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Abstract. A new approach to the origins of syntax in human language
is presented. Using computational models of populations of learners, it is
shown that compositional, recursive mappings are inevitable end-states
of a cultural process of linguistic transmission. This is true even if the
starting state is no language at all. It is argued that the way that knowl-
edge of language is transmitted through a learning bottleneck profoundly
influences its emergent structure. This approach provides a radical alter-
native to one in which the structure of language is viewed as an innate,
biological adaptation to communicative pressures.!

1 The origins of syntax

Human language is unique among natural communication systems in having a
compositional and recursive mapping between meanings (mental representations
to be communicated) and forms (linear strings of, typically phonetic, gestures).
It is also extremely unusual in the way it is learnt. Each generation acquires at
least some of the meaning-form mapping by observing the use of the previous
generation’s mapping. It has been argued that this type of learning of mappings
is also unique to humans (Oliphant, 1998). In this paper I will explore, using a
working model of linguistic transmission, the links between these two features
of language. In particular, I aim to explain the origins of syntax in language by
looking at general properties of the transmission of learned behaviour.

The explanation put forward here contrasts radically with what is perhaps
the dominant approach to the origins of syntax. In many linguists’ view, syntax
is more or less fully specified by a learning mechanism (the Chomskyan Language
Acquisition Device, or LAD) which significantly constrains the language learner
with prior knowledge about the nature of language (Chomsky, 1986). Prior biases
or constraints on a learner are assumed to be innate, and therefore genetically
determined. This leads naturally for many researchers (see Pinker and Bloom,
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1990 for example) to the conclusion that the best explanation for the structure
of language is one which invokes biological evolution. In other words, the Lan-
guage Acquisition Device is a biological adaptation that evolved through natural
selection in response to the need to communicate “propositional structures over
a serial interface” (Pinker and Bloom, 1990, 707).

2 Evolution without natural selection

The standard (biological) evolutionary approach to the origins of syntactic struc-
ture typically ignores the dynamics of the social/cultural transmission of lan-
guage.? However, recently there has been more interest in the formal and com-
putational properties of the influence of learning on the dynamic process of
language transmission, historically, from one generation to the next (Niyogi and
Berwick, 1997; Steels, 1997; Briscoe, 1998; Batali, 1998; Hurford, 1998). This
paper explores the hypothesis that this process alone is enough to explain the
emergence of the central unique features of syntax even where the prior bias of
the learners is not subject to evolutionary change, and is relatively unconstrain-
ing.

Linguistic transmission can be viewed as a repeated transformation of in-
formation between two domains: the internal or I-domain, and the external
or E-domain® (Kirby, 1999a). The I-domain contains languages that exist as
grammatical knowledge in individuals’ brains, whereas the E-domain contains
languages that exist as sets of actual utterances. This conception has interest-
ing parallels with the conception of genetic transmission in biology. Figure 1,
compares the transformation of information between phenotypic and genotypic
domains with the transformation between E- and I-domains.
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Fig. 1. Transformation of information in linguistic and biological adaptive systems.

In both these adaptive systems, the biological and the linguistic, the transfor-
mations that map between the two domains can be seen as “bottlenecks” on the

2 See (Briscoe, 1998; Kirby and Hurford, 1997) for counter examples of papers which
look at the combined effects of cultural transmission and biological evolution.
3 These domains are parallel to Chomsky’s (1986) I-language and E-language.



transmission of information over time through the whole system. For example,
a particular piece of genetic information may not persist because the phenotype
that it expresses may not survive long enough to reproduce. Similarly, a gram-
matical regularity may not persist because the utterances that it gives rise to
cannot successfully reconstruct it through learning. Just as the bottleneck on
transmission of genetic information has implications for the structure of the or-
ganisms that emerge (this is the basis of the neo-Darwinian synthesis, after all),
we should expect the equivalent bottleneck on the transmission of grammars to
impact on the eventual structure of languages.

3 Modelling linguistic transmission

In order to test how the learning bottleneck influences the structure of language,
a working model of linguistic transmission must be created. The model consists
of a simple population of agents who have a pre-specified “world” of concepts
about which they can communicate, and a pre-specified set of symbols with
which they can create utterances. The possible communicative behaviour of an
agent is determined by that agent’s internal grammar which is learnt solely
through observation of the behaviour of other agents in the population. The
population model is “generational” in that members of the population die and
are replaced, but the initial state of the agents is always the same, the agents
are not prejudiced or rewarded according to their behaviour in any way, and
the only information that flows through the system is in the form of utterances
— in other words, there is no natural selection or biological evolution in the
simulation.

Semantics The semantic space in the model — the space from which meanings
of utterances for the agents is chosen — is made up of combinations of simple
atomic concepts. These concepts include, for example:

john heather
loves admires
believes

These atomic elements can be combined into simple predicate-argument propo-
sitions, which may have hierarchical structure. For example:

admires(heather,john)
believes(heather,admires(john,heather))

The full set of propositions is infinite in principle, because using predicates such
as believes propositions can be limitlessly nested. In the simulations presented
here, there are five “object” concepts (such as john, heather etc.), five “action”
concepts (such as loves, admires etc.), and five “embedding” concepts (such as
believes, knows etc.).



Utterances The utterances of the agents are linear concatenations of the 26
lower-case letters of the alphabet. There is no principled limit to the length of
utterance, and the shortest utterance is 1 symbol long. Pairs of strings of symbols
and propositions make up the E-domain objects in the simulation. So, if the
agents happened to speak English, an E-domain object might look something
like:

< heatherlovesjohn, loves(heather,john) >

Grammars The I-domain objects in the model are a simple form of definite-
clause grammars (DCGs). Critically, this choice of formalism does not build-in
compositionality or recursion. Consider an agent that could produce the string
heatherlovesjohn meaning loves(heather,john). Here are two (of many, many
possible) grammars that this agent may have internalised:

S/p(z,y) = N/x V/p NJy
V/loves — loves

N/heather — heather
N/john — john

S/loves(heather,john) — heatherlovesjohn

The S symbol in these grammars is the start symbol for the grammar, and N and
V are arbitrary node labels. The material after the slash on the non terminals
is the semantic representation of that node. For left-hand side non-terminals in
this formalism, this semantic representation may be a fully specified proposition,
an atomic concept, or a partially specified proposition (i.e. one with variables
replacing concepts). The right-hand side non-terminals’ semantics may only be
variables.

The grammar on the right is compositional. The meaning of a sentence is
made up by combining two strings of type N with a string of type V, and the
semantics for the sentence is built up from the semantics of these individual
sub-strings using the variables z, p and y. The grammar on the left, however, is
completely non-compositional. In no way is the meaning of the string a function
of its parts.

3.1 Learning

Clearly, the central part of the simulation is the agents’ ability to take E-domain
objects (string/meaning pairs) and build I-domain objects (grammars). In fact,
the agents are essentially induction machines designed to store pairs of strings
and meanings, and find possible generalisations over these pairs (if such gen-
eralisations exist). The algorithm presented here has been designed specifically
with simulation tasks in mind — it is extremely simple and efficient. Although
no claims are made for its efficacy as a practical learning algorithm for DCGs
in general, it does model in a simple way the dual processes of rote learning
and search for generalisation that should be the core of any theory of language
acquisition.



The algorithm is described in some detail in Kirby (1999b), and outlined
informally* in figure 2. It works in two stages for each string/meaning pair.
Firstly, the individual pair is incorporated into the learner’s grammar by addition
of the simplest possible rule that will generate that pair. For example, give the
string/meaning pair:

< heatherlovesjohn, loves(heather,john) >

the following rule would be added to the grammar:

S/loves(heather,john) — heatherlovesjohn

The second stage of learning (which takes place after incorporation of each
rule) is a process of searching for possible generalisations (essentially subsump-
tions) over pairs of rules. For example, given the pair of rules:

S/loves(heather,john) — heatherlovesjohn
S/loves(heather,gavin) — heatherlovesgavin

the algorithm will replace these with a more general rule (via the “chunking”
step g.3):
S/loves(heather,z) — heatherloves N/z

The N category is a newly invented category, with its own rules added to the
grammar:

N/john — john
N/gavin — gavin

3.2 Invention

Sometimes, the agents may wish to express meanings for which their grammar
does not provide a way of saying. In fact, in the initial stages of the simulation,
this will be very frequent, since the population will start with no language at all.
The model therefore requires some way for creative language invention to occur.
The simplest way to model this is for the agents to produce a string of random
symbols whenever they encounter a meaning they do not know how to produce.
In the simulations presented here, the strings vary between 1 and 3 symbols in
length.’

4 The chunking algorithm is not given here for lack of space (see Kirby, 1999b for
details). The example in the text shows a typical application of chunking.

5 The complete invention algorithm is discussed elsewhere (Kirby, 1999b). The only
complication for implementation purposes is what should be done if the agent knows
how to say almost all of a particular meaning. The algorithm in effect carries out a
top-down production for the meaning as best it can given the grammar, and gener-
ates a random string at the point in the tree where the generation fails. This method
ensures that invention does not ever introduce new structure. In other words, the in-
vented string will never be more compositional than grammatical strings that already
exist’ in the agent’s language.



Induction algorithm: Given a meaning m, a string s and a grammar g:

i.1 parse s using g, if the parse is successful, then return g.
i.2 form g', the union of g and S/m — s.
i.3 apply a generalisation algorithm to g':
g.1 take a pair of rules < ri,r2 > from g'.
g.2 if there is a category label substitution c to ¢/, that would make 71 identical
to r2, then rewrite all ¢ in ¢’ with ¢, go to g.5.
g.3 if r1 and r» could be made identical by “chunking” a substring on either or
both their right hand sides into a new rule or rules, then create the new rules,
and delete the old ones in g, go to g.5.
g.4 if r{’sright hand side is a proper substring of r’s and r1’s semantics is identical
to either the top level predicate or one of the arguments of r2’s semantics, then
rewrite 72 in g’ to refer to r1, go to g.5.
g.5 delete all duplicate rules in g'.
g.6 if any rules in g’ have changed, go to g.1
i.4 return g'.

Fig. 2. Outline of the induction algorithm.

3.3 Simulation cycle

For the simulations reported here, the simplest possible population model is
used. At any one time there are only two individuals: a learner and a speaker.
The speaker is required to produce an utterance for a meaning chosen at random,
either by using its grammar or by employing invention if the grammar cannot
generate a string (if the speaker invents, then it uses its utterance as input to its
own learning to ensure consistency). The learner is given the randomly chosen
meaning and the speaker’s string, and uses the pair as input to the induction
algorithm. This process is repeated a fixed number of times, and then the speaker
is removed, the learner becomes a speaker, and a new learner with an empty
grammar is introduced.

4 Experiments

The graphs in figure 3 show the average behaviour of ten simulation runs starting
with different random seeds. In all the runs, each speaker first tries to produce
50 randomly chosen degree-0 meanings (i.e. those with no embedding), then
50 randomly chosen degree-1 meanings (with one embedding) and finally 50
randomly chosen degree-2 meanings (with two embeddings). The graphs show
the proportion of the meanings of each type that the speakers were able to
produce without resorting to random invention. The other line on the graphs
show a measure of size of the grammars (number of rules divided by 300 to fit
it on the same plot).
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Fig. 3. Average of ten simulation runs, plotted on two different time-scales. Coverage
of the different meaning types increases and the size of the grammar decreases over
time.

To demonstrate more clearly what the behaviour of the evolving system is,
we can examine the grammars of one population over time in some detail:

The emergence of vocabulary In the very early stages of the simulation, the
speakers are not able to express many of the meanings without resorting to
random invention — this is due to the fact that the population starts with no
language at all. Immediately, there is a rapid rise in the size of grammars, as
new innovated utterances are acquired by learners. The listing below shows part
of an early grammar, which is best thought of as simply a long list of unrelated,
idiosyncratic vocabulary items.

S/loves(pete,mary) — axk S/thinks(gavin loves(heather,gavin)) — oeb
S/thinks(john,likes(gavin,heather)) — ew S/decides(mary,hates(gavin,john)) — vri
S/decides(heather,says(mary,detests(john pete))) — S/detests(heather,gavin) — wb

S /thinks(mary,hates(john,pete)) — y

Pq

S/admires(pete heather) — njl S/thinks(john,hates(mary,pete)) — pff
S/decides(john,believes(pete,hates(pete,mary))) — S/decides(pete,detests(heather,mary)) — fi

vz S/believes(gavin,decides(gavin,admires(mary,john))) —
S/admires(gavin,mary) — s o

S/knows(mary,decides(mary,loves(gavin,pete))) — ¢ S/believes(pete, knows(gavin,loves(heather,gavin))) —
S/detests(pete,john) — my jt

S/believes(pete,believes(mary,likes(mary,heather))) —

z
S/likes(gavin,mary) — but
S/loves(gavin,pete) — poe

The emergence of compositionality Figure 3 shows that after a brief initial rise
the size of grammars soon starts to fall, and the proportion of degree-0 meanings
that are expressed without invention increases. The grammar fragment below
shows how this happens. Here, by the 100th generation, a compositional encod-
ing has emerged, although it is only reliably used for degree-0 meanings. This
particular grammar has two categories for arguments (arbitrarily named A and



(), which can be thought of as case-marked nominals, and one verbal category
for predicates (named D). (N.B. there are many other idiosyncratic rules for
more complex meanings in this grammar that are not shown.)

S/p(z,y) - gj C/yzA/z D/p D /detests — xe

A/gavin — dl D/hates — ¢

A/heather — tej D/likes — e

Al/john — n D/loves — m

A/mary — qp S/knows(john,decides(pete,loves(mary,john))) —
A/pete - h qixoyia

C/gavin — x S/decides(z,thinks(heather likes(pete,mary))) —
C'/heather — ovp C/z juyjtejdbznuy

C/john — i

C/mary — h

C/pete = y

D/admires — b
D /detests — gl

Here is an example sentences from this language with an English gloss (NOM
and ACC stand for nominative and accusative):

(1)  gjovp z qp b
Heather-ACC Mary-NOM admires
“Mary admires Heather”

The emergence of recursion Finally, the percentage of degree-1 and degree-2
meanings that are expressible without invention increases as the size of the
grammar continues to decrease. By generation 1000, an extremely concise lan-
guage has emerged that can completely express the infinite meaning space (the
entire grammar is shown below). This is done by using two verbal categories
(B and D), one nominal category (A), and two sentence rules, one of which is
recursive. In other words, a highly regular, expressive, syntactically structured
language has emerged. This language persists without significant change for the
rest of the simulation (which was terminated after 10000 generations).

S/p(z,y) > gj AJyf A/z B/p B /hates — ¢
S/p(z,q) =i A/z D/p S/q B/likes — e
A/gavin — dl B/loves —» m
A/heather — tej D /believes — g
Al/john — n D /decides — u
A/mary — qp D /knows — ipr
A/pete - h D/says — p
B/admires — b D/thinks — m

B /detests — wp

Here are examples from this language, again with glosses in English (notice
how little the degree-0 structure has changed, apart from a simplification of the
nominal system so that the nominative nouns are now used for accusatives as
well):

(2)  gijtej fap b
Heather Mary admires
“Mary admires Heather”



(3) ih ipr gjtej fgp b
Pete knows  Heather Mary admires
“Pete knows that Mary admires Heather”
4) idl p ih ipr gjtej fap Db
Gavin says Pete knows Heather Mary admires
“Gavin says that Pete knows that Mary admires Heather”

5 Conclusion: evolution through learning

The computational model shows how significant linguistic evolution can occur
without any biological evolution. The learners in the simulation are not innately
constrained to acquire only syntactic languages, nor are they rewarded in any
way for their ability to communicate. The simulation is not seeded with any
particular language — in fact, the first speaker has no linguistic knowledge to
draw on whatsoever — and the only way information is transmitted over time
is by observational learning. And yet, from this apparently simple set up, a
linguistic system emerges. First, the language of the community is an impover-
ished vocabulary-like system, with idiosyncratic signals being assigned to whole
complex meanings. Later, a compositional mapping emerges, with a lexicon for
atomic concepts and a simple way of putting these together to form sentences.
Finally, recursion evolves so that the agents are able, with only a small vocabu-
lary and a couple of rules of combination, to express an infinite range of possible
meanings.

The obvious questions that we are left with are “why does the language evolve
in this way?” and “how general is this result?” Ultimately, a satisfactory answer
to both these questions may well lie in a mathematical analysis of the properties
of the transmission of information via observational learning. For the moment,
however, it seems that the learning bottleneck that exists between the E-domain
and I-domain in figure 1 must be what is driving the system to evolve.

Firstly, consider a non-compositional system such as the early ones in the
simulation run described above. Here, the mapping between meanings and strings
is such that each rule in the grammar can at best only account for one meaning-
string pair. This necessarily means that to learn any particular rule in such a
grammar, a learner must be exposed to exactly that pairing. The chance that a
particular non-compositional I-language will survive over time are slim in this
situation, because every string-meaning pairing in that I-language will have to
appear in the input data to the learner. Given that the number of utterances that
the learner hears is smaller than the number of meanings that a speaker might be
called upon to produce, then a randomly chosen, complete, non-compositional
language cannot be transmitted through the learning bottleneck. Notice, this
must be true for any learning algorithm.

Now, contrast this situation with one in which there is a compositionality
in the language. Given an E-language in which there is some pattern to the
string-meaning mapping, it is no longer true that a particular pairing can only
persist if it is directly observed. A learner can generalise from an observed set of



string-meaning pairs to ones that are unseen. This means that a compositional
language will be far more transmittable through the bottleneck. A smaller set of
example pairings will required in order to reconstruct the language accurately.
Again, as long as the learning algorithm is able to exploit pattern, or is biased
towards generalisation, then this is true in general.

It seems as if the process of the transmission of learned behaviour has certain
general properties whatever our assumptions about the learners. These proper-
ties will tend to favour the emergence of systems with patterns that can be
exploited by learning. Where the behaviour that is being learned is a mapping
between two structured spaces, we can expect the process of transmission to give
us mappings that preserve structure. For the case of language — where these
spaces are propositional meanings on the one hand, and linear strings on the
other — the mappings that will inevitably emerge will be syntactic.
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