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Is the range of languages we observe today explainable in terms of which languages can 

be learned easily and which cannot? If so, the key to understanding language is to 

understand innate learning biases, and the process of biological evolution through which 

they have evolved. Using mathematical and computer modelling, we show how a very 

small bias towards regularity can be accentuated by the process of cultural transmission 

in which language is passed from generation to generation, resulting in languages that are 

overwhelmingly regular. Cultural evolution therefore plays as big a role as prior bias in 

determining the form of emergent languages, showing that language can only be 

explained in terms of the interaction of biological evolution, individual development, and 

cultural transmission. 

1. Introduction 

Why is language the way it is and not some other way? Answering this why 

question is one of the key goals of modern linguistics. We can reframe this 

question as one about language universals in the broadest sense. Universals are 

constraints on variation, and include fundamental structural properties of 

language, such as compositionality, recursion, and semi-regularity. Language 

has arisen from the interactions of three complex adaptive systems: individual 

development, biological evolution, and cultural transmission, so a satisfactory 

approach to language should take into account each of these three systems, and 

how they interact. 

Within generative linguistics, language structure is explained in terms of 

innately determined properties of the acquisition mechanism, and the constraints 

it places on developmental pathways (Chomsky, 1965). Whilst the generative 

approach is often contrasted with linguistic functionalism, which focuses on 

language use rather than acquisition, functionalism aims to explain aspects of 

language structure in terms of processing capacity, which is also an innately 

determined property of individual language users, though not necessarily one 

that is specific to language (see Kirby, 1999 for discussion). These approaches 

shift the burden of explaining linguistic structure to one of explaining how our 
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innate learning biases arose. Therefore explanations of linguistic structure are 

shifted to the domain of biological evolution, in which our innate prior biases 

are shaped. These in turn affect individual development, and therefore ultimately 

the universal properties of human language. 

2. Cultural Transmission and the Bottleneck Effect 

The arguments made so far have neglected the problem of explaining through 

what mechanism the properties of individuals give rise to properties of 

languages (Kirby, 1999). Recent work has addressed this issue using iterated 

learning models, computer programs comprising simple models of language-

learning individuals that are then placed in a simulated population so that the 

dynamics arising from their interactions can be studied (e.g. Batali 1998; Kirby, 

2001). The simulated individuals can learn from one-another, and so language 

can be passed from one generation of speakers to the next, a process which gives 

rise to the cultural evolution of language. Fig. 1 shows how iterated learning 

forms a bridge between individual bias and language structure. 

 
Figure 1: The universal structure of human language arises out of the process of iterated learning, an 

adaptive system operating on a cultural time-scale, driven by individual biases that are ultimately 
shaped by biological evolution. 

One of the most basic and pervasive properties of human languages is 

regularity. That is, if one meaning is expressed using a particular rule or 

construction, then it is likely that another meaning will also make use of the 

same pattern. We might therefore expect regularity to arise from some 

fundamental aspect of our language faculty – in other words our prior bias might 

be expected to reflect this central universal strongly. However, in a wide variety 

of models using a diverse set of learning algorithms and assumptions about 

signal and meaning spaces (e.g. Batali, 1998; Kirby, 2001), the overwhelming 

conclusion is that strong biases are not necessary to explain the emergence of 



 

pervasive regularity. It seems that regularity emerges whenever the number of 

training samples that the learners are exposed to is small. If there is too little 

data stable languages do not emerge, while if there is too much training data, the 

emergent languages are not regular, but instead express meanings in an ad hoc 

way. Kirby, Smith & Brighton (2004) explain this behaviour in terms of 

adaptation to the bottleneck ! the limited amount of linguistic examples from 

which each speaker must learn the language. A regular rule can persist into the 

next generation so long as the learner sees only one example of it, but an 

irregular expression can only persist into the next generation if the learner is 

exposed to exactly that expression. 

3. Iterated Bayesian Learning 

While a wide range of learning algorithms, with a correspondingly wide range 

of biases, have resulted in the emergence of regular linguistic structure, it is very 

hard to determine exactly what the biases inherent in the various models of 

learning actually are. Because of this, it is difficult to be sure of the generality of 

the result. To address this issue, we have begun to explore a Bayesian version of 

iterated learning, which has the advantage that we can make the biases of 

learners completely explicit, and manipulate them freely.  

In the Bayesian framework, constraints on both acquisition and processing 

can be characterised as a probability distribution over possible languages. In this 

view, the language learner is faced with the task of forming a hypothesis about 

the language of her speech community on the basis of data that she is exposed 

to. She aims to assess the posterior probability, P(h|d), of a hypothesis (i.e. a 

language) h, based upon the observed data d. Bayes’ rule indicates that this 

should be done by combining two quantities: the likelihood, P(d|h), being the 

probability of the observed data d given hypothesis h, and the prior probability, 

P(h), indicating the strength of the learner’s a priori bias towards the hypothesis 

h. According to Bayes rule the posterior probability of a hypothesis is 

proportional to the product of the associated likelihood and prior probability, as 

shown in Eq. (1). In other words, the learner must take into account how well 

each possible hypothesis predicts the data seen and how likely each hypothesis 

is a priori. Conceived in this way, the influence of the learner’s language 

acquisition device (Chomsky, 1965) and language-processing machinery is 

characterised as the prior probability distribution over hypotheses. 
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Griffiths & Kalish (2005) investigated iterated learning under the 

assumption that the learners first calculate the posterior distribution over 

languages, and then sample from this distribution (i.e., they choose a language 

with a probability equal to its posterior probability). By viewing the process of 

iterated learning as a Markov chain (c.f. Nowak et al., 2001), they were able to 



  

prove that such a process will result in a distribution of languages that exactly 

mirrors the prior bias.
a
 This is a startling result, and one that renders the results 

from previous simulations mysterious, as the process of cultural evolution 

makes no independent contribution to the emergent languages. In particular, the 

number of training samples – the bottleneck size – has no effect whatsoever on 

the probability of each type of language emerging. Why then is the bottleneck 

size the crucial factor in all the simulation models of iterated learning? 

The answer to this puzzle turns out to hinge on our assumptions about what 

a rational learning agent should do when faced with a choice between languages. 

It might seem more rational for learners to pick the language with the maximum 

a posteriori probability (which in Bayesian learning theory is called the MAP 

hypothesis), rather than sampling from this distribution, as in Griffiths and 

Kalish’s approach. This would maximise the chance of picking the same 

language as that spoken by the previous agent. This small difference between 

the sampling and MAP learner turns out to have huge implications for the 

dynamics of iterated learning.  

To demonstrate why this is the case, we can work through a simple 

idealised model which nevertheless reflects the general case of iterated Bayesian 

learning. The first step in constructing such a model is to decide on the form of 

the space of logically possible languages. For this example, we aim to explain 

the origins of regularity in language. Regularity here can be seen as an umbrella 

concept that covers a variety of aspects of language. We will treat a language as 

a deterministic function from discrete meanings to discrete classes. Depending 

on how the model is interpreted these could be thought of as classes across a 

morphological paradigm, or an indication of the form of a compositional 

encoding of a particular meaning. The idea is that a language in this model is 

completely regular if all its meanings belong to the same class, and is 

completely irregular if all the meanings belong to different classes. 

Learners are exposed to a set of m utterance-meaning pairs, each of which 

consists of a meaning and the class used to express it. They then use Bayes rule 

to find the most likely language to have generated this set of meaning-class 

pairs. Finally, this language is used to generate a new set of meaning-class pairs. 

This is done by sampling m meanings at random and using the hypothesized 

language to generate classes for each. In addition, we model noise in the system 

by randomly picking a different class to the correct one for each meaning with 

probability !. The dynamics of this system can be completely characterized for a 

particular value of m (the bottleneck) and ! (the noise factor), by looking at the 

                                                             
a
 Strictly speaking, this is only the case if the prior bias results in a dynamical 

system that is ergodic. Simplifying, this essentially means that every language 

in the space must be at least potentially “reachable” by cultural evolution. 



 

probability that a language l1 spoken by one agent will give rise to a learner 

choosing a language l2, for all pairs of languages (l1,l2), as shown in Eq. (2). x = 

{x1,…,xm} is the set of meanings chosen at random, and y = {y1,…,ym} is the 

corresponding set of classes output by the speaker, and X and Y are the possible 

sets of meanings and output classes respectively.  
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The probability that a language is the MAP language will normally be either 

1 or 0, but where several languages are tied with equally high posterior 

probability, this value will be equal to 1 divided by the number of such 

languages. Eq. (3) shows how the classes are produced for a given language. We 

can think of P(l2|l1) as a matrix of transitions from language to language (what 

Nowak et al. 2001 call the Q-matrix), defining a Markov chain over languages. 

The first eigenvector of this transition matrix gives the stationary distribution 

for the Markov chain, indicating the distribution over languages that will emerge 

out of iterated learning (provided the underlying Markov chain is ergodic). We 

now have everything in place to determine what universal properties will 

emerge for a given bottleneck, noise-term and prior bias. 
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What is a reasonable prior bias for the language model we have described? 

One possibility is to have a completely uninformative prior, with every language 

being equally likely. Unsurprisingly, this results in no clear preference for one 

language over another in the final result. We can infer from this directly that the 

prior does indeed matter. Since language exhibits regularity, human language 

learners cannot be “blank slates”. Instead, we make the minimal assumption that 

learners will expect future events to be similar to previous events. If we have n 

meanings and k classes, this assumption is embodied in the prior specified by 

Eq. (4), where nj is the number of meanings assigned to class j, " is a parameter 

of the prior, and #(x) is the generalised factorial function, with #(x) = (x-1)! 

when x is an integer. The specific form of the prior can be justified both from 

the perspective of minimum description length (Rissanen, 1978), and from the 

perspective of Bayesian statistics, where P(l) appears as a special case of the 

Dirichlet-multinomial distribution (Johnson & Kotz, 1972). " controls the 

strength of the prior, or alternatively how much of a bias towards regularity is 

built into the model. Low values of " create a strong regularity bias, and high 

values a much weaker one. 
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The key question which we wish to address is: how strong does this bias 

towards regularity need to be? As we mentioned above, Griffiths and Kalish 

(2005) have shown that, for a sampling learner, the expected distribution of 

languages exactly reflects the prior. So, since languages are overwhelming 

regular, this suggests the prior bias must be very strong. With the MAP learner, 

however, this turns out not to be the case as long as there is a bottleneck on 

linguistic transmission.  

For example, we looked at a simple model of languages with four possible 

meanings (n = 4), and four possible classes for each meaning (k = 4). From the 

perspective of regularity, there are five different types of language in this space: 

all meanings in the same class; three meanings in one class and one in another; 

two meanings in one class and the other two in a second class; two meanings in 

one class and the other two in two different classes; and all four meanings in 

different classes. For shorthand, we label these types: aaaa, aaab, aabb, aabc, 

and abcd respectively. The first row of Table 1 shows the prior probability of 

these five types of languages under the prior P(l) described above, with " = 10, 

so that there is only a weak preference for regularity. 

Table 1. The predicted distribution of language types for different bottleneck sizes, in terms of the 

probability of a particular language of each type. The prior distribution is shown for comparison. As 

the bottleneck on linguistic transmission tightens, the preference for regularity is increasingly over-
represented in the distribution of languages. 

Languag

e 

aaaa aaab aabb aabc abcd 

Prior 0.00579 0.00446 0.00409 0.00371 0.00338 

m = 10 0.145  0.00743  0.000449  0.000324  0.0000335  

m = 6 0.175  0.00566  0.000150  0.000158  0.0000112 

m = 3 0.209  0.00329  0 0.0000370  0 

Given this prior, the expected distributions of languages by type for 

different bottleneck sizes and an error-term (!) of 0.05 are shown in the 

remainder of Table 1. What is immediately obvious from these results is that the 

prior is not a good predictor of the emergent properties of the languages in the 

model. The a priori preference for regularity is being hugely over-represented in 

the languages that evolve culturally. In fact the strength of the bias often has no 

effect on the resulting stationary distribution – it is the ordering it imposes on 

languages that is most important. Furthermore, as with the simulation models, 

the tightness of the bottleneck on linguistic transmission is a determining factor 

in how regular the languages are. 

Of course, languages typically are not completely regular. Irregularity is a 

common feature of morphological paradigms. This irregularity is not randomly 



 

distributed throughout a language, but rather appears to correlate with frequency 

– for example, the ten most common verbs in English are all irregular in the past 

tense. Previous iterated learning simulations have suggested that this can be 

explained in terms of adaptation to cultural transmission. Put simply, frequent 

verbs can afford to be irregular, since they will have ample opportunity to be 

transmitted faithfully through the bottleneck (Kirby, 2001). 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4 5 6 7 8

Meaning

m = 10

m = 3

Figure 2. Irregularity correlates with frequency. These are results from simulations using 8 meanings 

and 4 classes, with ! = 0.05 and " = 1. They show the proportion of languages in which each 

meaning was expressed using an irregular construction. The frequency of each meaning was 

inversely proportional to its rank (counting left to right). A meaning was counted as regular if its 

class was in the majority. 

To test this intuition, we made a simple modification to our model. Rather 

than picking meanings at random from a uniform distribution, they were skewed 

so that some were more common than others. The results in Fig. 2 show how 

often each meaning was irregular (i.e. in a minority class) for a language model 

with 8 meanings and 4 classes. The frequency of each meaning decreases from 

left to right in this graph, demonstrating that the model results in a realistic 

frequency/regularity interaction. 

4. Conclusion 

Language involves three adaptive systems: biological evolution, individual 

development, and cultural transmission. An adequate account of the origins of 

linguistic structure must crucially focus on the interactions between these 

systems. Our contribution has been to demonstrate that the innovation of cultural 

transmission radically alters the relationship between our innate learning biases 

and our linguistic behaviour. 

The implications of this for the study of language evolution are, firstly, that 

our innately given bias cannot be directly inferred from our phenotype (i.e. 

language). More specifically, weak innate biases can nevertheless lead to strong 



  

universals wherever there is a bottleneck on the cultural transmission of 

language. This leads naturally to an explanation of frequency-related patterns of 

regularity and irregularity in language assuming only a weak expectation of 

predictability on behalf of learners. Finally, this result demonstrates that we 

must be cautious in assuming that adaptive structure necessitates an explanation 

in terms of the selective evolution of innate traits that are specifically linguistic. 

Regularity is an adaptive feature of language but we have shown that the 

mechanism for adaptation need not be biological. 

In this paper we have not looked at the final interaction in Fig. 1 – between 

culture and evolution. Much work remains to be done. However, we note that 

our result shows iterated learning can shield the strength of innate biases from 

the view of natural selection. The implications of this are beginning to be 

worked out, but it is clear that an account of the biological evolution of the 

human language faculty cannot be complete if it fails to take into account the 

interactions between innateness, culture and linguistic structure. 
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