation of a type discipline which models an inher-
itance relationship between phonological classes has been carried out earlier with a focus on constraint
inheritance in phonological type hierarchies. But while Neugebauer (2003) leaves the actual acquisi-
tion of type hierarchies to future research, this paper attempts to fill this gap employing the induction
algorithm introduced in section 2. The type assignment to the sorted lattice simply takes twelve labels
type 1. . . type 12 while we start the assignment on the � node of the lattice as visualized below.

�

�

eh [9]
�

ah [8]
�

ih [11]
�

uh [10]
�

bak

oh [12]

�
frt [6]

�
semilo [5]

�
rd [7]

�
cen [4]

�
nrd [2]

�
semihi [3]

�
voi,voc [1]

Figure 5: Type assignment for the vowel lattice

Porting this hierarchical structure to the LKB system for lexicon development (cf. Copestake 2002), a
type hierarchy of the following kind can be created. Features in the above lattice will now be interpreted
as constraints which can then be inherited among our set of types while respecting the hierarchical or-
der. Segments are atomic types, i.e. type 8 to type 12. However, we still have to investigate question
of constraint inheritance in more detail. The sorted lattice induced by the Solus algorithm provides us
with information on dependencies among articulatory features - here reinterpreted as feature constraints
- which can be associated with our recently introduced type labels in a straightforward fashion. To start
with, we consider the top node (labelled type 1) which has to carry two feature constraints shared by all
five segments in our lexicon. While the values for manner and phonation attributes are common to all
individual segments, the attributes concerning place, height and rounding information are introduced but
not sufficiently specified yet. The values pla, hei, rou - as given in the Figure 7 below - do thus not refer
to atomic types but to whole feature classes.

type_4

type_8

type_10

type_3

type_7

type_12

type_11

type_2

type_6

type_9
type_5

Figure 6: Generated type hierarchy (type 1 omitted)

This means, we assume a type labelled pla which dominates all possible values for the place attribute,
i.e. {frt,cen,bak}. Before we point out further examples of constraint inheritance we provide a synopsis
of all type labels and type definitions as used in our implementation. In addition, the column on the left
hand side lists (sub)sets of segments corresponding to individual type labels.

set description type label type definition

ah,eh,ih,oh,uh type 1 MANNER: voc
PLACE: pla
PHON: voi
HEIGHT: hei
ROUNDING: rou

ah,eh,ih type 2 parent type 1
ROUNDING: nrd

ih,oh,uh type 3 parent type 1
HEIGHT: semihi

ah,uh type 4 parent type 1
PLACE: cen

ah,eh type 5 parent type 2
HEIGHT: semilo

eh,ih type 6 parent type 2
PLACE: frt

oh,uh type 7 parent type 3
parent type 4
ROUNDING: rd

ah type 8 parents type 4
and type 5

set description type label type definition

eh type 9 parent type 5
parent type 6

uh type 10 parents type 4
and type 7

ih type 11 parent type 3
parent type 6

oh type 12 parent type 5
PLACE: bak

Figure 7: Synopsis of set descriptions, type labels and type definitions

The intermediate types in our type hierarchy - that is type 2 to type type 7 as displayed in Figure 6 - each
carry exactly one feature constraint. It should be clear that these constraints can only refer to attribute
values which have not been instantiated thus far since it would otherwise lead to type clashes. Except
for one segment, all atomic segmental types inherit combinations of only these types or more precisely
the constraints those types introduce. For example, the type labelled type 9 corresponds to the segment
eh since all required feature specifications are unified in this type: type 1 constrains its MANNER value
to voc and its PHON value to voi, type 2 contributes the necessary information for the ROUNDING
attribute while type 5 and type 6 set the HEIGHT value to semilo and the PLACE specification to frt,
respectively. As a special case, the atomic type type 12 carries a unique constraint for PLACE specifica-
tion since it is the only back vocalic segment in our lexicon.
In this subsection we hope to have shown that the sorted lattices computed by our algorithm can be inter-
preted as typed feature structures without any fundamental modifications. Furthermore, we would like to
stress that the major task in designing large-coverage typed feature structure grammars lies in the classi-
fication of types and the development of type constraints. It is this specific task of deductive reasoning
which can be automated by the Solus algorithm as it delivers all classes present in a given lexicon and
also provides for a sorted lattice.

4. Further Research
In this paper a generic algorithm for the induction of inheritance relations between sets of speech sounds
has been presented. Although the presentation was kept informal we hope to have shown the strengths of
our approach which consists of an automated method for deductive reasoning over feature structures. An
integration with type discipline has been explored, building on a case study of the task of phonological
classification. The purpose of this case study was to establish the notion of a paradigmatic decision tree
and its formal properties cast in the typed feature structure formalism. We consider the work presented
in this paper to extend on that presented in Neugebauer (2003) where lexical knowledge representation
in computational phonology is reviewed and phonological type hierarchies for subsegmental structure
are mentioned. The encoding of this information in terms of types and type constraints is extended here
by means of automatically acquired knowledge.
We are aware that the following important questions have to be investigated in future research. We con-
sider questions concerning the algorithm and its application in the field of spoken language technology:

(8) a. How does the algorithm perform on larger lexica (larger sets of features and segments)?

b. How can it be employed on lower levels of spoken language?

Both questions are topics of current research while results concerning specifically the question of com-
plexity and runtime evaluation are documented in Neugebauer (ms.).

ACKNOWLEDGEMENTS
This material is based upon works supported by the Science Foundation Ireland under Grant No. 02/IN1/
I100.
The opinions, findings and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of Science Foundation Ireland.

References

Carpenter, B. 1992. The Logic of Typed Feature Structures. Cambridge Tracts in Theoretical Computer
Science 32. Cambridge University Press.

Carson-Berndsen, J. 2000. Finite State Models, Event Logics and Statistics in Speech Recognition.
In: Sparck Jones, K.; G. J. M. Gazdar & R. M. Needham (eds.): Computers, Language and Speech:
formal theories and statistical data. Philosophical Transactions of the Royal Society, Series A, Volume
358, issue no. 1769: 1255-1266.

Copestake, A. 2002. Implementing Typed Feature Structure Grammars. CSLI Publications.

Hwang, M. 1993. Subphonetic Acoustic Modeling for Speaker-Independent Continuous Speech Recog-
nition. PhD thesis. Carnegie Mellon University.

Neugebauer, M. 2003. Computational Phonology and Typed Feature Structures. Proceedings of the
First CamLing Postgraduate Conference on Language Research. Cambridge. University of Cambridge.
[http://cspeech.ucd.ie/˜cliste/group/publications/2003CPandTFSCamLing.pdf]

Neugebauer, M. ms. Computational Phonology with Feature Terms, Set Descriptions and Lattice Al-
gorithms. Department of Computer Science, University College Dublin.

