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Abstract

Human language is unique in having a learned, arbitrary mapping between meanings and signals that is compositional
and recursive. This paper presents a new approach to understanding its origins and evolution. Rather than turning to
natural selection for an explanation, it is argued that general properties of the transmission of learned behaviour are
sufficient to explain the particular properties of language. A computational model of linguistic transmission is described
in which complex structured languages spontaneously emerge in populations of learners, even though the populations
have no language initially, and are not subject to any equivalent of biological change. These results are claimed to
be general and are explained in terms of properties of mappings. Essentially, as mappings are passed down through
generations of imitators, syntactic ones are intrinsically better at surviving through the learning “bottleneck”.

1 Introduction
Why does human language have certain properties and
not others? This is the central question for linguistic ex-
planation. Of particular interest to linguists are the prop-
erties that human language has that appear to make it
unique among communication systems in the natural world.
One such property is syntax: the mapping between mean-
ings and signals in human languages is uniquely compo-
sitional and recursive. That is, the meaning of a signal
is composed from the meanings of parts of that signal,
and furthermore, arbitrarily complex meanings can be ex-
pressed by embedding signals inside signals.

A common approach in linguistics to the explanation
of these basic properties of syntax is to appeal to innately
given properties of our language faculty. The Chomskyan
approach (e.g. Chomsky, 1986), for example, holds that
our innate language acquisition device constrains directly
what types of language we may learn. In this perspec-
tive, the question that started this paper can be answered
by hypothesizing those properties as innately given. An-
other approach broadly termed “functionalism” holds that
much of the constraints on variation amongst languages
can be explained by appealing to the communicative func-
tions of language (e.g. Comrie, 1981; Hawkins, 1988; Croft,
1990, and references therein). Put simply, language is the
way it is because it is shaped by the way it is used (see
Newmeyer, 1999; Kirby, 1999a, for reviews of the dis-
tinction between functional and innatist approaches). A
dominant approach in evolutionary linguistics (e.g. Pinker
and Bloom, 1990) combines functionalism and innateness
by arguing that any innate language acquisition device
would have been shaped by natural selection in our evo-

lutionary past, and that the selective pressures would have
been related to communication.

One way of looking at this paper is as an attempt at
an alternative (though not incompatible) explanation for
the origins of compositionality and recursion in human
language; one which does not appeal to a strongly con-
straining innate language acquisition device, nor an ex-
plicit mechanism whereby the communicative aspects of
language influence its form. Instead, the approach put for-
ward here looks to general properties of the way in which
linguistic information is transmitted over time for an ex-
planation of its structure.

Another way of seeing this paper, however, is as a
demonstration of the value of looking at the properties
of behaviour that is repeatedly imitated1 in a population.
In this light, human language can be seen as a case-study
of how repeated learning and use affects, over time, the
structure of the behaviour being learned. Thinking about
imitated behaviour in this way, we can begin to see sug-
gestive parallels between information transmission via learn-
ing in a social/cultural context, and information transmis-
sion via reproduction in a biological context (see figure
1).

2 The learning bottleneck
The transmission of linguistic behaviour is a special case
of the system diagrammed in figure 1. A language in its
internal form is a mapping between meanings and signals

1I use the term “imitation” here as it has been used in this conference.
See Oliphant (1997) for some discussion of why it may not be the best
term to use in this context.
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Figure 1: Both social transmission (via observation and imitation) and biological transmission, involve transformation of
information between an internal and external domain. This transformation acts as a bottleneck on the flow of information
through the respective systems, and may have an impact on the emergent structure of this information.

(typically strings of phonemes). That is, an individual in
possession of a language will have some internal mental
representation of that language that specifies how mean-
ings are paired with strings. Languages also exists in an
external form, however, as actual instances of signals be-
ing paired with meanings. The way in which a particu-
lar language (in both its forms) persists over time is by
repeated transformation from the internal to external do-
mains via actual use, and back into the internal domain
via observation and learning (i.e. imitation).

The transformation between the internal and external
domains of language — I-language and E-language in
Chomsky’s terms (see Chomsky, 1964; Andersen, 1973;
Chomsky, 1986; Hurford, 1987; Kirby, 1999a; Hurford,
1999, for discussion) — act as a bottleneck on informa-
tion flowing through the system. Just as the bottleneck
on transmission of genetic information in biological sys-
tems eventually has implications for the structure of or-
ganisms that emerge, we should expect that the equiva-
lent bottleneck in the linguistic system to have a role to
play in the explanation of parts of linguistic structure. So,
a particular piece of genetic information may not persist
because the phenotype that it expresses may not survive
to reproduce. In a similar way, a particular feature of
language (that is, a particular part of the representation
of the meanings-to-strings mapping) may not persist be-
cause the utterances it gives rise to may not reconstruct it
through learning.

3 Simulating linguistic transmission
In order to test the hypothesis that, in the case of language,
the learning bottleneck determines in part the eventual
structure of what is being learned, the model of linguis-
tic transmission has been implemented computationally.
This type of simulation based approach has recently been
adopted by several researchers in the evolutionary linguis-
tics literature (e.g. Steels, 1997; Kirby and Hurford, 1997;
Kirby, 1998; Hurford, 1998; Batali, 1998; Briscoe, 1998;
Niyogi and Berwick, 1999) as it offers a “third way” be-
tween verbal theorising on the one hand and mathematical
analytic approaches on the other.

The simulation consists of:

a population of computational agents,

a predefined meaning space. That is, a set of con-
cepts which the agents may wish to express,

a predefined signal space. That is, a set of concate-
nations of symbols available to the agents.

Each agent’s behaviour is determined by a grammar inter-
nal to that agent which it has learnt solely through observ-
ing the behaviour of other agents in the population. The
population model is generational in that agents “die” and
are replaced with new agents which have no initial gram-
mar. The agents are not prejudiced or rewarded according
to their behaviour in any way. In other words, there is
no natural selection in this model, and since each agent is
identical at “birth”, the only information that flows through
the simulation from one generation to the next is in the
form of utterances.

For the experiments described in this paper, a very
simple population model was used: one in which there
is, at any point in time, only a single speaker and a single
hearer. The simulation cycle is outlined below:

c.1 Set up the initial population to have two agents: a
speaker and a hearer, both of whom have no gram-
mar.

c.2 Repeat some pre-specified number of times:

c.2a Pick a meaning at random from the mean-
ing space,

c.2b If the speaker can produce a string for
using its grammar, then let the hearer learn
from the pair , else let the speaker
invent a string and let both hearer and speaker
learn from the pair .

c.3 Remove the speaker, make the hearer the new speaker
and introduce a new hearer with no grammar.

c.4 Go to c.2.



Clearly the critical details for that determine the behaviour
of this simulation are: the meaning space, the signal space,
the grammatical representation, the learning algorithm,
and the invention algorithm.

3.1 The meaning space
The meanings in the simulation are simple propositions
made up of a predicate and two arguments. Typical propo-
sitions include, for example:

loves(mary,john)
admires(gavin,heather)

etc.

Certain predicates can take propositions as their second
argument leading to propositions such as:

says(peter,loves(mary,john))
believes(heather,says(peter,loves(mary,john)))

etc.

In the simulations reported here, the number of differ-
ent semantic atoms (predicates/arguments) can be varied,
to test how it affects the evolving language. Because em-
bedding of propositions is possible, the range of possible
meanings is potentially infinite.

3.2 The signal space
The signals in the simulation are linear concatenations of
symbols chosen from the 26 lower-case letters of the al-
phabet. The shortest signal would contain only one let-
ter, whilst there is potentially no upper bound on signal
length. There is no pre-defined equivalent of the “space”
character. An example utterance (i.e. signal-meaning
pair) of an agent that knew a language like English could
be:

marylovesjohn loves(mary,john)

3.3 The grammatical representation
Now that we have a specific meaning space and signal
space in mind, it is useful to understand what makes a
mapping between these two spaces “syntactic” in the way
I am using the term here. I have mentioned two unique
properties of the mapping that one finds in human lan-
guages: compositionality and recursion. For an agent
with a language like English, a signal for a meaning is
constructed by generating strings for subparts of that mean-
ing and concatenating them in a particular order. So, for
example, the meaning

knows(john,says(heather,loves(mary,peter)))

is mapped onto a string by finding the strings that corre-
spond to john, knows and says(heather, loves(mary,
peter)) and concatenating them in that order. This is
what makes the language compositional. The language
is also recursive because the construction of the string for

says(heather, loves(mary, peter)) is carried out using
the same procedure.

A non-compositional language, on the other hand, maps
between meanings and strings in a quite different way. In
such a language, the string corresponding to loves(mary,
peter) might have no relation whatsoever to the string
corresponding to loves(mary, john). In fact, there are
degrees of compositionality, even with these quite simple
meanings and signal spaces.2

The agents’ internal representation of the mapping be-
tween meanings and signals must be able to express the
different degrees of compositionality and recursion that
are possible. For these simulations, a simplified form of
definite clause grammar formalism was used. See figure
2 for examples of how different types of language can be
expressed in this representation scheme.3

3.4 The learning algorithm
The learning algorithmwill not be described in detail here.
More complete coverage can be found in Kirby (1999b)
and Kirby (1999c). The algorithm works incrementally,
processing each string-meaning pair as the agent hears it.
The induction takes place in two steps:

Incorporation The string-meaning pair is made into a
single grammatical rule and this is added to the learner’s
grammar.

Generalisation The algorithm tries to integrate the new
rule into the rest of the grammar by looking for pos-
sible generalisations. These generalisations are es-
sentially subsumptions over pairs of rules. In other
words, the algorithm takes a pair of rules from the
grammar, and tries to find a more general rule to
replace them with (within a set of heuristic con-
straints). This process of finding generalisation over
pairs of rules continues until no new ones can be
found, after which the algorithm halts and the agent
is free to process the next string-meaning pair.

Rather than go into details of the induction algorithm,
an idea of how learning works can be demonstrated with
a few examples. Consider an agent that has no grammar
and hears the utterance:

heatherlovesjohn loves(heather,john)

The agent will incorporate this as the following rule:

loves(heather,john) heatherlovesjohn

2If a more complex and fine-grained meaning representation were
to be used, it would be clear that real human languages are actually
only partly compositional too. This is particularly obvious if we look
at morphology. The string loves can be thought of as compositionally
derived from the strings for the meaning love and the meaning present-
tense. However, the string is cannot be composed from parts of its
meaning be+present-tense. Kirby (1998) discusses a possible expla-
nation for these data in terms of a similar model to the one given here.

3Other types of representation are, of course, possible (see Batali,
1999, for a radical alternative) but this one was chosen partly for its
familiarity to linguists.



Non-compositional Partly compositional Compositional and recursive

loves(heather,john) heatherlovesjohn
loves(john,heather) johnlovesheather

loves loves
heather heather
john john

loves loves
knows knows
heather heather
john john

Figure 2: Three types of language expressed in the formalism used by the simulation. The material after the slash on cat-
egory labels is the semantic representation of that category. Semantic information is passed between rules using variables
(in italics here).

Now, imagine that the agent hears a second utterance:

heatherlovespeter loves(heather,peter)

The learner incorporates this utterance, and now has a
grammar with two rules:

loves(heather,john) heatherlovesjohn
loves(heather,peter) heatherlovespeter

There is now a way in which these two rules can be
generalised in such a way that they can be replaced with
a single rule:

loves(heather, ) heatherloves

This new rule refers to an (arbitrarily named) category
. In order that this rule may generate at least the string-

meaning pairs that the old rules did, the inducer must add
two rules:

john john
peter peter

This type of subsumption, where the differences be-
tween two rules are extracted out into a separate set of
rules, in itself is not particularly useful for learning, be-
cause the grammar as a whole will never become more
general. However, this type of subsumption is paired up
with another which can “merge” category names. Con-
sider the state of the agent described above after hearing
the following two utterances:

marylovesjohn loves(mary,john)
marylovesheather loves(mary,heather)

The grammar of the agent after incorporating these utter-
ances and generalising the rules would be:

loves(heather, ) heatherloves
loves(mary, ) maryloves

john john
peter peter
john john

heather heather

Now, there are two “john” rules which are identical ex-
cept for their category name. A subsumption of these two
rules can be made simply by rewriting all the s in the
grammar with s (or vice versa). If this is done with the

grammar above, then this means that the two rules can
now be subsumed by one by extracting out “mary” and
“heather”. After another merging of category names, the
grammar becomes:

loves( ) loves
john john

peter peter
heather heather

mary mary

This grammar shows that the learner has generalised be-
yond the data given: the learner was given only 4 utter-
ances, but can now produce 16 distinct ones.

3.5 The invention algorithm
So far, we have seen what the agents’ meaning space and
signal space looks like, and how they learn the grammars
that allow them to map from one to the other. However,
since the simulation starts with a speaker-agent with no
language, and no language is provided from “outside” of
the simulation, what has been described so far will not
produce any utterances at all.

The agents must, therefore, have some way of invent-
ing new strings for meaning which they cannot currently
produce using their grammars. If the agent wishes to pro-
duce a string for a particular meaning, and that agent has
no grammar at all, then a completely random string of
symbols is produced. In the simulations reported below,
the random strings vary between one and three symbols
in length.

Although, this completely random invention strategy
seems sensible where an agent has no grammar at all,
or has a non-compositional grammar, it seems less likely
where an agent is already in possession of a syntactic lan-
guage. This latter situation is akin to a speaker of English
needing to produce a sentence that refers to a completely
novel object. It seems very implausible that the speaker
will decide to invent a new “word” that stands in for the
whole sentence. Instead, it seems likely that the speaker
of a compositional language will understand that she can
invent a new word for only that part of the sentence that
relates to the novel meaning.

To simulate this, the invention algorithm used by the
agents never introduces any new structure into an utter-
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Figure 3: A scatter plot comparing early languages with
those that emerge towards the end of the runs. Each
point represents one run. The runs varied with respect
to the size of the space possible meanings about which
the agents produced utterances.

ance, but similarly always to preserver any structure that
already exists in the language. Again, for reasons of con-
ciseness, details of the algorithm are not given here but
can be found elsewhere (Kirby, 1998, 1999b).

4 Experimental results
This section describes several results of running the sim-
ulation described above. The simulator was designed to
output three sets of data for each generation in a run: the
actual grammar of the speaker, the size of grammar of the
speaker (in number of rules), and the proportion of the
meanings that the speaker expressed without recourse to
invention. The last statistic allows us to estimate the ex-
pressive power of the speaker’s grammar.

4.1 The emergence of degree-0 composition-
ality

For the first set of experimental results, only degree-0
meanings were used. In other words, no predicates such
as believes or says were included in the meaning space
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Figure 4: The movement over time of the languages in
various runs of the simulation. The arrows show the over-
all direction of movement in expressivity/size space. The
languages in the simulation start as vocabularies, grow
rapidly but eventually become syntactic. For a larger
meaning space (and a fixed bottleneck) the time it takes
to achieve syntax increases.

of the agents. The size of the meaning space is varied
from run to run by altering the number of distinct atomic
predicates and arguments there could be. Each speaker in
every run attempts to produce 50 randomly chosen degree-
0 meanings in its lifetime. I will refer to this value as the
bottleneck size, reflecting the fact that the languages in the
simulations must repeatedly squeeze through a bottleneck
of 50 samples to persist over time.

A variety of simulation runs were performed with the
size of the meaning space varying from 12 possible mean-
ings to 448 possible meanings.4 The results of each sim-
ulation can be plotted on a graph of expressivity of lan-
guage against size of grammar (this can be thought of as
a plot of external size against internal size of a language).
The expressivity measure is calculated by multiplying the
proportion of meanings that a speaker produced without

4For implementational reasons, reflexive meanings were pruned
from the meaning space. In other words, a proposition such as
loves(john,john) is not allowed. The largest meaning space was made
up of 8 possible atomic predicates and 8 possible atomic arguments.



invention by the size of meaning space. This gives us an
estimate of the total number of meanings that a speaker’s
grammar is able of expressing. Two scatter plots of this
type are in figure 3. Each point on the top plot is the situa-
tion in a simulation run after only 5 generations, whereas
the bottom plot shows the result after 5000 generations
(after which the languages are typically very stable).

Another way to visualise these results is to observe
the movement of particular languages over time as they
are transmitted from generation to generation. Figure 4
shows two sets of simulation runs, one with a fairly small
meaning space, and one with a larger one. Notice that the
behaviour of the languages in these runs is very similar:
they start with low expressivity and medium size, rapidly
increase in size with an approximately linear increase in
expressivity, before eventually changing direction in the
space with a rapid increase in expressivity and reduction
in size. The final expressivity is determined exactly by
the size of the meaning space.

On the first set of graphs I have distinguished between
two types of language. Examples of these types are given
below. In the simulation results, predicate atoms are la-
belled as ac0, ac1 etc. (standing for “action”) whereas
argument atoms are labelled as ob0, ob1 etc. (standing
for “object”):

Idiosyncratic Early in the simulations, the languages
are vocabulary-like, in that they tend to have no predictable
correspondence between meanings and strings. In other
words, they are non-compositional. For the majority of
meanings, a corresponding string is simply listed in the
grammar (although even early on there may be other rather
non-productive rules). Here is a small subset of the rules
in a grammar from a simulation with 8 possible predicates
and 8 possible actions. The complete grammar had 43
rules and covered only 2% of the possible meaning space.

ac5(ob6,ob3) ttm
ac4(ob2,ob4) eue
ac6(ob5,ob4) nx

ac3(ob1,ob3) eib
ac4(ob6,ob5) ve
ac2(ob1,ob6) n

ac1(ob0,ob5) ec
ac1(ob6,ob7) mv
ac0(ob3,ob4) xi
ac5(ob4,ob5) h

ac4(ob3,ob4) if
ac1(ob0,ob7) j
ac3(ob1,ob0) o
and 30 others...

Syntactic At the end of the simulation runs, the lan-
guages are able to express all the meanings in the meaning
space of that particular run with a relatively small gram-
mar. This is possible because syntax has emerged. The
final languages exhibit complete compositionality as well
as an emergent noun/verb distinction. The grammar be-

low is an example of the end result of a run with 5 pred-
icates and 5 arguments (the categories and are arbi-
trarily chosen by the inducer, and appear to correspond to
noun and verb.)

i
ob3 z

ob4 qu
ob1 f

ob0 vco
ac3 rr
ac2 l
ac4 b

ac1 hta
ob2 p
ac0 qg

What these results show is that, for a large range of
initial conditions for the simulation, syntax inevitably emerges.

4.2 The emergence of recursion
The semantic space in the simulations shown so far has
been strictly finite. Only combinations of atomic predi-
cates and two atomic arguments have been allowed. The
simulation has also been run with a potentially infinite
meaning space, using predicates like believes which take
a propositional second argument. For these runs, there
are always five possible atomic arguments, five possible
“normal” predicates, and five possible “embedding” pred-
icates. Each generation, the speakers produce 50 ran-
dom utterances with degree-0 semantics (as in the previ-
ous simulations), followed by 50 random utterances with
degree-1 semantics (one embedding), and finally, 50 ran-
dom utterances with degree-2 semantics (two embeddings).

Unfortunately, it is impossible to plot the results of
these runs in the same way as those of the previous sim-
ulations, because the expressivity of a language cannot
be calculated as simply a number of meanings covered.
However, the results of different runs is remarkably con-
sistent,5 and the behaviour of the system can be easily un-
derstood by looking at an example language as it changes
over time. (The “subordinating” predicates are given the
names su0, su1, etc. in the output of the simulation.)

Idiosyncratic The initial grammars are very similar to
those in the previous degree-0 simulation runs. In other
words, they too appear to be simple idiosyncratic vocab-
ulary lists for a subset of the meanings in the space. One
difference, of course, is that there are words for the more
complex degree-1 and degree-2 meanings. Here is a small
subset of the language we are tracking early in the run:

ac3(ob1,ob4) de
ac2(ob0,ob1) ak
ac2(ob0,ob3) t

ac3(ob0,ob1) sdx
ac4(ob0,ob3) g

5See Kirby (1999c) for a rather different way of visualising the re-
sults of this type of simulation run.



ac0(ob2,ob4) vnu
ac0(ob1,ob3) gj

ac0(ob3,ob4) nui
su4(ob2,ac0(ob1,ob2)) oeb
su4(ob4,ac4(ob2,ob1)) ew

su1(ob3,ac2(ob2,ob4)) vri
su4(ob3,ac2(ob4,ob0)) y

su4(ob4,ac2(ob3,ob0)) pff
su1(ob0,ac3(ob1,ob3)) fi

su2(ob0,su3(ob2,ac0(ob1,ob2))) jt
su1(ob4,su2(ob0,ac2(ob0,ob3))) vz
su2(ob0,su2(ob3,ac4(ob3,ob1))) z

su1(ob0,su1(ob2,ac1(ob0,ob3))) gb
su0(ob4,su4(ob3,ac0(ob0,ob1))) r

su4(ob1,su3(ob2,ac2(ob3,ob4))) cr
su3(ob1,su1(ob3,ac3(ob1,ob4))) sz

su2(ob0,su2(ob1,ac0(ob1,ob2))) ixh
and 94 others...

Degree-0 compositionality After 100 generations, this
language has changed, again in a way similar to the pre-
vious runs. The proportion of degree-0 meanings that are
produced without invention has climbed rapidly, so that
now the speakers can express every degree-0 meaning us-
ing this language. The listing below gives a small subset
of the language, showing how a compositional encoding
for degree-0 meanings has emerged. There are three ma-
jor categories: is a verbal category, and and appear
to be case-marked nominals, with acting like a nomina-
tive, and like an accusative. These categories occasion-
ally appear in partly compositional rules for more com-
plex meanings, but generally, the degree-1 and degree-2
part of the meaning space is still expressed idiosyncrati-
cally, and therefore with poor coverage.

gj z
ob2 dl

ob1 ovp
ob1 tej

ob2 x
ac3 xe
ac0 m

ob3 qp
ob0 h
ob0 y
ac2 c
ob4 i
ac1 b
ob3 h

su1( ,su4(ob1,ac4(ob0,ob3))) jwyjtejdbznuy
su1(ob4,su0(ob1,ac4(ob4,ob2))) htejyjndbznuy

su3( ,su0(ob0,ac0(ob0,ob4))) qzjw ya
and 68 others...

Syntax and recursion At the end of the simulation run
(here the run lasted for 1000 generations) the language
covers the entire meaning space. That is, the speakers can
produce strings for any degree-0,1 or 2 meaning without
recourse to invention. Furthermore, the speakers could
produce strings for an infinite range of meanings with any
depth of embedding. This is possible due to the appear-
ance of recursion in the syntax, as shown below. In this
language the nominal system has simplified to one form
that is used both for accusative and nominative, and a
new verbal category has emerged for predicates that take

a propositional second argument. The second rule in
this grammar is the recursive one, as its last right-hand
side category is also .

gj f
i

ob3 qp
ob2 dl
ac2 c
ac0 m

ob1 tej
ob4 n
ac4 e
ob0 h
ac1 b

ac3 wp
su4 m
su1 u
su2 g
su0 p

su3 ipr

Once again, we have seen a movement of languages
in the simulation from an initial random, idiosyncratic,
vocabulary-like stage, to one in which all the meanings
can be expressed using a highly structured syntactic sys-
tem.

5 Linguistic transmission favours syn-
tactic mappings

The simulation results in the previous section show that
compositional, recursive language emerge in a population
which initially has no language, even where there is no
selection pressure on individuals to communicate well, or
indeed any biological evolution at all. Purely through the
process of being repeatedly mapped from an internal form
as a grammar to an external form as utterances and back
again, language evolves. Syntactic structure appears to
emerge inevitably when a mapping between two struc-
tured domains must be passed on over time through a
learning bottleneck. Why might this be? What are the
properties of syntactic mappings and learning bottlenecks
that make this inevitable?

Figure 5 is a schematic representation of a possible
mapping between two spaces. Let us assume, for the pur-
poses of this explanation, that the structure in the two
spaces being mapped onto each other is spatial. That is,
two points in a space are more similar if they are close
together in the representation of that space than if they
are further apart. The mapping in this diagram therefore
does not preserve structure from one space to the other. In
other words, there is a random relation between a point in
one space and its corresponding point in the other space.

Now, imagine that this mapping must be learned. In
the diagram, some of the pairings are shown in bold —
if these where the only ones a learner was exposed to,
would that learner be able to reconstruct the whole map-
ping? Not easily: the only way a random mapping could



Figure 5: A non-structure preserving mapping between
two spaces with spatial structure. The bold lines indicate
an imaginary subsample of the mapping that might be ev-
idence for a learner. This mapping could only be learnt
by a learner with a very specific prior bias.

be reliably learnt from a subset of pairings would be if the
learner had a very informative and domain specific prior
bias to learn that particular mapping. Whilst this is pos-
sible if the spaces are finite, it is in principle impossible
where they are potentially unbounded.

Figure 6 on the other hand, shows a mapping in which
structure in one space is preserved in the other. Given
the sample in bold, it seems that a learner has a higher
chance of reconstructing the mapping. A learner that is
biased to construct concise models, for example, would
learn this mapping more easily than that in the first figure.
Importantly, this bias is more likely to be domain gen-
eral than one that explicitly codes for a particular idiosyn-
cratic mapping. Furthermore a model can be constructed
that would map the spaces even if they were potentially
infinite in extent.

The first type of mapping (figure 5) is very like the
vocabulary-like systems described in the previous section,
where points in the meaning space where arbitrarily paired
with points in the signal space. To put it more precisely,
similarity between two point in either space is no guar-
antee of similarity between the points that they map onto
in the other space.6 The second type of mapping is much
more like a syntactic system, where strings have a non-
arbitrary relation with the meanings they correspond to.
Similarity between two strings in these systems is a very
good indicator of similarity between their corresponding
meanings.

In the second set of simulations, as in real language,
both the meaning space and the signal space are poten-
tially infinite in extent. This means that it is in princi-

6For an example of this type of mapping consider: Edinburgh is more
like Glasgow than it is like Erinsborough (the fictional setting for the
Australian soap Neighbours), and yet the string Edinburgh is more like
Erinsborough than it is like Glasgow.

Figure 6: A mapping in which structure is preserved. The
bold lines indicate an imaginary subsample of the map-
ping that might be evidence for a learner. This mapping
is more likely to be successfully learnt by a learner with a
more general prior bias.

ple impossible for a learner to acquire a mapping of the
first type. We can conclude, then, that where a learner
is exposed to a sub-sampling of the string-meaning pair-
ings in a language — in other words, where there is a
learning bottleneck — idiosyncratic, vocabulary-like lan-
guages are unlikely to be learned successfully. The initial,
random languages in the simulations are unstable over
time as long as the bottleneck is tight enough that they
cannot fit through intact. This is not a feature of syn-
tactically structured languages, however. Structure in the
mapping improves the survivability of that mapping from
one generation to the next.

What we are left with is a very general story about the
(cultural/social/historical) evolution of mappings. Structure-
preserving mappings are more successful survivors through
the learning bottleneck. This fact, coupled with random
invention of pairings in languages that have incomplete
coverage of the meaning space, and the unboundedness
of the meaning and signal spaces, leads inevitably to the
emergence of syntax.
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