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Abstract This article aims to show that linguistics, in
particular the study of the lexico-syntactic aspects of
language, provides fertile ground for arti�cial life modeling.
A survey of the models that have been developed over the
last decade and a half is presented to demonstrate that ALife
techniques have a lot to offer an explanatory theory of
language. It is argued that this is because much of the
structure of language is determined by the interaction of
three complex adaptive systems: learning, culture, and
biological evolution. Computational simulation, informed by
theoretical linguistics, is an appropriate response to the
challenge of explaining real linguistic data in terms of the
processes that underpin human language.

1 Introduction

What can arti�cial life offer linguistics, and why is language a particularly
appropriate target for ALife methods?

In this article I will review a relatively small subset of the work that has emerged over
the last 15 years or so at the intersection of linguistics and arti�cial life. In particular,
this article will deal with the models that have shed light on the origins of syntax in
human language. This should not be taken as an exhaustive review—for example, I
will not be covering the excellent work that has been undertaken on phonetics and
phonology (see, for example, [35]), critical periods for language acquisition [55, 59],
or language change (14, 29–31, 45, 62, 81, 111). Nor will the extensive literature on
models of animal communication be the main target of this review (although some of
the work will be discussed in Sect. 3). Instead, I hope that the selection of studies
presented here will provide clear answers to the questions above and offer support for
my view that individual-based computational modeling will be the core of any future
research framework for an explanatory linguistics.1

In the next section, I will review some of the important features of language that make
it the most complex natural system that we are aware of. The following sections review
some of the models in the literature in a roughly chronological fashion (as it turns out,
both in terms of publication date and evolutionary age of the target of explanation). The
topics covered are, in order, the biological evolution of innate simple signaling systems;
cultural evolution of simple signaling systems that are learned rather than innate; the
grounding of signals and the modeling of �exible meaning spaces; the emergence

1 At least one other excellent review of the literature on computational modeling of the evolution of language exists [100]. Another
source for a more in-depth look at the � eld is [22]. The speci�c goal of this article, however, is to look at ALife research from the
point of view of linguistics.
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of complex structured languages both through “negotiation” and cultural evolution;
and models that tackle coevolution of languages and language learning mechanisms.
Finally, the last section will give a personal viewpoint on what needs to be done and
what breakthroughs we are likely to see in the next decade.

2 The Three Complex Dynamical Systems in Linguistics

What’s so special about language? Is it really the most dif�cult problem in science?

So far in its short history, arti�cial life has mostly concerned itself with the study of nat-
ural phenomena that would be considered to be the remit of biology and ethology. For
example, in Langton’s edited volume surveying the �eld in 1995 [71], there are models
of molecular evolution [95], of cooperation in ecosystems [74], and of morphogenesis
[91]. There have also been attempts to use ALife techniques in social science domains
[39] and even to model traf�c jams [78]. One rationale for the ALife approach in these
domains is that they all involve complex synergistic interactions that, when taken to-
gether, lead to emergent behaviors that are dif�cult to predict. In complex dynamical
systems, verbal theorizing often leads to incorrect predictions because our intuitions
about the links between local interactions and global behavior are notoriously unre-
liable. Furthermore, the classical alternative—analytic mathematical modeling—may
require the kinds of idealization that will necessitate the removal of the very network
of interactions that give rise to the target of explanation.

ALife provides the answer to the methodological problem of linking theory and
prediction for complex dynamical systems involving multiple interacting components.
Microsimulation models, carefully designed, give the theorist a tool for testing ideas
about how natural phenomena such as bird �ocks, cell division, and so on, may come
about. In this view of the value of arti�cial life, human language is an ideal topic for
exploration using ALife models.

Consider a few of the things we know about human language:

1. It is a nontrivial communication system in that it allows us the potential for
producing a signal for a range of meanings with in�nite extent. In other words, it
is likely that the majority of communicative events that we engage in every day
involve the production of signals that the hearer has never encountered before,
and yet we have a reasonable expectation of being understood.

2. Language is symbolic. That is, the signal associated with a particular meaning is
likely to be arbitrary with respect to the system of convention that set up that
association.

3. No one is born with the ability to communicate using language.

4. Almost every member of our species can be a master at this system by around 6
years old without being taught (in the sense of deliberate instruction), and without
being given any reliable feedback about their communicative performance [17].

5. Our ability to learn a language at all tails off as we get older. If we have not
learned a language by puberty we probably never will [72].

6. Our eventual ability to communicate in the language of the community into which
we are born appears to have very little to do with who our biological parents are;
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nor does it appear to be predictable from any other measure of individual
difference.

7. Nearly all languages appear to be equally functional with respect to
communication.

8. There is no unequivocal evidence of any other species in possession of a
communication system even close to the complexity of human language [50].

9. The most able nonhuman at human language is a pygmy chimpanzee named
Kanzi, who was not taught language directly and was raised in a mixed
human–chimpanzee environment with a lot of functional communicative
interaction [94].

10. There are around 6,000 different languages on Earth. Many of these show
discernible similarities due to a common history. Others show similarities that
cannot be explained in this way. There is a great deal of diversity in language
types, yet it is clear that the logically possible range of variation is not re�ected
cross-linguistically [32].

11. Languages change over a relatively short historical time scale. No language is
completely static.

12. With oral tradition, written texts, and the enabling of direct instruction and
description, language allows us to have the most complex cultural transmission
system of the natural world, enabling the development of technologies that dwarf
in complexity those of our closest biological species.

13. Despite its complexity, humans can manage fairly well without fully syntactic
language. Many people are able to cope with little disadvantage in communities
that employ a language they are not pro�cient in, for example.

14. In some cases, languages can emerge in a very short space of time (e.g., one
generation) in communities of people who do not have any shared language (or
indeed any languages at all) [7, 93].

15. Many aspects of language appear to be localized in particular areas of the cortex
and may be damaged by, for example, stroke.

16. Formally, the natural language syntax appears to be at least context-free, and there
are constructions in some languages that seem to require context-sensitive
descriptions.

17. Context-free languages are not learnable in the limit in the most general case [41].
However, if learners have more information available to them than simply samples
of the set of grammatical strings of the language the constraint is weakened [43].

18. Native speakers are still able to make “grammaticality judgments” about sentences
that they will never hear, use, and may �nd extremely dif�cult to understand.

19. The principles that underlie some of the patterns of grammaticality within and
across languages do not have any clear parallel in any nonlinguistic human
behavior.

20. Although much of the structure of human language appears to be adapted to the
task of communication between humans, some properties of syntax appear to be
positively dysfunctional [73].
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To come up with a truly explanatory linguistics, we would need to (a) understand
the origins of this unique behavior, and (b) derive the properties of this behavior from
the properties of nonlinguistic systems.2 It turns out that this is a very challenging task.
Part of the reason for this is clear if we look, for example, at what processes give rise
to the object we call “English.”

Firstly, we must understand that the behaviors that make up most of English are
the mass of short-lived utterances that are being exchanged all the time around the
globe every day. These utterances consist of a stream of sound waves (which we can
analyze as a sequence of phonemes—minimal contrastive units of a language’s sound
system) paired with a communicative intention. In this view, English is a fundamentally
dynamic object. Furthermore, we can view English as a property of the particular wiring
and state of the brains of the millions of adult English speakers in the world. These
two views of English can be termed the E-language and I-language views, respectively.

Not only is English at any one point in time intrinsically dynamic (being made up
as it is of moving air, and �ring neurons), the manner in which it persists over time
means that it is liable to change in radical ways. The brain-state that is English can only
arise through observation by children of the utterances produced by others. Obviously,
this process is not spontaneous: Throughout this process children’s language changes
enormously.

Through this language learning process, E-language is transformed into I-language.
When language learners produce utterances, the transformation is reversed and the
process of transmission is repeated. As English is being transmitted on a historical time
scale, its population is changing: New members are born, old members die, birth rates
change, groups migrate, other language users come into contact with English users,
and so on.

In addition to language learning on an ontogenetic time scale, and language evolu-
tion on a glossogenetic (i.e., historical) time scale, we need to consider the manner in
which the brains of language users are shaped by biological evolution on a phyloge-
netic time scale. We have the brains we do by virtue of a combination of our genetic
endowment (which speci�es the ways in which our brains will grow in response to
the environment) and the environment in which we �nd ourselves (which interacts
with our genetic program to determine the �nal state of our brains). As the brain was
evolving, the genes that controlled its development were under selection pressure. It
is possible that this pressure changed as the very behaviors that the brain supported
emerged.

To summarize, languages are learned by observing others. The only way language
can persist is for it to be learnable; this leads to languages evolving culturally as they are
passed from learner to learner. The languages that result from this cultural evolution
process result in a change in the selection pressures on the genes that specify the
learning mechanisms for language. This means that the properties of the learning
mechanism may change, ultimately affecting how languages are learned (Figure 1).

English, therefore, is the result of a staggeringly complex interaction of (at least)
three complex adaptive (dynamical ) systems. It (and all the other languages of the
world) are therefore perfect topics for the next generation of ALife models. In the next

2 It should be noted that this is not the only view of what counts as an explanatory linguistics. Chomsky notably treats the goal
of coming up with an elegant framework of linguistic descriptions that can be generalized to predict the grammaticality of unseen
utterances and that can be employed for the description of any language as an explanatory goal. In [26], Chomsky makes a
comparison to the discovery of the periodic table. The periodic table was an elegant description that led to developments in
physical theory to account for its existence. In a sense, physics was required to explain the periodic table. Contrast this with
the alternative possibility: that the periodic table had been derived from physical principles and then had been compared with the
chemical data.

In a sense, Chomskyan explanation can be thought of as running in reverse to the way I am expounding. As for the origins of
language, Chomsky has suggested that not enough is known to make this question worth pursuing.
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Figure 1. Language is the result of an interaction between three complex adaptive systems that operate on different
time scales: the time scale of biological evolution (phylogeny), the time scale of individual learning (ontogeny), and
the time scale of language change (glossogeny).

few sections, I will summarize a line of research that leads from simple animal signaling
systems to the coevolution of languages and the language acquisition device to show
the sort of work that can be done.

3 Innate Signaling Systems

What are the simplest systems of communication, and what does ALife tell us
about their evolution?

The vast majority of communication that we are aware of is the result of purely innately
coded behaviors, that is, systems that involve no learning whatsoever. Examples of this
sort of communication can be found all through the natural world. Systems as diverse as
the attraction of insects to particular �owers, bee dances, and vervet monkey alarm calls
are communicative systems that are solely the result of evolution by natural selection.
Oliphant [85] reviews the work carried out within the framework of arti�cial life on
innate communication and draws out the main themes in this research within his own
idealized simulation model. In this section, I will summarize his viewpoint.

Before we look in general at what an arti�cial life approach to innate communication
might look like, we should de�ne what constitutes communication. This is itself an
area of some debate. In particular, there is a tension between de�nitions of commu-
nication employed by philosophers concerned primarily with language (e.g., [36]) and
ethologists looking at animal communication (e.g., [110]). Oliphant, following the non-
computational framework of Krebs and Dawkins [70], suggests that it is useful to look
at communication as a simultaneous combination of exploitation and manipulation:

An act of communication is a causal chain of events, whereby one individual,
the sender, exhibits a behavior in response to a particular situation, and a
second individual, the receiver, responds to this behavior. Such an interaction is
communicative if it involves manipulation on the part of the sender and
exploitation on the part of the receiver. ([85, p. 14])

Exploitation in this context refers to cases where the behavior of an individual is
determined to some extent by the fact that another individual can be expected to behave
in a particular way in a particular situation, and that behavior has been observed. If
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I were to avoid entering a colleague’s of�ce because I heard her sneezing, this could
be considered an exploitative interaction. The sneezing is a behavior I recognize is
expected if my colleague has a cold—my decision to use this signal to avoid her is
based on this relationship between a sneeze and having a cold.

Manipulation, on the other hand, refers to cases where the behavior of an individual
is determined to some extent by the expectation that another individual will respond
in a particular way to that behavior. We can think of the English expression “boo!” as a
manipulative signal as it is sometimes used to make people jump in fright. In this case,
the person shouting “boo!” is manipulating the fact that a sudden noise can trigger a
�ight response in the hearer.

It should be clear that the cases of communication that we are familiar with all �t
within Oliphant’s de�nition. The fact that a �ower is a particular color arises out of
both manipulation of the insects it is attracting and exploitation by the insects of this
signal. Similarly, the bee’s dance is both a manipulation of the response of its fellow
bees (to �y in a particular direction) and an exploitation by the hive of the arriving
bee’s dance. In both these cases, it is evolution by natural selection that gives rise to
this adaptive circle of manipulation and exploitation via signaling. In other words, the
two behaviors are the result of genetically hardwired responses to situations.

Several arti�cial life models have been proposed to explore what is required for
such a system to emerge (e.g., [1, 18, 37, 75, 82, 109]). In the work of MacLennan and
Burghardt [75], for example, each agent had access to a local environment, which was
in a random state, and a global environment that was accessible for each agent to view
and also alter. The global environment thus becomes a conduit for communication
about each agent’s local environment. After a “speaking” agent places a symbol in the
global environment, it is given a �tness reward if the next agent to act gains knowledge
about the speaker’s local environment. In addition, the “hearer” also gains a �tness
reward for this successful transfer of information. Ackley and Littman [1] use a similar
framework where agents communicate about hidden parts of their local environment,
but they break the symmetry of �tness payoffs by not rewarding speakers. They show
that communication can also evolve in this setting under certain conditions that we will
return to later.

Rather than model speci�c ecological conditions, Oliphant [85] sets out a generalized
approach to innate signaling systems.3 We assume a set S of low-cost behaviors (signals)
that are observable and can be distinguished by others.4 There is also a set M made up
of pairs of environmental states and appropriate responses to those states (meanings).
An agent’s communication system is described in terms of two probability functions:
s (m 2 M , s 2 S ) , the transmission function, and r (s 2 S , m 2 M ) , the reception
function. s (m , s ) for a given meaning and signal gives the probability that the agent
will produce the signal s for the meaning m . Conversely, r (s, m ) gives the probability
that the signal s will be interpreted as the meaning m by the agent.

When is a communication system useful? To answer this question, we need a mea-
sure of communicative accuracy for a population of agents. Firstly, Oliphant calculates
the expected probability that a transmitting agent with transmission function, s , will be
understood by a receiving agent with reception function, r . This is the average of the
product of signaling and receiving probabilities for each possible signal-meaning pair:

ca (s, r ) D
1

|M |

X

m 2M

X

s2S

s (m , s )r (s, m )

3 Oliphant is not unique in taking this approach. Others [18, 37, 82] also use generalized models of innate signaling to explore the
conditions under which innate communication evolves.

4 See, for example, [83] for discussion of what difference it makes if we change assumptions about the cost of signaling.
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S and R are de�ned to be the average probability functions for a population of n agents:

S (m , s ) D
1

n

nX

iD1

si (m , s )

R (s, m ) D
1

n

nX

iD1

ri (s, m )

So, the average communicative accuracy of a population is simply ca (S , R ) . The op-
timally communicating population would have ca (S , R ) D 1.0 since, in this case, for
every meaning and every pair of agents a signal would be sent that would be interpreted
correctly as that meaning.

To look at the evolution of communication Oliphant encodes agents’ transmission
and reception functions as a string of genes. Under the simpli�cation that s and r can
only return 0.0 or 1.0, the genome of an agent is an ordered string of signals that the
agent can produce (one for each meaning), followed by a string of meanings (one for
each signal the agent might perceive). For example, if an agent produced the signal a
for meaning 1 and the signal b for meaning 0, but interpreted both signals as meaning
0, then this agent’s genome would be ba00. [Incidentally, a population made up of
clones of this agent would have ca (S , R ) D 0.5.]

A typical evolutionary simulation using this genetic encoding scheme would involve
a population of agents with random genomes being repeatedly paired off in communi-
cation “games.” In each game a random meaning would be chosen, one of the agents
would produce the signal associated with that meaning (according to its genetically en-
coded transmission function), and the other agent would interpret that signal according
to its reception function. Two outcomes are possible: Either the original meaning and
the interpreted meaning are the same or they are different. The results of these games
would be used in some way in the simulation to assign a �tness score to each agent.
This �tness score would then be used to select the genetic make-up of the following
generation.

The key question is now: Under what speci�c simulation parameters will ca (S , R )
end up equaling 1? There are two key ways in which the general simulation model can
be parameterized:

1. How is �tness calculated in response to success or failure in the communication
game?

2. How are agents selected to become communicative partners?

With regard to the former, Noble [83] divides the �tness calculation into two compo-
nents: PS and PR. These correspond to the �tness effect on the sender, and the �tness
effect on the receiver. In addition, Noble varies the costs of signaling and responding
to signaling: CS and CR. These costs can be varied in a limited way by the agents (e.g.,
an agent may choose to make a “loud” or “quiet” signal, incurring different costs).
Noble’s model has many parameters that he varies systematically in a range of evo-
lutionary simulations. Rather than reproduce his results here, I will follow Oliphant’s
simpler parameterization of the space of possible ecological scenarios by looking at
two alternatives:

Mutual bene�t. Both speaker and hearer bene�t from successful communication.

Altruistic behavior. Only the hearer bene�ts from successful communication.
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From this perspective, the simulation of Ackley and Littman [1] is different from the
other two described earlier in that they modeled an altruistic situation as opposed to a
mutualistic one.

Using this type of framework, Oliphant concludes that it is relatively easy for evolu-
tion to tune an innate communication system in situations of mutual bene�t. However,
in settings where speakers do not bene�t from communication, the evolutionary sim-
ulation is not guaranteed to succeed. These results are con�rmed by Noble [83]. To
understand when a perfect communicative accuracy score can be achieved in these
situations, the choice of game partners needs to be examined:

Random. Communication games take place between randomly picked members of
the population.

Spatial organization. The population has spatial structure, and communicative
partners are chosen that are close together.

In the generalized model with random game-partner choice, altruistic communication
does not emerge. However, with a spatially organized population, Oliphant shows that
an optimal ca (S , R ) can be achieved even in cases where the speaker does not bene�t
(as in the case of [1]). He argues that this is because spatial organization is equivalent
to kin selection, a mechanism known to promote the evolution of altruistic behavior
[44]. This is because when you are more likely to talk to your neighbors, you are more
likely to talk to your kin (under the assumption that the children of agents are located
close to each other). Although this parallel seems sensible, DiPaolo [38] points out that
Oliphant does not actually formally test the equivalence of spatial organization and kin
selection. He also shows that, in some circumstances, there are alternative mechanisms
that are not related to kin selection by which spatial organization can promote the
evolution of optimal communication.

The use of arti�cial life modeling techniques for studying the evolution of innate
communication is well established. Most researchers would probably agree that evo-
lution by natural selection can tune a simple communication system under reasonable
ecological assumptions. In many ways it seems that any further models of innate com-
munication would be unnecessary. However, we must be very careful not to let the
attractive simplicity of the general model described here blind us to other issues that
deserve study. Throughout this section I have used terms like “tune” to describe the
work that evolution is doing in this model. We have shown the conditions under which
evolution can select optimal mappings between signals and meanings. However, mod-
els such as this assume that there already exist agents who are naturally inclined to map
signals and meanings at all. To put it another way, these agents have given to them
on a plate a dedicated channel through which they send information, and cognitive
systems that naturally pair this information with meanings.

Can arti�cial life techniques help us to understand the origins of the communication
channel itself? Recent work by Quinn [92] suggests that they can. In Quinn’s model,
mobile agents are placed in a featureless environment in pairs. Each agent has a
set of rough sensors that help it “see” the other agent if it is close (the agents are
actually Khepera robots). To simplify somewhat, the agents evolve according to an
evolutionary scheme that rewards the distance that the center point between the two
agents moves. What makes this evolutionary task interesting is that the optimal strategy
requires coordination between the two agents. Optimally, both agents should move in
the same direction to maximize their joint displacement from the starting condition.

Notice that, in this model, there is no dedicated communication channel. All the
agents have as potential output is their own movement, and all they have as their
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potential input are readings from their proximity sensors. Neither are there any obvious
“meanings” in the simulation. However, communication evolves in Quinn’s simulation.
The typical behavior of two evolved agents is as follows:

1. Each agent rotates anti-clockwise until it faces the other.

2. The �rst one to face the other moves forward to close the range between them.

3. Once it is in range, it starts moving backward and forward a small amount, while
staying close to the agent it has approached.

4. This continues until the other agent also becomes aligned.

5. At this point, the agent that got aligned last starts reversing, and the other follows.

In summary, then, the agents in Quinn’s model have an innate signaling system con-
sisting of one signal—the oscillating movement when close to the other agent—which
we might gloss in English as “after you.”

This section has looked at the ways in which arti�cial life can illuminate questions
relating to the evolution of simple innate signaling—the sort of communication that is
common in the natural world. It is striking, however, that human language is predom-
inantly very unlike one of these communication systems (even a cursory glance back
at the list of features given in Sect. 2 should convince us of that). The next section
turns to one of the most striking differences between human language and most other
communication systems: learning.

4 Culturally Evolved Signaling and the Iterated Learning Framework

How can we use arti�cial life simulations to uncover the requirements for a
learned communication system?

At the start of this article, I argued that one of the most interesting things about human
language is the fact that it can be understood in terms of an interaction of complex
adaptive systems. The work covered in the previous section only makes reference to
one of these systems—adaptation through natural selection—since for innate simple
communication, this provides the only relevant dynamic. As such, these studies are of
only limited interest to those wishing to understand the origins of language.

Fundamentally, in human languages the mapping between signals and meanings is
learned rather than being determined genetically.5 An important question at this point
is whether this actually changes anything—in other words, perhaps we can use the
results from studies of innate communication systems and somehow apply them directly
to their learned analogue. There are some indications that this could be a sensible
strategy. There have been attempts to model language acquisition and language change
(over a historical time scale) using genetic algorithms [30, 56]. Biological evolution is
simply optimizing the meaning–signal mapping to a communicative function (under
the assumption that communication offers a selective advantage), and surely individual
learning is performing a functionally identical optimization?

I wish to argue here that this simplistic approach is unwise, and that, at least for
the most relevant types of learning, we cannot carry over what we have learned from
looking at innate communication to learned communication in any trivial way. For
a start, a learned communication system is subject to two dynamical processes acting

5 I am not saying here that only human languages involve learned symbolic mappings (although this has been claimed by Oliphant
[87]). More study is needed to understand exactly what learning mechanisms are used in other species’ communication systems.
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together (as pointed out in Sect. 2). Not only does the system develop over the lifetime
of the agent in response to experience, but the experience that the agent learns from
is itself the output of other agents’ learned behavior. If we are to look for equivalences
between innate and learned systems, how does the process of biological evolution map
onto the twin processes of ontogenetic and glossogenetic (i.e., cultural) evolution?

Another problem concerns adaptation. The biological evolution of innate commu-
nication is a process of adaptation to a particular function: reproductive �tness (and
therefore, indirectly, communicative success). We cannot take it for granted that either
learning or cultural evolution are adaptive mechanisms that seek optimal solutions with
regard to communication, however intuitively appealing that may appear. It is certainly
true that a learning scenario could be envisaged that would appear to do just that. For
example, if a communication system was learned by an agent using a form of reinforce-
ment or error-driven learning in which the reinforcement or error signal was the result
of an attempt to communicate, then we could argue that the behavior of learning agents
might re�ect that of evolving agents. Unfortunately, there is no evidence that human
language learning proceeds with any reliable feedback on performance, let alone an
error signal relating to communicative success [17].

Turning to cultural evolution, there have been many attempts to treat this and bio-
logical evolution as speci�c instantiations of the same mechanism (e.g., [33]) ever since
Darwin mentioned the parallels in The Descent of Man [34]. Furthermore, the function-
alist approach to linguistics directly builds in notions of adaptation to communication
into linguistic analysis, and the mechanisms behind this have been related to cultural
evolution (see [63] for discussion). A problem with this approach based on the analogy
between language change and biological evolution is that it is actually rather weak. In
fact, as Kirby and Hurford [68] point out, language change as an evolutionary process
violates the central dogma of molecular biology (that there is no reverse translation from
soma to germ line). Rather, there is a repeated reverse translation from E-language to
I-language via induction in linguistic transmission.

It seems sensible, therefore, to study learned communication using a different meth-
odology than that used for innate communication. This does not mean we have to
throw everything away that has been developed previously. For example, we will use
the same formalism as discussed in the previous section for simple signaling systems.
The transmission and reception functions s (m , s ) and r (s, m ) for an individual agent
are, however, not directly provided by the genome of that agent. Rather, the prob-
abilities returned by these functions are determined by the experience of that agent
and a learning algorithm. This does not deny a role for biological evolution, since
the particulars of the learning algorithm must come from somewhere—this interaction
between learning and evolution is discussed in Section 7.

The interesting feature of learned communication systems is that the introduction
of learning leads naturally to another complex system emerging: culture. As long
as there is the potential for a learning agent to be “younger” than a speaking agent
(i.e., to have been an active member of the population for a shorter time) then there
will be a historical process of information transmission through repeated learning and
performing of behaviors. Notice that this does presuppose the idea that there will be
population dynamics in the model. This does not need to be the case. For example,
the work of Batali tends to use static populations of learners [3, 4]. To discriminate
between these kinds of models and ones in which there is population replacement,
Batali uses the term social coordination rather than cultural transmission/evolution.
Section 6 deals with this model in more detail.

Culture, then, relies on the input to a learning agent being the output of similar
learning agents. Although an enormous amount of work has been done looking at
modeling learning, rather surprisingly there is very little looking at this type of iter-
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ated learning (IL). Typically, machine learning looks at cases where the data to be
learned from comes from “outside” the system in some sense (e.g., it is given by the
experimenter or the environment). This is unfortunate, since iterated learning has some
fascinating properties (as we shall see later) and is an excellent way of thinking about
human language.

To facilitate analysis of models of cultural transmission, Kirby and Brighton [12, 13,
65, 68] set out a generalized iterated learning framework. The framework consists of
four components:

1. A meaning space

2. A signal space

3. One or more learning agents

4. One or more adult agents

In this framework, adult agents are given random sets of meanings for which they
must produce signals. Learning agents sample the resulting meaning–signal pairs and
use this to build a model of the population behavior. At some point (typically once a
particular number of meaning–signal pairs has been sampled by a learner), learners will
become adults. In this framework, it is common to maintain a �xed number of adults
and learners, so the maturing of a learner will entail removal of an adult (modeling
death) and the introduction of a new learner (modeling birth). Importantly, in most
instances of an IL model, each learner directly after birth will be identical throughout the
simulation. In other words, there is no biological variation or heredity in the simulation.
Also, typically, the probability of an agent dying is the same for all agents, meaning
there is no equivalent of natural selection.

There has been rather less work in the arti�cial life �eld on learned simple commu-
nication, perhaps because it is not clear where this type of behavior is found in the
natural world (since most, if not all, nonhuman signaling systems are innate). However,
see [54] and [60] for early examples.

One of the key features that differentiates the various arti�cial life simulations that
broadly fall within the IL framework is the type of learning they use. As I have already
argued, we should prefer IL models that do not rely on task feedback or an error
signal passing between agents and should use instead some form of observational
learning (using solely the sample of meaning–form pairs that adults produce to induce
a representation of the communication system). Oliphant [86] sets out a taxonomy
of observational learning strategies based on how they change the language being
transmitted by IL:

Acquisition. A learning strategy is said to be capable of acquisition if it is able to
learn the system of an optimally communicating population.

Maintenance. A learning strategy is capable of maintenance if it is able to learn the
system of an optimally communicating population even in the presence of noise.

Construction. A learning mechanism is capable of construction if it fails to learn the
system of a suboptimally communicating population and moreover if a population
of constructors will generate an optimal communication system from randomness.

The distinction between acquisition, maintenance, and construction underlines the
importance of looking at IL. On �rst looking at modeling learning organisms, ALife
researchers might turn to the machine learning literature to �nd a model of learning to
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use. However, they are likely to choose an algorithm that is capable of acquisition but
not necessarily maintenance or construction. An agent only capable of acquisition is
never going to be a good model of an organism with a learned communication system
because the researcher would have to remove all noise from the system and also start
the simulation with an optimal communication in place. Of far more interest are those
learning strategies that count as constructors. In machine learning terms, these will be
those that have a prior bias that results in generalizations that map unique signals to
each meaning.

By far the most thorough study of what is needed to be a constructor is one by K.
Smith [98]. Smith uses simple associative networks to model an agent’s representation
of the population’s mapping from meanings to signals. These networks act as both
reception and transmission function for the agents.6 In this form of associative network,
meanings and signals are given localist representations (i.e., in the meaning and signal
layers, only one node is given an activation of 1, and all the others are given an activation
of 0). The two layers of the network are fully connected with each other, and the
weights are all integers. To retrieve an association, either a signal or meaning node is
activated and the activation is multiplied through the weights. A localist representation
is calculated by a winner-take-all scheme, and the resulting activation is thresholded
to 1.

Learning is implemented by adjusting the weights on the connections between each
meaning node and signal node. There are four possible input–output pairs for a given
node:

1. Both meaning and signal activated

2. Only meaning activated

3. Only signal activated

4. Neither activated

Smith constrains learning rules for each of these cases to either increase the weight by
1, decrease it by 1, or leave the weight alone. This gives 34 D 81 possible learning
rules in total. These can be represented as a four-long vector:
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where the positions in the vector correspond to the input–output pairs given above.
By putting a homogeneous population of agents with a particular learning rule in

an IL framework with a random initial language, Smith categorizes all of the possible
associative network learning rules in terms of Oliphant’s taxonomy. Fifty of the 81 total
rules failed to acquire an optimal system at all (i.e., they could be considered nonlearn-
ers). The remaining 31 were capable of acquisition; of these 18 could also maintain
an optimal system against noise, and 9 of these were constructors. Interestingly, one
of the constructors, h1, ¡1, ¡1, 0i, can be considered to be a form of Hebbian learn-
ing [52]. In a further study, Smith [97] also models a heterogeneous population of the

6 Actually, it is common in IL models for reception to play a very small role. This is because the focus of the model is on how the
information inherent in the communication system is passed on culturally. The only relevant mechanisms are transmission and
learning. Modeling reception is still important, however, because without it the researcher cannot calculate the ca(S, R) score for
the population.
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various learning rules that is under biological selection pressure. This is an example
of a coevolutionary model,7 which are discussed in the context of syntactic systems in
Section 7. The main conclusion we can reach from Smith’s [97] research is that the in-
teractions between learning, culture, and evolution are nontrivial. In particular, genetic
drift plays a major role in ensuring that enough constructors dominate the population
at some point to “jump start” a process of cultural convergence, and then biological
selection.

Other authors have used different techniques to see which learning algorithms are
constructors. For instance, a number of papers follow up Hurford’s [54] work in noting
that construction is facilitated by learning algorithms that induce r (s, m ) through obser-
vation, and then use some form of inversion technique to infer s (m , s ) . This general
strategy has been termed obverter by Oliphant and Batali [88]. Obverter can be thought
of as a Bayesian strategy for communication that is trying to maximize the probability
of success at getting a meaning across to a hearer on the assumption that that hearer
is (a) like you, and (b) has been exposed to similar data as you. The particular way
obverters invert their reception function is by transmitting, for each m 2 M the s 2 S
that maximizes r (s, m ) . In other words, obverters produce the signal that, if they hear
it, they would most likely understand to be the correct meaning. In this way, obverter
agents are using their own reception function to model the reception functions of the
rest of the population. Oliphant and Batali [88] prove the optimality of obverter for
simple communication systems.

Throughout this section we have been looking at observational learning where
agents learn by inducing a model of population behavior from a sample of meaning–
signal pairs. Critics of this approach quite rightly point out that the ready availability
of signals with meanings neatly attached to them reduces the credibility of any results
derived from these models (we will return to this point later in this article). Interest-
ingly, there are alternatives to giving meanings to agents on a plate. The proponents
of task-oriented feedback as opposed to pure observational learning (e.g., Steels, Ka-
plan, McIntyre, and Van Looveren [101, 103]) do not in fact use signal–meaning pairs
to train their agents. In a sense, they are moving beyond looking at the evolution of
the mapping between signals and meanings into looking at the origins of meanings
themselves.8 It is to these results we now turn.

5 Grounding and the Origin of Meanings

What should ALife agents talk about? Can the semantics of a language be
learned and evolve as well as its lexicon?

In a number of publications, Harnad (e.g., [46]) has focused on what he calls the
“grounding problem.”

Suppose you had to learn Chinese as a �rst language and the only source of
information you had was a Chinese/Chinese dictionary! This is more like the
actual task faced by a purely symbolic model of the mind: How can you ever
get off the symbol/symbol merry-go-round? How is symbol meaning to be
grounded in something other than just more meaningless symbols? This is the
symbol grounding problem. [46]

7 In fact, the model can be seen as a combination of models of learning from [98] and cultural transmission from [99].
8 We have already seen an approach that does not assume a prede� ned set of meanings (or indeed, signals) in the work of Quinn

[92]. However, his approach currently only works for evolving innate communication systems.
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Any simulation that simply treats meanings as symbols that can be handed over to
agents along with their associated signal is not providing any solution to the grounding
problem.9

In response to this, some researchers stress the importance of placing agents in a
rich environment so that their communication is about something. There are essentially
two approaches to this (although the boundaries are somewhat blurred) depending on
whether the environments are simulated or real. In the latter case, communicating
agents are robots (e.g., [9, 104, 108]); in the former they are similar to the software
agents we have already looked at, but usually with a number of ways of interacting
with their environment [20].

Cangelosi and Parisi [21], in part as a response to Harnad’s point about grounding,
describe a model in which an innate communication system evolves in a population of
neural networks that forage for mushrooms. The connection weights in their networks
are set by evolution using a genetic algorithm with a �tness function based on the
energy of the agents. An agent’s energy depends on the mushrooms that agent eats.
Some of the mushrooms are edible and some are poisonous, and the mushrooms are
distinguished by the perceptual properties they present to the network, with all edible
mushrooms sharing some perceptual similarities and all poisonous ones also being
perceived in similar ways to each other.

One part of the output of the network controls the movement of the agents, and after
evolution, Cangelosi and Parisi found that the agents were able to recognize the two
types of mushroom and avoid eating those that were poisonous. This task, however,
does not involve any communication. To set up a situation in which communication
was relevant, the authors ran a simulation in which the perceptual properties of the
mushroom were not necessarily available to the forager (speci�cally when the mush-
room was far away). However, walking along with the forager is another conspeci�c
(randomly chosen from the population) that can always perceive the mushroom. This
“guide” does not control its own movement (its movement output is ignored), but in-
stead, the other output units are given to the forager as input. In other words, the
guide produces a signal that the forager has access to.

In this evolutionary scenario, an innate communication system evolves. Whenever
an agent perceives a mushroom in the poisonous class it emits a particular signal, and
it will emit a different signal whenever it perceives a mushroom in the edible class.
Furthermore, whenever an agent receives a signal it will act appropriately.

This simulation is interesting mainly because the meanings in the simulation are
arguably grounded in the perceptions of the agents. Certainly, the categories “poi-
sonous” and “edible” are not provided in advance for the agents, but instead emerge
because of their ecological relevance.10 That said, the perceptual system of the
agents is fairly rigid, and the meanings that emerge are the only ones that are con-
ceivable within the simple environment. On top of this, the communication sys-
tem is purely innate (although later work by Cangelosi [19] adds a learning compo-
nent). Could a communication system emerge without biological adaptation that is
grounded in an environment complex enough that many conceivable meanings are
possible?

9 Not that this is necessarily the wrong thing to do, of course. It is important, in building arti� cial life models, that we do not try
to solve everything at once. A sensible ALife methodology is one in which the computational model is merely an instantiation of
a theory about the domain of enquiry (to assist the theoretician in generating predictions to test). If the particular theory being
tested (e.g., that learning biases affect emergent languages in iterated learning) does not mention grounding, then the model need
not solve the grounding problem.

10 The alert reader may also notice that Cangelosi and Parisi’s simulation also demonstrates the emergence of communication in the
absence of bene�t for the sender, kin-selection, or a spatially organized population. Oliphant [85] notes this interesting feature of
the simulation and argues (as Cangelosi and Parisi themselves note) that the sharing of the hidden-unit representational space by
both the signal-emitting and movement-generating output nodes favors the emergence of an optimal system in this case.
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Figure 2. A schematic of a typical scene for the talking heads experiment. Note that the real scene would be subject
to environmental conditions such as re� ections, variation in light, and so forth.

Luc Steels and his colleagues have attempted to answer this question by using robots
to embed communicative agents in the real world. They de�ne various games that can
be played between pairs of robots with respect to the world they are able to sense: the
discrimination game, the guessing game, the naming game, and so on. For example, in
the “talking heads” experiment [101], two robot-controlled cameras try to communicate
about a scene in front of them. The scene consists of a set of colored shapes on a white
board (see Figure 2). This scene exists in the real world and is thus subject to a lot of
variability and noise such as glare from lights, changes in ambient luminosity, and so on.

Each robot camera contains a software agent (which, in fact, only remains resident
in that camera for a short time–this means many more agents than cameras can be sim-
ulated). The agent has various dimensions (e.g., vertical position, horizontal position,
size, color, etc.) along which it may make discriminations among the objects in the
scene. It is able to re�ne internal structures (discrimination trees) in such a way as
to represent particular objects in the scene along these dimensions. For example, an
agent might think of the square in Figure 2 as the “object on the bottom” or “the small
object” or “the square object” or even “the small square object at the bottom.” Which
way an agent will actually represent the square depends entirely on that agent’s life
experience, that is, the particular discriminations that it has re�ned over time.

In a guessing game between two agents, one is picked as the speaker and the other
the hearer. After low-level visual segmentation, a topic is chosen at random from the
shapes on the board (the context ). The speaker then attempts to �nd a representation
for that object using its discrimination trees. If it is successful, then this representation
(a meaning) is looked up in the agent’s lexicon of meaning–signal pairs. A relevant
signal is produced and passed to the hearer.

Now, the hearer attempts to point at the shape that it thinks the speaker is trying
to name. Pointing is carried out by sending information about where the camera is
looking. The speaker is then able to send a success or failure signal to the hearer
along with (if necessary) a further hint at the correct object by pointing itself. If the
game is unsuccessful, both agents make changes to their internal representations to
improve the chances of future successful communication. This can involve re�ning
their discrimination trees and/or re�ning their lexicons.

It may seem to be giving the agents far too much to allow them to tell each other if
they have been right or wrong with a guess, and even allow them to point to the correct
object when there is failure. However, it is important to realize that by not prede�ning
a meaning space, Steels has increased the complexity of the coordination problem for
the agents enormously. This is because it is not only the meaning–signal mapping that
is evolving in the agents, but also the set of distinctions that the community is making.
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As an illustrative example, consider the square in Figure 2 again. It is quite possible
for two agents to communicate perfectly about this topic but have quite different lex-
icons. For example, let’s say a speaker had just sent the signal “mulipa.” The hearer
could pair “mulipa” with a node in a discrimination tree corresponding to bottom, but
the speaker could actually have a node in a discrimination tree corresponding to black
that was paired with the same word. The hearer might not even make any distinctions
based on color, let alone have the color black paired with this word, but despite this,
communication is successful. Eventually, however, it is likely to fail (see [96] for further
analysis).

In [102] the results of the talking heads experiment are discussed in terms of semiotic
dynamics. The authors’ point is that, by allowing agents to create their own meaning
spaces, they have introduced a new dynamic into the cultural evolution of languages
that is not present in other simulations. The results of the experiments show that
there are rich patterns of variation, both within the population and over time. New
meanings can always emerge, and multiple meanings appear to compete with each
other. Importantly, this apparently chaotic dynamic does not mean that the agents are
not capable of communicating with each other.

At this point, the sceptic might wonder why we care about dynamic meaning spaces
at all. What about the point that we should avoid using a secondary error-signal (either
from another agent, or from success or failure at a task)? Does the talking heads
experiment tell us anything about real language?

Firstly, there are good linguistic reasons to prefer the talking heads model of seman-
tics over, say, the semantics in Oliphant’s simulations. Bowerman and Choi [11] in a
study of the acquisition of spatial vocabulary in English, Dutch, and Korean show that
a universal set of atomic semantic concepts is unlikely, but it is exactly this sort of set
that many computational models rely on.

Secondly, it may be possible to implement a model with �exible meaning spaces
that uses a more realistic approach to learning. A. Smith [96] proposes an alternative
approach to constructing mappings between discrimination trees and signals based on
obverter. Results at the moment seem to be equivocal, but there are a number of
approaches that could make it simpler for agents to acquire communication systems
using pure observational learning. Smith suggests that a well-known principle from
the literature on child language acquisition—the principle of contrast [76]—could aid
in discrimination tree and lexicon construction. Another point that Smith makes is that
children do not seem to be free to make any meaning distinction they like. It is likely
that there are preexisting biases for particular distinctions that may aid the search for a
shared language (for a well-known example, we could look at the work on color-term
universals by Berlin and Kay [6]).

Although models of language evolution such as the talking heads simulations seem
to take us closer to some of the speci�cally human aspects of human language (i.e.,
�exible semantics), little has so far been said about the most strikingly unique aspect
of language, its syntax. The next section reviews some of the recent work in this area
and shows how it builds on results from simulations of learned simple communication
systems.

6 Syntax from Iterated Learning

How does the uniquely structured mapping between meanings and strings of
symbols evolve in humans? And why is it unique?

Much is made of the uniqueness of human language. Typically this uniqueness is re-
lated to the syntactic nature of language as a communication system. Exactly how to
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Table 1. Compositional English and holistic equivalents.

Compositional Holistic
Walked Went
I greet you Hi
Died Bought the farm
I thought I saw a pussy cat Bark

characterize the syntax of language is an enormous problem and constitutes a large
proportion of the research in theoretical linguistics. Of course, this in turn poses a
problem for the ALife researcher proposing an explanation for language origins. Ex-
actly what are we trying to explain? This is addressed in the literature on language
origins by setting out a particular simpli�ed characterization of the general proper-
ties of human language syntax (see, for example, Pinker & Bloom’s [90] list of fea-
tures of language, or Newmeyer’s [80] explanation for polystratality of syntax), or by
picking a principle from a particular model of syntax and studying that in more de-
tail (e.g., both [79] and [28] look at the subjacency principle from generative gram-
mar).

In this section, I will take the former approach and attempt to characterize one
of the most fundamental properties of human language syntax: compositionality. In
linguistic semantics (e.g., [77]), the term is used to refer to the way in which the mean-
ing of an utterance is typically composed through some function of the meanings of
parts of that utterance and the way in which those parts are put together. Notice that
the notion of semantic compositionality allows for recursion in language, since the
parts of the utterance themselves may have meaning through a compositional func-
tion.

Table 1 shows the difference between compositional English sentences on the left
with holistic equivalents on the right with similar meanings11 (the last one is the Vervet
alarm call for leopards—see, for example, [24]).

Before the emergence of compositionality can be explored in ALife simulations,
agents need to be able to use signals with some kind of internal structure and represent
meanings with structured representations. For example, the signals could be strings of
symbols, and the meanings could be a set of feature–value pairs. A compositional
mapping in this case would be one in which similar strings map onto similar meanings.
Conversely, a holistic mapping is one in which the similarity structure in one space is
not preserved in the other (see Figure 3).

A simple example of this kind of model is given in [68]. In this simulation, signals
and meanings are represented as 8-bit vectors. The agents are simple feed-forward
networks with 8 input units, 8 hidden units, and 8 output units. The inputs are signals
and the outputs meanings. The backpropagation of error training algorithm is used to
model learning in these agents.

Because they are strictly feed-forward, there is a problem with this approach. Al-
though the networks after training can map received signals onto meanings, they cannot
do the reverse. To solve this problem the obverter strategy discussed earlier in this ar-
ticle can be used. To produce a signal s from a meaning m, a network �nds the signal
that would maximize the likelihood of correct reception if the agent was talking to

11 Of course, in some circumstances, the phrase “bought the farm” is more compositional (i.e., when referring to someone buying a
farm). Idioms generally appear to have compositional syntax but in fact have a noncompositional relationship with their meaning.
In many ways this could be compared with some complex animal signals such as the song of whales or birds and the long calling
of gibbons (assuming these do not have a compositional relationship with their meanings).
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MEANINGS

SIGNALS

Figure 3. Two types of mapping between a signal space and a meaning space: holistic on the left, and compositional
on the right.

another agent identical to itself.
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where C (m | s ) is the con�dence that the network has in the mapping s ! m.

In other words, �nd the signal that maximizes the network’s con�dence in the given
meaning. To calculate C (m | s ) , we treat the real-numbered network outputs o[1, . . . , 8]
as a measure of con�dence in the the meaning bits m[1, . . . , 8].

C (m[1 . . . 8]|o[1 . . . 8]) D
8Y
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C (m[i]|o[i]) (5)

C (m[i]|o[i]) D

(
o[i] if m[i] D 1,

(1 ¡ o[i]) if m[i] D 0.
(6)

With these agents, an iterated learning simulation can be conducted as follows:

1. An initial population is set up consisting of two randomly initialized networks, a
speaker and a hearer.

2. A certain number of random meanings are chosen from the set of binary numbers
00000000 to 11111111, with replacement.

3. The speaker produces signals for each of these meanings by applying the obverter
procedure.
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4. This set of signal–meaning pairs is used to train the hearer network using the
backpropagation of error learning algorithm.12

5. The speaker is removed, the hearer is designated a speaker, and a new hearer is
added (with randomly initialized weights).

6. The cycle repeats.

With this model (and with many others), the results are determined by the number of
meaning–signal pairs the learners are given. I refer to this value as the size of bottleneck
b through which the language evolving in the simulation must pass from generation to
generation. There are essentially three regimes of behavior with this model:

1. With low b, the language is unstable and inexpressive.

2. With high b, the language is fairly stable and expressive, but takes a long time to
reach the point of maximum expressivity.

3. With an intermediate value of b, however, a completely stable and maximally
expressive language emerges rapidly.

An examination of the languages that arise in each case shows that the medium
bottleneck sizes result in compositional languages. A compositional language in this
case is one in which each bit of the signal vector determines the state of one bit of the
meaning vector (and vice versa).

Why does this result emerge? One way of looking at the dynamics of this system
is from the point of view of the language, not the agents. The most stable languages
will be those that are learnable. If too few examples are seen by the learner, then
all languages will be equally unstable. However, if there are enough examples to
learn from, the most stable languages will be those that can be reliably learned from
different subsets of the utterances they generate (imagine trying to reconstruct the
mappings in Figure 3 from just a few of the lines showing—you would be more suc-
cessful with the mapping on the right). These languages are going to be the ones that
are generalizable (see [57]). For the network, it is trivial to form generalizations that
re�ect the structure of the signal and meaning bit vectors. As the number of train-
ing examples increases, however, the pressure on the language to be generalizable
decreases, and the network can tolerate languages that involve a degree of memoriza-
tion.

This is a simple demonstration of the interesting dynamics that arise from the iter-
ated learning framework when there is structure in the meaning and signal spaces. A
criticism of this kind of model is that it lacks generality. It is possible that this com-
positionality result is due to some element of the simulation rather than to languages
adapting to the learning task. However, there are an increasing number of models in
the literature that replicate this basic result (see [58] for a deeper review):

Batali, 1998 [3]. This model uses a population of recurrent neural networks. The
signals are strings of letters, and the meanings are bit vectors with some internal
structure. There is no population turnover in this simulation,13 but the agents
converge on a system of strings that are made up of substrings that re�ect the

12 The learning algorithm used has a learning rate of 0.1 and no momentum term. Each learner is presented with 100 randomized
epochs of the data set.

13 Tonkes [106] classi�es this simulation and Batali’s other work as a negotiation model in contrast with the iterated learning model. This
difference in terminology re� ects the fact that Batali has no generational turnover.

Arti�cial Life Volume 8, Number 2 203



S. Kirby Natural Language From Arti�cial Life

meaning-space structure. The result is remarkably reminiscent of the morphology
of natural languages. These results are replicated in [42].

Kirby, 2000 [64]. In a similar fashion, this paper uses strings and structured
meanings. However, the languages are learned by a heuristically driven grammar
inducer rather than a neural network. Once again, the language evolves such that
utterances are made by combining words into sentences. To get this symbolic
approach to work, there is the need for some form of random invention. This is
never needed in the network simulations, because they are always able to produce
an output.

Kirby, 2002 [66]. These results are extended by the introduction of hierarchically
structured meaning representations (similar to predicate logic). The meaning space
is now potentially in�nite, so a bottleneck smaller than the whole meaning space is
guaranteed. The result is the emergence of recursion in the simulations.

Batali, 2002 [4]. This paper also uses symbolic representations. Like the earlier
paper by Batali, there is no population turnover. Learning is implemented using an
instance-based learning algorithm that generalizes through analogy from structures
the agent has memorized. Some interesting structures emerge that are reminiscent
of passives and re�exives in real languages, for example. Another strength of this
paper is the way in which the semantics are structured. Each meaning is a “�at”
bag of simple predicates. Interestingly, the emergent languages are recursively
structured even though the semantics are not.

Teal and Taylor, 1999 [105]. In this paper, there is no meaning space. Agents
induce �nite-state machines to generate sequences of letters using the minimum
description length (MDL) approach. The goal of this paper is to show that
languages are stable if they are compressible.

Kirby, 2001 [65]. In all the previous papers, every meaning is equally probable.
This paper demonstrates that a skewed distribution over meanings produces a
different result. If speakers prefer short strings, then languages emerge that are
partly compositional and partly holistic. The holistic parts of the language are the
highly frequent parts. This result mirrors what is found in natural languages.

Brighton and Kirby, 2001 [13]. This paper employs the MDL approach of Teal and
Taylor [105] but with a modi�ed form of �nite-state machine that is able to
represent meanings. These are used to predict the circumstances under which
compositionality will be stable. The result (con�rmed in the mathematical study by
Brighton [12]) is that compositionality is more stable with meaning spaces of high
dimensionality.

Zuidema, 2001 [114]. A learning algorithm similar to the one of Kirby [64] is used
to demonstrate that the iterated learning framework moves the lower bound result
of Nowak, Komarova, and Niyogi [84], enabling stable languages with fewer
exposures to the data. Zuidema also shows that iterated learning mitigates some
classic learnability results such as [41].

Kirby, Smith and Brighton 2002 [69]. To explore in more detail the ways in which
the structure of the meaning space can in�uence the relative probability that compo-
sitional versus holistic languages will emerge, many thousands of simulations with
differing meaning sets and bottleneck sizes are run until a stable language results. As
with earlier work by Brighton [13] a correlation between degree of compositionality
and the structure of the meaning space is shown. The learners in this simulation
were an extended form of simple Hebbian associative networks described in [98].
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Not all computational modeling of the emergence of syntactic structure relies on
the iterated learning framework. The next section will deal with models that include
a component of biological evolution, but some interesting hybrid models should be
mentioned here. Tonkes [106] explores which languages �t a particular learning bias
by a hill-climbing approach as well as allowing those languages to emerge naturally in
an IL model. Perfors [89] uses genetic programming techniques to study the conditions
for the emergence of structured goal-directed communication.

Hashimoto and Ikegami [49] evolve grammars directly to understand the relationship
between their formal properties and selection pressures based on speaking, recogniz-
ing, and being recognized (see also [113] for review). Another approach is exempli�ed
by Hashimoto [47], who explores a “constructivist” theory of linguistic structure in
which a web of statistical relationships arises out of the dynamics of interactions be-
tween agents. More recently, Hashimoto has linked these two models, which he says
re�ect different time scales of linguistic evolution. Ultimately, this kind of synthesis of
local and global dynamics may prove the most fruitful direction for future research (see
[48] for an introduction).

Some of the recent work on modeling grounded semantics has started to look at
emergent signaling systems that have internal structure. Cangelosi’s models of goal-
directed communication in foraging agents (mentioned in Section 5) demonstrate the
emergence of a signal with two components: a proto-verb and a proto-noun [19]. The
former designates the relevant behavior for the forager (approaching or avoiding), and
the latter identi�es the class of foraged item. What seems to be happening in these
simulations is that the agents evolve internal representations that enable them to forage
successfully. These representations then form the basis of the subsequent cultural
evolution of the proto-noun/verb distinction.

The theme of grounding structural linguistic distinctions on a prior task-oriented
substrate is also taken up by Hazlehurst and Hutchins [51, 61]. In their model the
environment consists of a spatially organized “scene” within which there may be a
number of objects. Each agent attends to one object in the scene at any one point
in time. During an interaction, there are two agents: a speaker and a hearer. Both
are able to see what object the other is attending to. In other words, they are both
able to follow the gaze of the other. During an interaction, the speaker attempts to
direct the hearer’s gaze to a particular object in a visual �eld. A successful interaction
involves both speaker and hearer moving their gaze over the visual �eld step-by-step
in such a way that they always share intention and end up gazing at the intended
object. As well as being able to observe the speaker’s direction of gaze, hearers also
“hear” signals from the speaker. Over time signals emerge not only for the different
types of objects, but also for different “moves” of attention across the visual �eld. Once
again, the emergent signaling system, which Hazlehurst and Hutchins argue exhibits
the hallmarks of syntactic structure, is grounded in the structure of the task rather than
being directly predetermined by the experimenter.

For many, modeling the evolution of syntactic structure is an important research
goal since syntax is the most strikingly unique aspect of human language. Sometimes it
can seem like the emergence of syntax is the Holy Grail for ALife models of language,
and the success of the growing body of work on the subject appears to be cause
to celebrate the ALife approach. We should be cautious, however, in evaluating the
success of the work so far. Although it is clear that properties such as compositionality
and recursion are fundamental to the syntax of all natural languages, there is much else
besides! As Bickerton [8] puts it in his critique of computational/mathematical models
(or modelers), “they account for ‘the cat sat on the mat’ and then cross their �ngers,
con�dent that ‘self-organization’ will take care of the rest.” In fact, none of the models
I am aware of can account for the cat sat on the mat. A fundamental part of human
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language is demonstrated by that sentence that has yet to be accounted for by these
models: the functional/contentive dichotomy in the lexicons of all languages [23]. In
the case of the sentence Bickerton gives, a more sophisticated model would account
for the different status of the and on from the other words in the sentence with regard
to their processing, storage, acquisition, form, distribution, and function.

There has been relatively little research using ALife methods that tackles more specif-
ically linguistic features of the syntax of human languages. However, Kirby [63] looks
at the link between learning and processing constraints and universal properties of
language using an IL approach. The universals examined relate to word order, the for-
mation of relative clauses, patterns of agreement (i.e., the ways in which the forms of
pairs of words covary according to their syntactic and semantic relation in a sentence),
and a constraint on long-distance dependencies between positions within sentences.
In a similar spirit, although not employing a “full” IL model, is the work by Christiansen
[27] that relates the learning biases of recurrent neural networks to some of the linguistic
universals listed above. Ultimately, if ALife modeling is to succeed as an approach to
syntax, there needs to be much more work along these lines, showing how the prop-
erties discovered by syntactic theorists are related to the complex dynamical systems
in Figure 1.

7 The (Co)evolution of Language Acquisition

How does the language learner evolve? How does the evolution of languages
through iterated learning impact on this?

So far in this review, the only models that have appealed to biological evolution have
been those looking at innate simple signaling systems. More speci�cally linguistic
behavior has been explained in relation to learning and cultural evolution (which I
have suggested emerges out of iterated learning). However, as mentioned in Section 2,
this is not the end of the story.

The IL models discussed so far essentially explore the relationship between inductive
bias on the one hand, and emergent universal properties of the structure of languages on
the other. However, the models say little about where this bias comes from. A common
sense notion of inductive bias is that it is the knowledge that the learner brings to bear
on a learning task before any of the data has been experienced. This notion of prior
knowledge corresponds closely to the Chomskyan notion of linguistic innateness. What
else will provide a learner its prior biases if not its genetic speci�cation?

At this point there is much disagreement, the review of which would take several
other articles, so suf�ce it to say that there are two main areas of controversy. There
is disagreement about (a) whether the innate biases are domain speci�c or domain
general, and (b) how these biases come about. Obviously these two questions are
related. For example, one might take the stance (as Pinker and Bloom [90] do) that
innate constraints14 on learning evolve under selective pressures related to communi-
cation. The logical conclusion to this is that the particular set of constraints (or, to
put it another way, the architecture of a language acquisition device) is speci�c to the
domain of communication using language.

Ultimately, the role for ALife modeling in this contentious area should be to act as a
check on the theoretical positions, ensuring that the mechanisms appealed to actually
lead to the results intended. As was pointed out in Section 2, ALife techniques are
particularly appropriate to cases where two or more adaptive systems interact, because

14 Interestingly much of linguistic theory assumes hard constraints on learning and has little to say on the matter of the more general
conception of innateness in terms of bias.
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it is often dif�cult to predict the results of such interactions in advance of modeling
them.

In particular, the interaction of learning and evolution is a “classic” topic for ALife
models [5] and is also highly pertinent to the evolution of language. Batali [2] presents
an early attempt to look at how learning bias might evolve in the face of a syntactic
learning task. In his simulations, recurrent neural networks are trained on a next-
character prediction task where the characters are drawn from a language such as anbn.
Initial experiments showed that the networks were unable to learn the task well. In
particular, they appeared to overgeneralize to the language anbm. Batali hypothesized
that the problem lay with the inductive bias of the networks. To explore this idea,
the initial weight settings of the network (usually randomly assigned) were evolved by
a genetic algorithm whose �tness metric was related to the ability of the networks to
process strings in the language.

The combination of training through backpropagation and search for initial weights
through an evolutionary algorithm resulted in a considerable improvement on the next-
character prediction task for anbn. Of course, this does not correspond well to the task
facing evolving language learners, because there is not a single target language to be
acquired. To test if it was possible to generalize his results to a class of languages,
Batali repeated the experiment with a set of language problems that all had the same
structural properties but differed according to the assignment of characters to underlying
categories. During the “lifetime” of a single network, the language remained constant,
but from generation to generation of the evolutionary search, the particular language
from the class was varied.

The result was a set of initial weights that enabled a network to make successful next-
character predictions for any of the languages from the class. In other words, evolution
had tuned the learning bias to aid the acquisition of a particular class of language (one
for which the general-purpose learner was ill equipped). Could a similar mechanism
of genetic assimilation be operating in the evolution of language? Could the class of
human languages have shaped the evolution of a language-speci�c learning bias in
humans?

There is one obvious disanalogy between the Batali model and the real case of
language evolution. Batali provides the learning task in advance of the simulation. The
learners are adapting to a speci�c class of languages that exists prior to the evolutionary
process. In reality, the language learning task is provided by other learners—this is
what leads to the dynamics of the IL model discussed in the previous two sections. An
obvious question is whether similar genetic assimilation will occur with the addition of
this dynamic alongside learning and biological evolution.

Following up a preliminary study described by Turkel [107] (itself a modi�cation
of Hinton & Nowlan’s [53] classic model), Kirby and Hurford [67] attempt to simulate
the joint action of learning, culture, and evolution. The representation of a language
in this model is based on an approach to language acquisition called principles and
parameters [25]. In P+P theory, the language acquisition device consists of a set of �xed
principles (invariant properties of language) and a set of switchable parameters (which
account for linguistic variation). Learning consists of searching for parameter settings
that best model the data seen (the learning procedure used in [67] is the trigger learning
algorithm of [40]). In the simulation, the language acquisition device (LAD) is speci�ed
by an eight-long ternary vector made up of 1s, 0s, and ?s. The ?s are parameters that
will be set after learning, whereas the 1s and 0s represent the innately �xed principles.

To assess the roles of natural selection and iterated learning, Kirby and Hurford
arbitrarily specify some languages to be more functional (with respect to communica-
tion) than others. The question they ask is, under which conditions will the eventual
distribution of languages re�ect the functional pressures they build in?
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In their experiment, Kirby and Hurford evolve LADs on the basis of the communica-
tive success of agents with those LADs with respect to neighboring agents. The results
showed partial genetic assimilation of parameters into principles, and a consequent
reduction in the range of linguistic variation. Surprisingly, however, the languages that
are learnable by agents at the end of the simulation tended not to be those that were
particularly functional. In fact, some of the “nativization” of parameters into principles
led to agents that were biased against functional languages.

The result changes radically if the functionality of a language in�uences the cultural
transmission of that language. A second simulation adds a factor whereby it is more
dif�cult to process (and therefore learn) less functional languages. With this extra
mechanism in place, the resultant LADs show assimilation of functional principles.

This brief summary shows that there are nontrivial interactions between the three
adaptive systems underlying language. Ultimately, it will not be possible to ignore one
or other of these systems; a more holistic approach will be necessary. The computa-
tional challenges are great, however. The Kirby and Hurford model is hugely simpli�ed,
which means the applicability of their results to linguistic problems is not clear.

Briscoe [15] attempts to make coevolutionary models closer to those studied in main-
stream linguistics. The simple vectors of [67] are replaced by Briscoe with an actual
theory of syntactic variation: generalized universal categorial grammar. The dynamics
that arise from Briscoe’s models are far from straightforward, and their analysis far from
complete. However, their usefulness for tackling linguistic problems such as the reason
for particular trajectories in language change, or the mechanism behind creolization, is
greater by virtue of their relative closeness to real linguistic models.

Even putting the degrees of abstractness issue to one side, there are many other
challenges facing a framework that brings together language learning, language evolu-
tion through iterated learning, and the evolution of learning biases. One serious issue
is whether we can draw reliable conclusions from our models if we do not know the
genetic basis for the language learning mechanisms. Yamauchi [112] demonstrates, for
example, that the assimilation of features into an LAD can only happen where there
is a close match between genotypic and phenotypic space. Essentially, small changes
in the genome (e.g., through mutation) must correspond to small changes in the re-
sultant phenotype for genetic assimilation to occur.15 Considering the complexity of
the relationship between the genetic makeup of an individual on the one hand, and
the space of possible languages on the other, it seems that it will be some time be-
fore our simulations will give uncontroversial answers to the question of the origin of
the LAD.

8 Future Work

What are the big questions that remain? Where next for ALife models?

At the start of this article, I listed a number of “facts about language” that an explana-
tory account of language should account for. The work reviewed here leads to two
conclusions:

1. Arti�cial life techniques are highly appropriate for the study of human language,
but. . .

2. we have a long way to go yet.

15 These issues are explored further in [16].
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Perhaps, rather than looking through this list and totting up a score on how well
particular approaches have done in explaining these facts, it is more useful to think of
them as informing us of which issues really matter. In other words, I hope that the
issues of interest to linguists may act as a compass for future research directions for
ALife.

In a similar way I hope this review will be useful in identifying the gaps in the
simulation literature. It is these that may eventually prove to be the most rewarding (but,
perhaps, also the most dif�cult) areas of study. There are two areas that I, personally,
feel will be particularly fruitful:

Coevolution of syntax and semantics in the ILM. So far, the results of running IL
models suggest that syntactic structure will emerge given (a) a learning bottleneck,
and (b) a structured meaning space. In most simulations that show emergent
compositionality, this meaning space structure is given in advance by the
experimenter. Other models, however, demonstrate that meaning spaces can
themselves be learned, and they vary from agent to agent. Can structure in both
meanings and signals emerge in a simulation? The logic of the IL model suggests
that they might, since only by matching the structure of the signal with the
structure of the meaning can languages optimize their transmissibility. Hutchins
and Hazlehurst’s work on modeling attention following [51, 61] may be a fruitful
starting point for examining these issues.

Origins of iterated learning. A combination of cultural evolution through iterated
learning with biological evolution of learning biases looks like the best approach to
understanding the emergence of syntax. However, it begs some fairly fundamental
questions. For example, why is it that only human beings have an open-ended,
syntactically structured learned communication system? This is not directly
answered by the IL framework, or indeed the models of grammatical assimilation.

A possible answer to this puzzle lies in understanding what is necessary to build
into an IL model for it to work. All the models that look at compositionality
assume that the learner is given training data consisting of pairs of meanings and
signals. The justi�cation for this is that we must assume that at least some of the
time children are able to infer the communicative intentions of the adults around
them (or the other children around them in the case of creolization). But how is it
that children actually do this? It is clearly not by explicit feedback (since some
people with language disabilities have extremely impoverished production but
score more highly on comprehension tests). Nor is language learning simply a case
of association; rather, children are exquisitely attuned to the thought processes of
others [10]. Perhaps, then, the uniqueness of language is down to the uniqueness
of the human environment of adaptation that leads to selection for an ability and
desire to mind read. Arti�cial life models that uncover interactions between the
complexity of social groups, theory of mind, and observational learning may help
us to uncover the origins of human language.

Further down the line, research will need to tackle speci�c features of language
that linguists are interested in—for example, cross-linguistic variation in the syntax of
anaphora, or constraints on the grammaticality of different word orders. Studies of the
biases that arise out of serial processing and how these affect the process of linguistic
transmission are relevant here [27, 28].

There are a number of outstanding questions that ALife techniques may help to
answer. Which features of language should be ascribed to innate biases (arbitrary or
adaptively evolved?), and which to general properties of learning? Which features are
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explained by as yet poorly understood properties of cultural evolution, and which to
emergent properties of the interaction of these systems?

Linguistics continues to develop more and more intricate understanding of the syntax
of languages in all their aspects, universal and speci�c, dynamic and synchronic. This
work is heavily data driven. In many ways, we have an embarrassment of information
about what language is and how it behaves.

And yet to many people there is confusion and disagreement about what to do with
all this knowledge. Explanatory models for syntactic phenomena are rarely uncontro-
versial and are usually short lived. I would contend that this is because linguistics does
not have a way of tackling the complexity of the interaction of the actual processes
underlying the origins and dynamics of language. Just as ALife since its conception has
made sense of the array of facts about biological systems that are known by studying
in miniature the processes that give rise to these systems—so too I hope it can help
provide an explanatory underpinning for linguistics. We are just getting started.
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