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From UG to Universals:
Linguistic adaptation through iterated learning

Simon Kirby*, Kenny Smith & Henry Brighton

1 Introduction

A fundamental goal for linguistics is to understand why languages are the way they are and
not some other way. In other words, we seek to explain the particular universal properties of
human language. This requires both a characterisation of what these universals are, and an
account of what determines the specific nature of these universals. In this paper we examine a
particular strategy for linguistic explanation, one which makes a direct link between language
universals and an innate Universal Grammar (UG). It seems reasonable to assume that, if UG
determines language universals, then language universals can be used as evidence for the
structure of UG. However, we will argue that this assumption is potentially dangerous. Our
central message is that we can seek linguistic evidence for UG only if we have a clear under-
standing of the mechanisms that link properties of language acquisition on the one hand and
language universals on the other.

In the following section we will discuss what is actually meant by the term UG. There are
a number of differing senses of the term, but a neutral definition can be given in terms of prior
learning bias. We will then sketch an account of the universal properties of language in terms
of this bias.

In section 3, we will compare this kind of explanation to an alternative approach, linguis-
tic functionalism, which focuses on the use of language. A well-recognised difficulty with this
approach is the problem of linkage: what is the mechanism that links universals to linguistic
functions? We claim that not only does the UG-approach suffer exactly the same problem, but
the solution is the same in both cases.

Section 4 sets out this solution in terms of Iterated Learning, an idealised model of the
process of linguistic transmission. We survey some of the results of modelling iterated learn-
ing to show how it can help solve the problem of linkage.

Finally, in the closing sections of the paper we argue that language universals, and lin-
guistic structure more generally, should be viewed as adaptations that arise from the funda-
mentally evolutionary nature of linguistic transmission.

2 What is Universal Grammar?

Before we discuss the role of UG in explaining language universals, we need to be clear what
we mean. Unfortunately, there is some variation in how the term is used (see Jackendoff
(2002) for an excellent review of the literature):

* Language Evolution and Computation Research Unit, Philosophy, Psychology and Language Science, Univer-
sity of Edinburgh, 40, George Square, Edinburgh, UK, EH10 4EQ. Correspondence should be addressed to the first
author: simon@ling.ed.ac.uk



UG as the features that all languages have in common. Clearly, this equates UG exactly with
universals. This is not the sense of UG that we will be concerning ourselves with in this pa-
per. Initially, it may seem absurd to imply that a characterisation of UG in this sense could
possibly be an explanation of the universal characteristics of human language. Rather, it may
appear only to be a description of the properties of language. However, we should be careful
about dismissing the explanatory significance of a theory of UG that “merely” sets out the
constraints on cross-linguistic variation.

In fact, it is conceivable that a truly explanatory theory of language could consist of an ac-
count of UG in this sense. Chomsky (2002) gives an illuminating analogy that makes clear
there is more than one way to explanatory adequacy in science. Consider, he suggests, the
case of the discovery of the Periodic Table in late 18th century chemistry. To simplify some-
what, chemists, through careful experimental observations of the elements, were able to un-
cover a range of regularities that made sense of the behaviour of those elements. Repeating,
periodic patterns could be seen if the elements were arranged in a particular way — approxi-
mately, as a table made up of rows of a fixed length.

In one sense we could see the periodic table as being merely a description of the behav-
iour of matter. We could claim that the discovery of the periodic table does nothing to explain
the mass of experimental data that chemists have collected. This seems wrong. Surely such a
concise and elegant generalisation is, in some sense, explanatory. The periodic table itself can
now be explained by physicists with reference to more fundamental constituents of matter,
but this does not alter the status of the table in chemistry itself.

Are linguists in the process of discovering an equivalent of the periodic table? Is there a
model of UG “out there” that has the same combination of formal simplicity and predictive
power? It is a worthy research goal, and one that is being pursued by many, but we may be
chasing phantoms. As we will argue in this paper, UG should be considered as only part of
an explanatory framework for language.

UG as the initial state of the language learning child. This sense of UG is very closely re-
lated to the previous sense. Jackendoff (2002) notes that Chomsky (1972) uses the term UG to
denote the configuration of a language-ready child's brain that sets the stage for language
acquisition. This “state-zero” can, in fact, be thought of as specifying the complete range of
possible grammars from which a maturation process “picks” a target grammar in response to
linguistic data. It is natural to equate the space of languages specified in state-zero with the
range of possible languages characterised by language universals. The main difference be-
tween this sense of UG and the previous one is that it gives UG an explicit psychological real-

ity.

UG as initial state and Language Acquisition Device. Jackendoff (2002) points out that in its
most common usage, UG is taken to correspond to the knowledge of language that the child
is born with. This consists not only of the initial state, but also the machinery to move from
this state to the final target grammar. Chomsky refers to this machinery as the Language Ac-
quisition Device or LAD. For convenience, we will consider this device to encapsulate the ini-
tial state as well as the machinery of acquisition. This means that we will treat this sense of
UG as simply a description of the LAD.

In summary, there are a number of different ways we can think about what Universal Gram-
mar actually is. This may seem like terminological confusion, but really all these senses have
something fundamental in common: they all appear to relate UG directly with universals. The
different senses we've surveyed differ primarily with respect to how UG is situated in a wider
theory of cognition. The picture is something like the one shown in figure 1. The broadly
Chomskyan program for linguistics is to uncover the properties of UG. Since UG and lan-



guage universals are coextensive, then the evidence for UG can be derived directly from a
careful characterisation of the (universal) properties of linguistic structure.

PRIMARY LANGUAGE GRAMMATICAL
LINGUISTIC » ACQUISITION » COMPETENCE
DATA DEVICE

T Defines/constrains

UNIVERSAL
GRAMMAR

Figure 1. The language acquisition device (LAD) takes primary linguistic data and gener-
ates the adult grammatical competence of a language. Universal grammar defines or con-
strains the operation of the LAD.

A sensible question is how we can characterise UG/LAD in such a way that there is a clear
relationship between the theory and constraints on linguistic variation (i.e., universals). Vari-
ous approaches are possible. For example, in Principles and Parameters theory (Chomsky,
1981) there is a direct relationship between cross-linguistic parametric variation and the ele-
ments of the model, parameters, that are set in response to input data. Similarly, in Optimal-
ity Theory (Grimshaw, 1997) variation arises from the constraint ranking that is arrived at
through the acquisition process.

The literature on machine learning (e.g., Mitchell, 1997) suggests a general way of charac-
terising the relationship between language learning and linguistic variation. We can think of
the learning task for language to be the identification of the most probable grammar that
generates the data observed. More formally, given a set of data D and a space of hypotheses
about the target grammar H, we wish to pick the hypothesis I € H that maximises the prob-
ability Pr(k | D), in other words, the probability of /i given D. From Bayes law, we have:

Py - PP

The task of the learner is to find:
arg max o, Pr(h | D) = arg max,,; Pr(D | h)Pr(h)

(We can ignore the term Pr(D) since this is constant for all hypotheses).

What is the contribution of UG/LAD in this framework? It is simply the prior bias of the
learner. This bias is everything! that the learner brings to the task independent of the data. In
other words, it is the probability Pr(h) assigned to each hypothesis hE H .

One of the interesting things about this Bayesian formulation is that it allows us to see the
classic problem of induction in a new light (Li & Vitanyi, 1993). Consider what a completely

1 This is actually a slight simplification. For a given hypothesis, /, that is not learnable, we can treat this as being
excluded from the set H (giving us a second type of information the learner brings to the learning task), or by includ-
ing it in the set and assigning it a prior probability of zero.



“general purpose” learner would look like. Such a learner would not be biased a-priori in fa-
vour of any one hypothesis over another. In other words, Pr(l) would be equal for all hy-
potheses. Such a learner would then simply pick the hypothesis that maximised Pr(D|h). In
other words, the best a learner can do is pick the hypothesis that recreates the data exactly.
Such a learner cannot, therefore, generalise. From this, we can see that any theory of language
learning must have a model of prior bias. Where does this prior come from? An obvious an-
swer is that it is innate.

Note, however, that we have said nothing about domain specificity. It is crucial that the is-
sues of innateness and domain specificity are kept separate. It is a fascinating but difficult
challenge to discover which features of the child's prior bias (if any) are there for language.
We note here only that an approach to this problem must be based on a theory of the relation-
ship between the structure of innate mechanisms and the functions to which they are put
(e.g., language learning). In other words, answers to questions about domain-specificity will
come from a better understanding of the biological evolution of the human brain.

To summarise, a central goal for linguistics is to discover the properties of UG. We argue
that, in general, this amounts to a characterisation of the prior learning bias that children
bring to bear on the task of language acquisition. Since it is Universal Grammar that leads to
universal properties of human languages, a sensible strategy seems to be to use observable
properties of languages to infer the content of UG.

In the next section, we will show that this argument suffers from a problem that has been
identified with a quite different approach to linguistic explanation: functionalism.

3 The problem of linkage

The functionalist approach to explaining language universals (see, e.g., Hawkins, 1998) seems
at first blush to be incompatible with explanations that appeal to UG. A functionalist explana-
tion for some aspect of language structure will relate it to some feature of language use. This
runs completely counter to the generativist program, which focuses on explaining linguistic
structure on its own terms, explicitly denying a place for language use “inside” a theory of
UG. If chemistry is a good analogy for the generativist enterprise, then perhaps biology is the
equivalent for functionalists. The central idea is that we can only make sense of structure in
light of an understanding of what it is used for. (See, Newmeyer (1998) and Kirby (1999) for
further discussion of functionalism and the generativist tradition.)

A particularly ambitious attempt to explain a wide range of data in terms of language use
is Hawkins’ (1994) processing theory. Hawkins main target is an explanation of the universal
patterns of word-order variation. For example, he notes that there is a constraint on possible
ordering in noun-phrases --- a universal he calls the prepositional noun-modifier hierarchy:

In prepositional languages, within the noun-phrase, if the noun precedes
the adjective, then the noun precedes the genitive. Furthermore, if the noun
precedes the genitive, then the noun precedes the relative clause.

This hierarchy predicts that, if a language has structure n in the following list, then it will
have all structures less than n.

PP[P NP[Adj N]]
2. [P WINP NJ]
3. [P IS’ NI



Hawkins’ explanation rests on the idea that when processing such structures, stress on our
working memory increases as the distance between the preposition and the noun increases.
He argues that the NP node in the parse-tree is only constructed once the head noun is proc-
essed. This means that the immediate daughters of the PP are only available for attachment to
the PP node when both the preposition and noun have been heard. Since relative clauses are
typically longer than noun-phrases, which are usually longer than adjectives, the difficulty in
processing each of these structures increases down the list.

Assuming this account is correct, does the relative processing difficulty of each structure
actually explain the language universal? Kirby (1999) points out that the identification of a
processing asymmetry that corresponds to an asymmetry in the distribution of languages is
not quite enough to count as an explanation. What is missing is something to connect work-
ing-memory on the one hand with numbers of languages in the world on the other.

The problem of linkage: Given a set of observed constraints on cross-
linguistic variation, and a corresponding pattern of functional preference,
an explanation of this fit will solve the problem: how does the latter give
rise to the former? (Kirby, 1999)

Kirby (1999) sets out an agent-based model of linguistic transmission to tackle this problem.
Agent modelling is a computational simulation technique used extensively in the field of arti-
ficial life (see Kirby (2002b) for a review of the way this field has approached language evolu-
tion). “Agents” in these simulations are simple, idealised models of individuals, in this case
language users. The details of the simulation are not important, but the basic idea is that vari-
ant word-orders are transmitted over time from agent to agent through a cycle of production,
parsing, and acquisition. In the simulations, different word-order variants appear to compete
for survival, with universal patterns of cross-linguistic variation emerging out of this compe-
tition.

These models show that for some functional explanations, processing asymmetries do in-
deed result in equivalent language universals. However, this is not always the case. In gen-
eral, hierarchical universals cannot be explained using only one set of functional asymmetries.
The particular details are not relevant here, but the moral should be clear: without an explicit
mechanism linking explanans and explanandum we cannot be sure that the explanation really
works.

At this point we might ask what relevance this discussion has for the generative type of
explanation, which treats language universals as being encoded in Universal Grammar. In
fact, we would argue that there is very little different between these two modes of explana-
tion, and as such the same problem of linkage applies.

In Hawkins' approach to functional explanation, a direct link is made between a feature of
the language user's psychology (such as working memory) and the universal properties of
language. Similarly, the generative approach makes a direct link between another feature of
the language user's psychology (this time, learning bias) and language universals.

The problem of linkage holds for both functionalist and generative explanations for lan-
guage universals. In the next section, we look at a development of the model put forward in
Kirby (1999) that demonstrates the rather subtle connections between language learning and
language structure arising out of the process of linguistic transmission.

4 Iterated Learning

Over the last few years there has been a growing interest in modelling a type of cultural in-
formation transmission we call Iterated Learning (Kirby & Hurford, 2002). The central idea un-
derlying the iterated learning framework is that behaviour can be transmitted culturally by



agents learning from other agents' behaviour which was itself the result of the same learning proc-
ess. Human language is an obvious example of a behaviour that is transmitted through iter-
ated learning.? The linguistic behaviour that an individual exhibits is both a result of exposure
to the behaviour of others and a source of data that other learners may be exposed to.

The Iterated Learning Model (ILM) gives us a tool with which we can explore the proper-
ties of systems that are transmitted in this way. In this section we will briefly review some of
the ways the ILM has been used to look at systems for mapping meanings to signals that are
transmitted through repeated learning and use. The main message we hope to convey is that
the relationship between learning and the structure of what is being learned is non-trivial.
Hence, when we look at the “real” system of human language, we should expect the relation-
ship between UG and universals to be similarly complex.

A simple ILM. Consider a system where there are a number of meanings that agents want to
express. They are able to do this by drawing on a set of possible signals. The way in which
they relate signals and meanings is by using some internal grammar. The means by which
they arrive at this grammar is through observation of particular instances of other agents' ex-
pression of meanings.

We can imagine systems like this with large populations of agents interacting and learn-
ing from each other, with the possibility for various kinds of population turnover. The sim-
plest possible population model is shown in figure 2. Here there are only two agents at any
one time: an adult and a learner. The adult will be prompted with a randomly chosen mean-
ing and, using its grammar, will generate a signal. This signal-meaning pair will then form
part of the input data to the learner. From a set of the adult's signal-meaning pairs (the size of
the set being a parameter in the simulation) the learner will try and induce the adult's gram-
mar.

Linguistic evolution

HO | produce H1 | produce | H2 L__»

observe observe

Ao A1 A2

Generation 1 Generation 2 Generation 3

Figure 2. A simple population model for iterated learning. Each generation has only one
agent, A. This agent observes utterances produced by the previous generation’s agent. The
learner forms a hypothesis, H, based on these utterances. Prompted by a random set of mean-
ings, M, this agent goes on to produce new utterances for the learner in the next generation.

2 Music might be another example. Miranda, Todd & Kirby (in press) use simulations of iterated learning to ex-
plore new compositional techniques which reflect the cultural evolution of musical form.
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We are interested in what happens when a language (conceived of as a mapping between
meanings and signals) is transmitted in this way. Will the language change? If so, are there
any stable states? What do stable languages look like and what determines their stability?

Ultimately, we can only begin to find answers to these questions by actually implement-
ing the iterated learning model in simulation. To do this we need to implement a model
agent, decide what the set of meanings and signals will look like, and also the structure and
dynamics of the population. A wide range of designs of ILM simulations have been employed
in the literature. The following is a partial list (there has also been further work looking at
models of language that do not treat it as a mapping from meanings to signals, such as
(Jaeger, 2003), (Teal & Taylor, 1999) and (Zuidema, 2001)):

* (Batali, 1998). Models a population of simple recurrent networks (Elman, 1990). Mean-
ings are bit-vectors with some internal structure. There is no population turnover in this
simulation.

* (Kirby, 2000). Agents learn using a heuristically-driven grammar inducer. Meanings are
simple feature-structures, and the population has gradual turnover.

* (Kirby, 2002a). Similar learning algorithms, but with recursively structured meaning
representation. Described in more detail below.

* (Kirby, 2001). Same learning algorithm. Meanings are coordinates in a two-dimensional
space, with a non-uniform frequency distribution.

* (Batali, 2002). Population of agents using instance-based learning techniques. Meanings
are flat lists of predicates with argument variables.

* (Brighton & Kirby, 2001). Agents acquire a form of finite-state transducer using Mini-
mum Description Length learning. Many runs of the simulation are carried out with dif-
ferent meaning-spaces.

* (Tonkes, 2002). Along with a number of other models, Tonkes implements an ILM with a
population of simple recurrent networks with a continuous meaning space (each mean-
ing is a number between 0.0 and 1.0).

* (Smith, Brighton, & Kirby, forthcoming). Uses associative networks to map between
strings and feature-vectors.

* (Vogt, 2003). Implements a simulation of a robotics experiment — the “Talking Heads”
model of (Steels, 1999). The agents communicate about objects of various shapes, colours
and locations.

These simulations are typically seeded with an initial population that behaves randomly — in
other words, agents simply invent random signals (usually strings of characters) for each
meaning that they wish to produce. This idiosyncratic, unstructured language is learned by
other agents as they are exposed to these utterances, and in turn these learners go on to pro-
duce utterances based on their own experience. The remarkable thing is that, despite their
very different approaches to modelling learning, the same kind of behaviour is seen in all
these models. The initial random language is highly unstable and changes rapidly, but over
time stability begins to increase and some structure in the mapping between meanings and
signals emerges. Eventually, a stable language evolves in which something like syntactic
structure is apparent.

For example, Kirby (2002a) uses the iterated learning model to explore how recursive
compositionality could have evolved. In this model, the population structure is as in figure 2.
The agents” model of language is represented as a form of context-free grammar, and a heu-
ristic-based induction algorithm is used to acquire a grammar from a set of example utter-
ances. The signals are simply strings of characters, and the meanings take the form of simple



predicate logic expressions. (This is not the place to go into the technical details of the model
— these are given in the original article.)

Here are a few of the sentences produced by an agent early on in the simulation run. The
meaning of each sentence is glossed in English. Note also that the agents’ strings are not con-
strained by any phonotactic rules:

1. ldg

“Mary admires John”
2. xkq

“Mary loves John”
3. g

“Mary admires Gavin”
4. axk

“John admires Gavin”
5 gb

“John knows that Mary knows that John admires Gavin”

In this early stage, the language of the population is unstructured. Each meaning is simply
given a completely idiosyncratic, unstructured string of symbols. There is no compositional-
ity or recursion here, and it is better to think of the language as a vocabulary where a word
for every possible meaning has to be individually listed.

This type of syntax-free language, which Wray (1998) refers to as a holistic protolanguage,
may have been a very early stage in the evolution of human language. It can be compared
with animal communication systems inasmuch as they typically exhibit no compositional
structure.? Wray suggests that living fossils of this protolanguage still exist today in our use of
formulaic utterances and holistic processing.

The hallmark of these early languages in the ILM is instability. The pairing of meanings
and strings changes rapidly and as a result the communicative ability of the agents is poor. It
is easy to see why this is. The learners are only exposed to a subset of the range of possible
meanings (which, strictly speaking, are infinite in this model because the meanings are de-
fined recursively). This means each learner can only accurately reproduce the language of the
adult for meanings that it has seen. Given the five sentences listed above, how would you
generalise to another meaning, say “Mary loves Gavin”? The best you could do would be to
either say nothing, or produce a string of random syllables of approximately the same length
as the ones you have seen. This is precisely the challenge agents early in the simulation are
faced with (although the number of sentences they are exposed to is much higher).

Thousands of generations later, however, and the language looks very different (note that
the speakers don’t actually generate spaces within the signals — these are included here for
clarity only):

6. gih ftej m
John Mary admires
“Mary admires John”
7. gih ftej wp
John Mary loves
“Mary loves John”

3 We should be a little cautious of this comparison, however. The holistic protolanguage in the simulation is
learned, whereas most animal communication systems are innately coded — although there appear to be some excep-
tions to this generalisation.



8 giqp ftg m
Gavin Mary admires
“Mary admires Gavin”
9. gggp fh m
Gavin John admires
“John admires Gavin”
10. ih u it u gigp fh m
John knows Mary knows Gavin John admires
“John knows that Mary knows that John admires Gavin”

This is clearly a compositional language. The meaning of the whole string is a function of the
meanings of parts of the string. The compositional structure is also recursive as can be seen in
the last example. What is interesting is that this language is completely stable. It is success-
fully learned by generation after generation of agents. The grammar of this language is also
completely expressive. There is perfect communication between agents.

Again, it is easy to see why this is so. If you were asked the same question as before — how
to express the meaning “Mary loves Gavin” — you would probably give the answer
“gijqpftejwp”. What’'s happening here is that you, just like the agents, are able to generalise
successfully from this small sample of sentences. There is no need for recourse to random in-
vention. Because of this, the language is stable. All agents will (barring some unfortunate
training set) converge on the same set of generalisations. They will all be able to communicate
successfully about the full range of meanings (which are infinite in this case).

To summarise: in the iterated learning model, not all languages are equally stable. A lan-
guage’s stability is directly related to its generalisability. If the language is such that generalisa-
tion to unseen meanings is difficult, then noise will be introduced to the transmission process.
A crucial feature of the process of iterated learning is that if a learner makes a generalisation,
even if that is an over-generalisation, the utterances that the learner produces will themselves
be evidence for that generalisation. In other words, generalisations propagate. As the lan-
guage comes to exhibit more and more generalisability, the level of noise in the transmission
process declines, leading finally to a completely stable and highly regular linguistic system.*

It is important to realise that this is not an idiosyncratic feature of this particular model.
For example, with a quite different learning model (simple recurrent networks), meaning
space (bit-vectors), and population model, Batali (1998) also observed a similar movement
from unstructured holism to regular compositionality. There seems to be a universal principle
at work here. As Hurford (2000) puts it, social transmission favours linguistic generalisation.

There appear to be two crucial parameters in these models that determine the types of
language that are stable through iterated learning: the size of the training set the learners are
exposed to, and the structure of the space of possible meanings.

Hurford (2002) refers to the size of the training data as the “bottleneck” on linguistic
transmission. The bottleneck is the expected proportion of the space of possible meanings that
the learners will be exposed to. When the bottleneck is too tight, no language is stable — the
learners do not have enough data to reconstruct even a perfectly compositional system. If, on
the other hand, the bottleneck is very wide then unstructured, holistic languages are as stable
as compositional ones. This is because there is no pressure to generalise.

It is possible in these models to vary the frequency with which different meanings are ex-
pressed. This means that the bottleneck will not be equal for all meanings. In this case, we
should expect frequent meanings to tend to exhibit less regularity than infrequent ones — a

4 This process bears some similarity to an optimisation technique in computer science called “simulated anneal-
ing” (Kirkpatrick, Jr., & Vecchi, 1983). The search-space is explored over a wide area initially, but as the solution is
approached, the search focuses in more closely on the region of the relevant region of space. It is interesting that this
kind of optimisation arises naturally out of iterated learning without it being explicitly coded anywhere in the model.
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result that matches what we find in the morphology of many languages. This result is exactly
what we find in simulation (Kirby, 2001) which confirms the central role of the bottleneck in
driving the evolution of linguistic structure.

The result also demonstrates that the particular choice of meanings that the agents are to
communicate about is also important.> Brighton (2002) examines the relationship between
stability in the ILM and the particular structure of each meaning. In this study, meanings are
treated as feature vectors. Different results are obtained depending on the number of features
and the number of values each feature can take. Using both simulation and mathematical
models of the iterated learning process, the relationship between feature structure and the
relative stability of compositional languages can be determined. This approach is extended by
Smith (2003) in a set of simulations where only some meanings are actually used by the
agents. In both cases it can be shown that there is a complex relationship between meanings
and the types of language that will emerge. The broad conclusion that can be drawn is that
compositional structure evolves when the environment is richly structured and the meanings
that the agents communicate about reflects this structure.

This work on iterated learning is at a very early stage. There is a huge gulf between the
elements of these models and their real counterparts. Obviously, neither feature vectors nor
simple predicate logic formulae are particularly realistic models of how we see the world. The
learning algorithms the agents use and their internal representations of linguistic knowledge
are not adequate for capturing the rich structure of real human languages. Does this render
the results of the modelling work irrelevant?

Unsurprisingly, we would argue to the contrary. Just as simulation modelling has proved
invaluable in psycholinguistics and cognitive science more generally (Elman et al., 1996), we
feel that it can be used as a way of testing hypothesis about the relationship between indi-
viduals, the environment, and language universals. We know that language is transmitted
over time through a process of iterated learning, but as yet we do not have a complete under-
standing of what this implies. We gain insights from idealised models which can be brought
to bear on fundamental questions in linguistics.

In this section, we have put forward a general solution to the problem of linkage. UG, in-
stantiated in individuals as prior learning bias, impacts on the transmission of language
through iterated learning. This results in a dynamical system — some languages are inherently
unstable and communicatively dysfunctional. These could never be viable human languages.
Through the iterated learning process, these languages evolve towards regions of relative sta-
bility in this dynamic landscape. The implication is clear: UG and universals cannot be di-
rectly equated. Rather, the connection is mediated by the dynamics of iterated learning.

5 Universals as emergent adaptations

The models we described in the previous section looked at how recursive compositionality,
perhaps the most fundamental property of human language, can evolve through the iterated
learning process. Why does this happen, and can this result help us understand language
universals more generally? Earlier, we discussed what happens in the ILM from the point of
view of the learner, but to answer these questions it helps to take a quite different perspective.

We are used to thinking about language from the individual’s point of view. For example,
we are keen to understand what the structure of the language acquisition mechanism needs
to be in order for children to acquire language. Similarly, we think about language processing
in terms of a challenge posed to the user of language. For many linguists, implicit in this

5 The frequency of meaning expression is presumably driven largely by the environment (although Tullo & Hur-
ford (2003) look at a model where ongoing dialog determines meaning-choice in deriving the Zipfian distribution).
Grounded models from robotics give us increasingly sophisticated ways of relating meanings and environment (e.g.,
Vogt, 2002).
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thinking is the view that humans are adapted to the task of acquiring and using language. If
language is the problem, individual human psychology is the solution.

What if we turn this round? In the context of iterated learning, it is languages not language
users that are adapting.

Let us imagine some linguistic rule, or set of rules, that mediates the mapping between a
set of meanings and their corresponding signals. For that rule to survive through iterated
learning it must be repeatedly used and acquired. Consider first the case of an early-stage
holistic language. Here, each rule in the language covers only a single meaning. In the exam-
ple given in the last section, there was a rule that maps the meaning for “Mary loves John”
onto the string “xkq”. That’s all the rule does, it is not involved in any other points in the
meaning-space. For this rule to survive into the next generation, a learner must hear it being
used to express “Mary loves John”.

Now we consider the case of the perfectly compositional language. Here things are more
complex because there are a number of rules used to map the meaning “Mary loves John”
onto the string “gjhftejwp”. However, the important point is that all of these rules are used in
the expression of many more than this single meaning. These rules therefore produce more
evidence for themselves than the idiosyncratic rule in the previous example.

The challenge for rules or regularities in a language is to survive being repeatedly
squeezed through the transmission bottleneck. As Deacon (1997) puts it, “language structures
that are poorly adapted to this niche simply will not persist for long” (p. 110). To put it sim-
ply, sets of rules that have general, rather than specific, application are better adapted to this
challenge. In this case, recursive compositionality is a linguistic adaptation to iterated learn-
ing.

In this view, language universals can be seen as adaptations that emerge from the process
of linguistic transmission. They are adaptive with respect to the primary pressure on lan-
guage itself — its successful social transmission from individual to individual. Taking this per-
spective on the structure of language shows how compatible the generativist and functional-
ist approaches actually are. Figure 3 shows how adapting to innate learning bias is only one
of the many problems language faces. Every step in the chain that links the speaker’s knowl-
edge of language to the hearer’s knowledge of language will impact on the set of viable, sta-
ble human languages (see, for example, Kirby & Hurford (1997) for a model that combines
processing pressures and a parameter-setting learner).

social factors

environment ambiquity

] ] working

articulation errors memory

LANGUAGE; [ noise —» LANGUAGE,,4

disfluencies )

learning

least-effort o irse bias

principles i icture

Figure 3. Many factors impinge on linguistic transmission. Language adapts in response
to these pressures.

Indeed, there may be cases where the boundary between explanations based on acquisi-
tion, and explanations based on processing is very hard to draw. We mentioned Hawkins
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(1994) approach to word-order universals in section 2. This has been applied to the general
universal tendency for languages to order their heads consistently at either left-edge or right-
edge of phrases throughout their grammars. This is argued to reflect a preference of the
parser to keep the overall distance between heads as short as possible to reduce working-
memory load. Kirby (1999) implements this preference in a very simple iterated learning
model of the transmission of word-order variants to show how the head-ordering universal
emerges.

It seems clear in this case that we are talking about a quintessentially functionalist explana-
tion — an explanation couched in terms of the use of language. However, Christiansen & Dev-
lin (1997) explain the same facts in terms of language learning, using a general model of se-
quential learning: the Simple Recurrent Network (Elman, 1990). The networks exhibit errors
in learning in precisely those languages that are rare cross-linguistically. This seems a com-
pletely different explanation to Hawkins’. But do we really know what it is that causes the
network errors? To test how well these networks have learned a language, the experimenter
must give them example sentences to process. As a result, we do not know if the problem
with the languages exhibiting unusual word-order arises from processing or acquisition. Per-
haps we should collapse this distinction entirely. In some sense, when we acquire language
we are acquiring an ability to use that language.¢

The purpose of this discussion is to show that the distinction between functionalist ap-
proaches to typology and generativist explanations of language structure is not as clear as it
might appear. UG and language function both play a role rather like the environment of ad-
aptation does in evolutionary biology. Natural selection predicts that organisms will be fit.
They will show the appearance of being designed for successful survival and replication.
Similarly, linguistic structure will reflect properties of the bottleneck in linguistic transmis-
sion.

Once this analogy is made, it is tempting to try and apply it further. Could we explain the
emergence of linguistic structure in terms of a kind of natural selection applied to cultural
evolution? There have been many attempts to do just this both in general (Blackmore, 1999)
and in the case of language (e.g., Croft, 1996 and Kirby, 1999). We would like to sound a note
of caution, however. There are important differences between iterated learning and biological
replication (see figure 4). In biology, there is direct copying of genetic material during repro-
duction. The central dogma of molecular biology (Crick, 1970) states that transformation from
DNA to organism is one-way only. In iterated learning, however, there is repeated transfor-
mation from internal representation to external behaviour and back again. The function of
learning is to try and reconstruct the other agent’s internal representation on the basis of their
behaviour. This disanalogy with the process of selective replication in biology must be taken
into account in any theory of linguistic transmission based on selection.

¢ There is another possible way of explaining why languages typically exhibit these word-order patterns. Dryer
(1992) and Christiansen & Devlin (1997) refer to consistent branching direction rather than head-ordering, although
these are nearly equivalent. Consistently left- or right-branching languages are more common than mixed types.
Brighton (2003) shows that a general property of stable languages in the iterated learning model is the simplicity of
their grammatical representation, where simplicity is defined in terms of the number of bits the learners use for stor-
age. A topic for ongoing research is whether the commonly occurring word-order patterns are those that result in
maximally compressible representations.
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Figure 4. Similarities and differences between linguistic and genetic transmission. The
central dogma of molecular biology states that there is no reverse translation from phenotype
(i.e., proteins) to genotype (i.e., DNA). Genetic information persists by direct copying of the
DNA. The only influence of the phenotype is in determining whether or not the organism has
a chance of replication (hence, selection). In linguistic transmission, there is a far more com-
plex mechanism — learning — that attempts to reconstruct grammatical competence (GC) by
“reverse engineering” the primary linguistic data (PLD).

A final comment should be made about the notion of adaptation we are appealing to. The
simulations discussed in the previous section exhibited a universal tendency for a movement
from inexpressive holistic languages to maximally expressive compositional ones. It is obvi-
ous that agents at the end of the simulation are capable of far more successful communication
than those early on. In some models they are capable of infinite expressivity that can be relia-
bly acquired from sparse evidence — a defining hallmark of human language.

These late-stage agents are using a far more communicatively functional language than
those earlier in the simulation run. However strange it sounds, this is merely a happy bi-
product of the adaptive mechanism at work. Languages are not adapting to be more useful
for the agents (at least not directly). Rather, they are simply adapting to aid their own trans-
mission fidelity. In practice, this will usually be the same thing.

If this idea is correct, then it would be interesting to try and find examples where the
needs of language (to survive from generation to generation) and the needs of its users (to
communicate easily and successfully) diverge. In other words, can we find apparently dis-
functional aspects of language that are nevertheless stable, and furthermore can we give these
a natural explanation in terms of iterated learning? This is a challenging research goal, but
there may be places we can start to look. For example, there are constructions that are notori-
ously hard to parse, such as centre-embedded relative clauses that are nevertheless clearly
part of everyone’s linguistic competence. Why are we burdened with these apparently subop-
timal aspects of grammar? Perhaps the answer will lie in understanding the relative stability
through iterated learning of a language with centre-embedding and a minimally different one
that ruled-out the difficult constructions.
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6 Conclusion

In this paper, we have explored the relationship between Universal Grammar and universal
properties of language structure in the light of recent computational models of linguistic
transmission. In summary:

*  We treat Universal Grammar as a theory of what the language learner brings to the task
of language acquisition that is independent of the linguistic data. In other words, UG is
determined by the initial state of the child in addition to the Language Acquisition De-
vice.

* UG in this sense can be equated to prior learning bias in a general Bayesian approach to
learning. This prior bias is innately coded.

* It is fruitless to search for a bias-free model of language acquisition. In other words,
there will always be a role for innateness in understanding language.

* The degree to which our innate bias is language specific is an open question — one that
will probably require an evolutionary approach to answer.

* Both functionalist explanations for language universals and explanations in terms of UG
suffer from the problem of linking an individual-level phenomenon (e.g., learning bias,
processing pressures, social factors, etc.) with a global property of linguistic distribution.

* Language is a particular kind of cultural adaptive system that arises from information
being transmitted by iterated learning.

* Computational models have been employed to uncover properties of iterated learning.
For example, where the language model is a mapping between structured meanings and
structured signals, compositionality emerges.

* One way of understanding language universals in the light of iterated learning is as
adaptive solutions to the problem language faces of being successfully transmitted.

Because the connection between UG and universal properties of linguistic structure is not
direct, we need to be cautious about how we use linguistic evidence. As Niyogi & Berwick
(1997) show in their work on the link between acquisition and language change, a theory of
acquisition that is explicitly designed to account for syntactic variation may actually make the
wrong predictions once linguistic transmission is taken into account.

On the other hand, iterated learning can lift some of the burden of explanation from our
theories of universal grammar. Jaeger (2003) examines a model of variation in case-systems
based on functional Optimality Theory. To account for the known facts a rather unsatisfying
extra piece of theoretical machinery — the case hierarchy of Aissen (2000) - has been proposed.
Using simulations of iterated learning, in combination with a model of the linguistic envi-
ronment based on corpora, Jaeger demonstrates that this hierarchy emerges “for free” from
the iterated learning process.

We hope that future research will continue to discover general, universal properties of it-
erated learning as well as relating these to questions of genuine interest to linguistics. In some
ways these goals are orthogonal. The most idealised models of linguistic transmission tend to
have questionable relevance to linguistics. For example, the “language dynamical equation”
developed by Nowak, Komarova & Niyogi (2001) treats language acquisition simply as a ma-
trix of transition probabilities, and combines this with a model of reproductive fitness of
speakers in a population. This leads to mathematically tractable solutions for a very limited
subset of possible models of acquisition, but it is far from clear that these results correspond
to anything in the real world (for example, it seems implausible that language change is
driven primarily by the number of offspring a particular speaker has).
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Nevertheless, we do need idealised models such as those we have presented; but crucially,
models that can help us to understand how the real linguistic system adapts. Getting the bal-
ance right between tractable idealisation, and relevant realism is likely to be the biggest chal-
lenge facing future research.
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