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Abstract

Explanationgor the evolution of compositionalandre-

cursie syntaxhave previously attributedthesephenom-
enato the geneticevolution of the languageacquisition
device. Recentwork in the field of computationaévolu-

tionarylinguisticssuggestshatsyntacticstructurecanin-

steadbe explainedin termsof the dynamicsarisingfrom

the cultural evolution of language We build on this pre-
vious work by presentinga model of languageacquisi-
tion basedon the Minimum DescriptionLength princi-

ple. Our Monte Carlo simulationsshawv thatthe relative

cultural stability of compositionalanguageversusnon-
compositionalanguagéds greatestinderconditionsspe-
cific to hominids:a complex meaningspacestructure.

Introduction and Related Work

Humanlanguageliffersgreatlyfrom othernaturalcom-
municationsystems. Our use of compositionalandre-
cursive syntaxplacesus in a unique position: we can
comprehendind producean ostensiblyinfinite number
of utterancesWhy arewe alonein this position?Human
languagss aresultof threeadaptve systemsilearning,
geneticevolution, and cultural evolution. Over the past
half centurycognitive scientistshasaddressethe prob-
lem of learning. Thepasttenyearshasseeraresugence
of interestin the evolutionarybasisof languagegPinker
& Bloom, 1990). Only recentlyhasthe cultural evolu-
tion of languagéeenseriouslyanalysedHare& Elman
(1994)outlinedperhapghefirstiteratedlearningmodel
The iteratedlearningmodel seeksto modelthe evolu-
tion of languagehroughgeneration®f languageusers,
solelyonthebasisof eachagentobservinghebehaiour
of the previous generation(Kirby, in pressb). Recent
demonstrationsf the culturalevolution of composition-
ality andrecursve syntax(Kirby, in pressa; Batali in
press)suggesthat thesepropertiesof humanlanguage,
traditionally attributed to geneticevolution, canin fact
be explainedasemepgentpropertiesarisingfrom thedy-
namicsof iteratedlearning. One criticism levelled at
thesemodelsis that the learningbias of the individual
agentgs typically too strong—the obsenedbehaiouris
striking yetinevitable (Tonkes& Wiles, in press).

Here, we considercompositionalsyntax— the prop-
erty of humanlanguagevherebythe meaningof asignal
is somefunctionof the meaningof its parts.We address
the criticisms of bias strengthby employing the Mini-
mum DescriptionLength (MDL) principle, which rests

on a solid mathematicajustificationfor induction. We

demonstratehat the relative stability of compositional
languagewith respecto non-compositiondhnguageis

atamaximumundertwo conditionsspecificto hominids:
(a) acomplex meaningspaceand(b), limited language
exposureasituationcommonlyreferredto asthepoverty

of the stimulus Gell-Mann (1992) was perhapsthe

first to suggesthe relevanceof Kolmogoror Complex-

ity, whichis closelyrelatedto MDL, to the studyof lan-

guageevolution. Ouruseof theMDL principleis similar

to thatof Tealetal (1999),who modelchangein signal

structureusing the iteratedlearningmodel. Our model
extendsthiswork by consideringherole of meaningsas
well asallowing signalsof arbitrarylength. Thestructure
of thisarticleasfollows. First, we outlinetheMDL prin-

ciple andintroducea novel hypothesispace. We then
discussssuesof stability andlearnabilityin the context

of culturalevolution. Finally we illustratethe impactof

meaningspacecompleity on the stability of composi-
tional language. Our main goal is to establishproper

ties of compositionalanguagerelative to a more sound
modelof linguistic generalisation.

Hypothesis Selection by MDL

Ranking potential hypothesedy minimum description
lengthis a highly principledandvery elegantapproach
to hypothesisselection(Li & Vitaryi, 1997). The MDL
principle canbe derivedfrom Bayess Rule,andin short
stateghatthe besthypothesidor someobsenreddatais
theonethatminimisesthesumof (a)theencodindength
of thehypothesisand(b) theencodindengthof thedata,
whenrepresentedn termsof the hypothesis. A trade-
off then exists betweensmall hypotheseawvith a large
dataencodinglengthandlarge hypothesesvith a small
dataencodinglength. Whenthe obsened datacontains
no regularity, the besthypothesids onethat represents
the dataverbatim, as this minimisesthe dataencoding
length. However, whenregularity doesexist in the data,
asmallerhypothesiss possiblewhich describeshereg-
ularity, makingit explicit, and asresultthe hypothesis
describesnorethanjustthe obseneddata. For thisrea-
son,the costof encodingthe dataincreasesMDL tells
ustheidealtradeof betweerthelengthof thehypothesis
encodingandthe lengthof the dataencodingdescribed
relative to the hypothesis. More formally, given some
obsened dataD anda hypothesisspaceH the besthy-



pothesigyp, is definedas:

hmow = min{Le, (h) + Le,(DIh)} (1)
whereLc, (h) is the lengthin bits of the hypothesish
whenusingan optimal codingschemeover hypotheses.
Similarly, Lc,(D|h) is thelength,in bits, of theencoding
of the obseneddatausingthe hypothesidh. We usethe
MDL principleto find the mostlikely hypothesidor an
obsenedsetof meaning/signapairspassedo anagent.
Whenregularity existsin the obseredlanguagethe hy-
pothesiswill capturethis regularity, whenjustified, and
allow for generalisatiobeyond whatwasobsered. By
employing MDL we have a moretheoreticallysolid jus-
tificationfor generalisationThenext sectionwill clarify
the MDL principle — we introducethe hypothesispace
andcodingschemes.

The Hypothesis Space

We introducea novel modelfor mappingstringsof sym-
bolsto meaningswhich we terma Finite StateUnifica-
tion Transduce(FSUT).Thismodelextendsthescheme
usedby Teal et al (1999)to includemeaningsandvari-
ablelengthstrings. Given someobsened data,the hy-
pothesisspaceconsistsof all FSUTswhich are consis-
tent with the obsened data. Both compositionaland
non-compositionalanguagescan be representedising
theFSUT model.

Throughoutthis paper a meaningis definedasa set
of featuresrepresentedy a vector with eachfeature
taking a value. A meaningspaceprofile describeghe
structureof a meaningspace.For example,the meaning
spaceprofile (3,3) definesameaningspacewith two di-
mensionseachdimensionhaving threepossiblevalues.
Signalsarejust stringsof symbols(of arbitrarylength)
drawn from somealphabe®. A Finite StateUnification
Transduceiis specifiedby a 6-tuple (Q,%,Q,0,qo,0e)
whereQ is the setof statesusedby the transducerZ
is the alphabetfrom which symbolsare dravn, and Q
is the meaningspaceprofile which definesthe structure
of the meaningspace. The transitionfunction & maps
state/symbopairsto a new state,alongwith the (possi-
bly underspecified)meaningcorrespondingo that part
of thetransducerTwo statesgp andgr neecdto bespeci-
fied,they aretheinitial andfinal staterespectrely. Con-
sideranagentA, which recevvesa setof meaning/signal
pairsduringacquisition.For example asimpleobsened
languagemight betheset:

L1={({2,1},cded, ({2,2},cdgh, ({1,2},abgh }

Figurel(a)depictsan FSUTwhichmodelsL;. We term
this transducethe prefixtreetransducer- the obsered
languageandonly the obseredlanguagés represented
by the prefix treetransducer The power of the FSUT
modelonly becomesapparentvhenwe considermpossi-
ble generalisationsmadeby meming statesandedgesn
the transducer Figure 1(c) shavs a compressedrans-
ducer Here,the someof the statesand meaninglabels

attachedo the edgesin the prefix tree transducehave
beenmeiged. Therearetwo memge operations:

1. StateMerge. Two states); andg, canbemegedif the
transduceremainsconsistentAll edgeghatmention
g1 or g2 how mentionthe new state.

2. Edge meige. Two edgese; ande, canbe memgedif
they sharethe samesourceandtarget statesand ac-
ceptthe samesymbol. The resultof merging the two
edgeds anew edgewith anew meanindabel. Mean-
ingsaremermgedby finding theintersectiorof thetwo
componentmeanings. Thosefeatureswhich do not
have valuesin commontake the value? — a wildcard
which matchesall values.As fragmentsof the mean-
ingsmaybelost, acheckfor transduceconsisteng is
alsorequired.

Figure 1(b) illustrateswhich statemeige operations
areappliedto the prefix treetransduceim orderto com-
pressit. Figure 1 is simple example, as the resulting
transducedoesnotgeneralizeonly theobseredmean-
ing/signalpairscanbe acceptedr produced.

Encoding L engths

In orderto applythe MDL principle we needan appro-
priatecodingschemdor: (a) thehypothesesand(b) the
datausingthe given hypothesis. Theseschemegorre-
spondto Lc, (h) andLc,(D|h) introducedn Equationl.

Therequiremenfor the codingscheme.c, is thatsome
machinecantake the encodingof thehypothesisandde-
codeit in sucha way that a uniquetransduceresults.
Similarly, thecodingof thedatawith respecto thetrans-
ducermustdescribethe datauniquly. To encodeatrans-
ducerT = (Q,%,Q,3,00,0r) containingn statesandm

edgeswe mustcalculatethe spacerequired,in bits, of

encodinga state(Sgate = 10g2(n)), @ symbol(Ssymbol=

logz(|Z])), andameaningSeaning= ¥1°11002(Qi +1)).

Theencodingengthof thetransducers then:

Sr = M{2Sxate + Ssymbol+ Smeaning + Sxate

which correspond$o encodingthe transitionfunction d
along with the identity of the acceptingstate. To en-
able the machineM to uniquely decodethis tranducer
we mustalsospecifythelengthsof constituenparts.We
termthis partof theencodingheprefixblodk:

Sprefix =Syae+ 1+ Ssymbol‘*‘ 1+ Smeaning+ 1

To calculatel ¢, (h) we thenusethe expression:

Lc, (h) = Sprefix + Sr 2

Thedataencodingengthis far simplerto calculatethan
the grammarencodinglength. For somestring s com-
posedof symbolswiw; ... wigy we needto detailthetran-
sition we chooseafter after acceptingeachsymbolwith

respecto thegiventransducerThelist of choicesmade
describesa unique path throughthe transducer Addi-

tionalinformationis requiredwhenthetransduceenters



(a) Prefix Tree Transducer
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(c) Compressed Transducer

Figurel: (a) Theprefix treetransducer(b) The statemeige operationgequiredto inducethe compressettransducer

shavnin (c).

an acceptingstateasthe transducercould eitheraccept
the string or continueparsingcharactersasthe accept-
ing statemight containa loop transition. Given some
dataD composewf p meaning/signagbairs,Lc,(D|h) is
calculateddy:

p s

Le, (DIh) = Z Zl{logzaj +F(sj)} 3)
44

wherez;j is the numberof outward transitionsfrom
thestatereachedafterparsingj symbolsof theith string.
ThefunctionF handlegheextrainformationfor accept-
ing states:

F(s)) = 1 : whenthetransducersin gr
SIV=1 o otherwise

Prefix tree transducersre compressedby applyingthe
mergeoperatorslescribedbore. We useahill climbing
search.All the memge operatorsaareappliedin turn and
theonewhich leadsto thegreatesteductionin Lc, (h) +
Lc,(D|h) is chosen. The processis repeateduntil this
expressiorcannotbe minimisedfurther.

Iterated L earning

Cultural evolution transmitsinformation down genera-
tions by non-genetioneans. The cultural evolution of
languageresultsfrom languageusersinheriting the lin-
guistic behaiour of previous generations. We model
this processusing the IteratedLearningModel (Kirby,
in pressb). Eachgeneratiorconsistsof a single agent
which obsenesthe linguistic performanceof the agent
in the previousgenerationThis processs repeatedver
(usually)thousand®f generationsUnderconditionsof
perfecttransmission the languageof eachgeneration
would be identical. This is not how humanlanguage
works, as real languageuserssuffer from the poverty
of the stimulus languageusersonly ever seea fraction
of possibleutterancesyet are capableof producingand
comprehendingan ostensiblyinfinite numberof utter
ances. Obviously, languageusersmake generalisations

from languagethey have obsened. The sparsityof lan-
guageexposureis modelledhereusingacommunication
bottlene&. The bottleneckis imposedon the agentsin
our simulationsby restrictingthe numberof utterances
eachgeneratiorobseres.Initially thisrestrictionresults
in eachgeneratiorhaving a differentlanguagethe lan-
guagechangeslown thegenerationswe have adynamic
system.

More preciselytheiteratedearningmodelconsistof
aserief learneravhicharecalledonin turnto express
arandomsubsebf the meaningspaceo thenext learner
in the series If the meaningspaceconsistof n different
meaningssomenumberm (m < n) of distinctrandom
meaningsareobsenedby eachagent,althoughthetotal
numberof meaningsobsened may be larger thann as
somearerepeatedWe areinterestedn languagelesigns
that resultin stability. For stability to occurthe whole
mappingfrom meaninggo signalsmustbe recoserable
from limited exposurethelanguagenustbelearnable

In the experimentsthat follow we analysecomposi-
tionality, the propertyof languagen which the meaning
of a sentences a function of the meaningf its parts.
Are compositionalanguagedesignsstable Ve contrast
compositionalitywith non-compositionalityi.e., signals
whosemeaningis not a function of the meaningof its
parts. In our model non-compositionalanguagesare
thosewhere the mappingfrom meaningsto signalsis
random.

Compression and L earnability

The evolving languageasit passeshroughgenerations
of languagauserscanbe seemasa complex system.We
areinterestedn the natureof steadystates- attractors-
thoselanguagesvhich are stableand persist. Oneway
of characterisingtablelanguagess in termsof expres-
sivity. If alanguagecanexpressall possiblemeanings
andis learnablehenit will persist.Insteadof modelling
thefull iteratedlearningmodelwe try andestablishthe
conditionsfor stability. To do this we constructwo lan-
guages:somecompositionalanguagel conp andsome
randomlanguagé_nonconp. Throughexperimentatiorwe
identify thelearnabldransducers/hich possesthemin-



imumdescriptionength,describedbore, for bothtypes
of languageWe conductMonte Carlosimulationgo es-
tablishhow expressienessdependson the structureof
themeaningspace.

Compositional Languages

To constructacompositionalanguageachfeaturevalue
is assigneda unique word which is usedin forming
the signal for meaningscontainingthat featurevalue.
Uniquenesss nota necessityfor featurevalues— values
occurringin otherfeatureansharethe sameword. For
example,given a meaningspaceprofile (3,3) we could
constructhe compositionalanguagé.:

{ ({1,1},23,({1,2},ab), ({1,3}, a0,
({2,1},ba), ({2,2},bb), ({2,3},bo),
({3,1},ca), ({3,2},¢b), ({3,3},¢0) }

For purposeof clarity singlesymbolwordsareusedin

thesignalto denotefeaturevalues.Variablelengthwords
couldhave beenused.

L, =

ci{3 7}

c/{? 3}

Figure2: TheMDL transducefor language$, andLs.

Which is the besthypothesisaccordingto MDL, for
this data? Figure 2 depictsthe MDL transducemhich
acceptshis language Considerthelanguagd.s = L, —
{({3,3},c0)}. Exactly the sametransducelis induced
by MDL whenLj is obsened. Thetransducehasgen-
eralisedfrom the datato accountfor the missingsen-
tence. Ly is learnable even whenthe learneris not ex-
posedto all the sentencesn L,. The structureof the
transducedepictedin Figure?2 is typical for a compo-
sitionallanguage.Thesetransducersrelearnablefrom
compositionalnput. From now on we termthesetrans-
ducerscompessedransduces. Equivalentrandomlan-
guagesare constructedvy assigningrandomsignalsto
eachmeaning.OccasionallftheMDL transducefor ran-
domlanguagess smallerthanthe prefix treetransducer
but correctgeneralisatiowannotoccur Below, we anal-
ysethe propertieof thesetwo familiesof transducer

M eaning Space Structure Affects
L earnability and Stability

In this sectionwe investigatehow meaningspacestruc-
ture impactson the learnability and stability of com-
positionaland non-compositionalanguages. We con-
sidertwo typesof transducer:compressedransducers
andprefixtreetransducersBy carryingout Monte Carlo

simulationswe shav how, (a) the size of the communi-
cationbottleneck,and(b), the meaningspacestructure,
affectsthedegreeof languagestability with respecto the
iteratedlearningmodel.

Preliminaries

Usually the proportionof the meaningspaceexpressed
by an agentat eachgenerationis given by the number
of randommeaningshe agentmust express. The fol-
lowing analysisequiresa moreconcretemeasuref the
degreeof exposureto the meaningspace.For example,
given a meaningspacecomposef n meaningsanda
bottlenecksize of m, significantlyfewer thann distinct
meaningwill be obsered. Below, we measurehe bot-
tlenecksizein termsof meaningspacecoverage whichis
just the expectedproportionof the meaningspacesam-
pledwhenpicking atrandom.Theexpectedcoveragec,
whenpicking r elementsat random(with replacement)
fromnisc=1—(1-3)"

Stability

A stablelanguages onewhich survivesthecommunica-
tion bottleneck- it occurswhena transducers induced
with maximumexpressiity. For example, Figure 3(a)
shaws that, given a compositionallanguage the com-
pressedransducereachesnaximumexpressvity after
seeingonly 20% of the meaningspace.This is because
exposureto featurevaluesis requiredratherthan ex-
posureto whole meaninggqrecall the structureof com-
pressedransducershavn in Figure2). Maximum ex-
pressvity resultswhenall the featurevalueshave been
obsered,andasaresult,inductioncanaccounfor novel
meaningswvhoseindividual featurevalueshave already
beenseen. As one would expect, the expressvity of
a prefix tree transducerthe besthypothesisor a non-
compositionallanguage increasedinearly with cover
age.Here expressvity dependentheexposurgowhole
meanings. In order for the entire meaningspaceto be
communicatedaninfinitely largebottleneckis required:
prefixtreetransducersvill rarelyresultin maximumex-
pressiity.

L earnability

Given a compositionallanguageas input which trans-
ducerresultsin thesmallesidescriptioniength?In terms
of transducesize,compressedhachineswill alwaysbe
smaller but whatinfluencedoesthedataencodindength
have? Figure 3(b) shaws the relative size of encoding
lengthsfor the compressedransducewnersusthe prefix
transducerWhenthesizedifferencdies aborethebase-
line compressedransducersre chosen,andbelow the
baseline prefix treetransducersirechosen.Figure 3(b)
illustratesthat compresseanachinesare always prefer
able. This is not the casewhenwe consideramplified
bottlenecks- wherewe multiply thefrequeng of mean-
ings passedhroughthe bottleneck.For future work this
obsenation is relevant, aswe intendto investigatedif-
ferentprobability distributions over the meaningspace.
Figure 3(c) shows the resultsfor a 100-fold amplified
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Figure3: (a) Expressiity asafunctionof coveragefor prefixtreetransducerandcompressettansducergp) depicts
the sizeadwantageof compressethachinever prefix treemachinesthe MDL searchalwayschoosesompressed
machines(c) shavs how anamplifiedbottleneckaffectslearnability A meaningspacestructureof (2,2) wasused.

bottleneck. For small coveragevaluesthe prefix tree
transduceis preferable.The MDL measuregrefersthe
transducewhich doesnot generalisethe lessevidence
we have of the samplespacethelesswe arejustifiedin
accuratelypostulatingthe existenceof unseermembers
of the samplespace.This justificationbecomeavealer
the morewe seeof the samplespace.MDL reflectsthis
intuition by preferringcompressetransducersat higher
coveragevalues.

Competing L anguages

Above,wearguedthatcompositionalanguagesremore
stablethannon-compositiondanguagesin short,com-
pressionandasa resultgeneralisatiorandhigh expres-
sivity, is only possiblewith compositionallanguages.
Non-compositionalanguagesby definition, lack ary
form of regularityin themappingbetweermrmeaningsnd
signalsandarethereforefar lesscompressibleWe also
illustratedthatfor compositionalanguageshigh expres-
sivity throughcompressions achiezablefor low mean-
ing spacecoverage,as induction via compressions a
function of degreeof exposureto featurevalues,rather
thanwhole meanings.This tells us that the size of the
bottleneckvhichmaximisegherelative stability of com-
positionallanguageversusnon-compositionalanguage
is afunctionof meaningspacestructure.

Ultimately, we are interestedin the question: Un-
derwhatcircumstancess compositionalanguagemost
likely to occur? But now we canreformulatethe ques-
tion: Whenis therelative stability of compositionalan-
guagesversusnon-compositionalanguagesat a max-
imum? The relative stability of a compositionallan-
guageover a non-compositionalanguagecanmeasured
by comparingthe expressvity of thetransducershosen
by MDL for eachlanguagetype. For example,given
somecompositionalanguagé.conp Weidentify themost
likely hypothesison the basisof MDL. This gives us

a transducefMcomp With expressiity Ecomp.  Similarly,
for a non-compositionalanguagélnonconp We identify
Thonconp With expressiity Enonconp. Therelative stabil-
ity measureells how muchof a stability advantagecom-
positionallanguageprovides.We denotethis quantityas
R anddefineis as:

_ Ecomp
Ecomp + Enonconp

Relative Stability of Compressed Machines vs.
Prefix Machines for Different Numbers of Values
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Figure4: Therelative expressiity, R, for a two-feature
meaningspacdor differentnumbersf values.

Now, constructingcompositionalanguagedy fixing
the numberof featuresbut varying the numberof fea-
turevaluesfor differentmeaningspacecoveragevalues,
andthenmeasuringR, will provide aninsightinto how
R dependsn the meaningspacestructure. Figure4 il-
lustratesthis dependeng The striking featureof these
resultsis that compositionalityis mostlikely, or more
preferablewhenthenumberof valuegperfeatures large
andthemeaningspacecoveragds small. The payof, R,



in thenumberof valuesperfeaturedecreaseasthenum-
berof valuesncreasesSimilarresultsoccurwhenwefix
thenumberof valuesperfeaturebut increasghenumber
of features.Again, smallbottlenecksandmary features
leadto a large payof when consideringcompositional
languageslIt appearghatthe more complex the mean-
ing space the higherthe R value, especiallyfor small
bottlenecks However, R doesnotincreasdinearly with
meaningspacecompleity, the payof achievedthrough
increasedneaningspacecompleity deteriorates.
Perhaps moreinformative analysisresultswhenwe
considerthe problem of communicatingabout some
fixednumberof objects.For example giventheproblem
of describingl0000bjects,which meaningspacestruc-
ture leadsto the occurrenceof compositionalanguage
beingmostlik ely? Figure5 showvs thatcompositionality
is mostlikely whenthe 1000 objectsare discriminated
moreby featureghanby featurevalues.The greaterthe
numberof featuresthe smallerthe numberof obsera-
tions requiredbeforeall featurevaluesare seen. Only
when mary featurevalueshave beenobsened canin-
ductionjustifiably be applied. However, asbefore,this
payof doesnotincreasdinearly with thenumberof fea-
tures.After a point, morefeaturesffer little advantage.

Relative Stability for Different Meaning Spaces
Describing Approximately 1000 Objects
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Figure5: Therelative expressiity, R, for differentways
of describingapproximatelyl0000bjects.

Theseresultstell us when the stability of composi-
tional languages at a maximum,in comparisorto non-
compositionallanguage. Theseconditionsprovide the
first stepsof an explanationfor the emegenceof com-
positionalityin humanlanguage.The poverty of stimu-
lus coupledwith thesupposedomplexity of thehominid
mind areexactly theconditionsunderwhichthesesxper
imentspredictcompositionalanguagds mostlikely to
emepge.

Conclusions

By providing a soundbasisfor inductionwe have ad-
dresseccriticisms of the poorly justified, and arguably
overly strong,inductive biastypical of earlierwork on
the cultural evolution of syntacticlanguage. However,
the chief point we aim to make is that compositionality
is advantageousinderconditionsspecificto hominids:

1. Complex meaningspacestructue: Hominids carne
up their perceved environmentinto mary featuresat
least, their perceptionis unlikely to be restrictedto
holistic experiences.

2. Thepoverty of the stimulus: The needfor a commu-
nication systemwith high expressvity is requiredif
meaningsravn from acomplex meaningspaceareto
be communicatedHowever, limited exposureto this
massof possibleutterancess all thatis requiredfor
unlimitedcomprehensioandproduction.

Using a mathematicalmodel, Nowak, Plotkin, &
Jansen(2000) presenta similar agumentwith respect
to the geneticevolution of syntacticstructure:the com-
plexity of the perceved ervironmentleadsto a pressure
for syntax.Our argumentis similar in spirit, but demon-
stratesthat naturalselectionis not the only mechanism
which canexplaintheemepgenceof syntax.
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