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Abstract. We present a neural-competitive learning model of language
evolution in which several symbol sequences compete to signify a given
propositional meaning. Both symbol sequences and propositional mean-
ings are represented by high-dimensional vectors of real numbers. A neu-
ral network learns to map between the distributed representations of the
symbol sequences and the distributed representations of the proposi-
tions. Unlike previous neural network models of language evolution, our
model uses a Kohonen Self-Organizing Map with unsupervised learning,
thereby avoiding the computational slowdown and biological implausi-
bility of back-propagation networks and the lack of scalability associated
with Hebbian-learning networks. After several evolutionary generations,
the network develops systematically regular mappings between meanings
and sequences, of the sort traditionally associated with symbolic gram-
mars. Because of the potential of neural-like representations for address-
ing the symbol-grounding problem, this sort of model holds a good deal
of promise as a new explanatory mechanism for both language evolution
and acquisition.

1 Introduction

Neural networks hold a great deal of appeal as models of language evolution. As
an alternative to traditional “symbol-crunching” systems like grammars, neural
nets offer greater biological plausibility – especially with regard to the processing
of temporal sequences, limits on structural complexity of meanings, and other
“performance” phenomena of real human language. Harnad [1], among others,
has argued for the use of neural network models as a solution to the symbol
grounding problem, as posed by Searle’s famous Chinese Room argument. [2]

A few researchers have successfully used neural networks in modeling lan-
guage evolution. Typically this work has focused on the emergence of mappings
between small, simple meanings and sequences, showing how systematic regu-
larities can emerge in these mappings without using an explicit grammar. A
common approach is to embed a neural network in each member of a population
of agents, who participate in a communication game over some number of iter-
ations. Batali [3], showed how the back-propagation algorithm [4] can be used
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to train a population of recurrent neural networks to map from input sequences
(abc, cda) to simple propositional meanings (you hungry, me scared). Eventually
the agents developed communication systems with structural regularities remi-
niscent of those in human languages, with a given symbol or sequence of symbols
being used to represent the same concept in different contexts.

In a more recent paper, Smith [5] shows how a variant of Hebbian (simple
associative) learning can be used to evolve mappings between simple meanings
and signals. Each meaning and signal is an unstructured bit vector orthogonal
to all the others. By exploring the set of possible learning rules relating signal
bit values to meaning bit values, Smith shows how the “innate endowment” and
learning biases of communicative agents can result in optimal communication,
through a purely cultural (non-genetic) process.

Both of these projects show how insight into language evolution can be gained
from even a simple network model. With both projects, however, it is not clear
whether or how these results can be extended to more complicated language
structures. From a representational perspective, it is not clear how to extend
simple binary coding schemes to more complex meanings – especially, how such
schemes could represent hierarchical, recursive structures of the sort that appear
to underly language and thought. [6]. From an algorithmic perspective, both
back-propagation and Hebbian learning pose problems. In addition to being
criticized as biologically implausible [7], back-propagation is a computationally
intensive, iterative algorithm whose ability to scale up to larger languages is
questionable. As for Hebbian learning, the limitations created by the requirement
of mutually orthogonal vectors [8] make it unlikely that these sorts of networks
would scale up to more realistic, structured representations of meanings and
signals.3

In the remainder of this paper, we describe a model using a neurally plausible
representation of meanings and sequences, and a neural network algorithm for
mapping between them, that has the potential to overcome these limitations.
We conclude by with some experimental results that validate the ability of this
model to learn rule-like mappings, without recourse to grammar.

2 Distributed Representations

In contrast to the the “atomic” or “localist” representations employed in tradi-
tional cognitive science, a distributed representation is one in which “each entity
is represented by a pattern of activity distributed over many computing ele-
ments, and each computing element is involved in representing many different
entities”. [10] Most commonly, the pattern of activity is represented by a vec-
tor of real values in some fixed interval, typically [0, 1] or [−1, 1]. Proponents of

3 Subsequent work by Smith et al. [9] uses Hebbian associative networks to map struc-
tured meanings to structured signals; however, the representation scheme used in
that work makes the size of the networks grow explosively as more structure is
added, making it impractical for more than very simple structures.



this sort of representations have cited several advantages over traditional sym-
bolic representation. These include robustness to noise (“graceful degradation”)
and content-addressability (the ability to retrieve items by some feature of their
content, rather than an arbitrary address), which are properties of human intel-
ligence seen as lacking in traditional symbolic models [8].

Distributed representations of meaning have appeared in a variety of contexts
in contemporary AI and cognitive science. Most commonly they are used to
model the meanings of individual words. In a widely cited paper, Elman [11]
demonstrated the ability of a simple recurrent neural network to form richly
structured distributed representations of word meaning, based on the task of
predicting the next word in a sentence. More recently, the method of Latent
Semantic Analysis [12] has used distributed representations successfully in a wide
variety of practical AI tasks. On a more theoretical level, Gärdenfors [13] has
elaborated a framework in which conceptual meanings are analyzed as regions
in a vector space. A very useful feature of all such models is that the vector
representations of similar structures end up close together in the vector space,
as determined by a common metric like Euclidean distance, dot product, or
cosine.

Although these sorts of distributed representations can be seen as encoding
structure, it is structure of a categorical, rather than propositional or sentential,
nature. As pointed out by Steedman [14], such structure corresponds more to
part-of-speech information than to the propositional structures used in AI, logic,
and linguistics. For example, given distributed representations of the concepts
man, tiger, and chases, simply adding or multiplying the representations together
gives no way to extract the difference between the propositions chases(man,tiger)

and chases(tiger,man); but these propositions contrast in the assignment of the
agent and patient roles to each of the two arguments.

Partly in response to such criticisms, several researchers have developed dis-
tributed representations of structured meaning. These include the Holographic
Reduced Representations (HRR) of Plate [15], the Binary Spatter Codes of Kan-
erva [16], the Context-dependent Thinning Networks of Rachkovskij [17], and the
Multiplicative Binding Networks of Gayler [18]. All these architectures use vec-
tors of real (or binary) values with high dimensionality (typically 1000 or more
dimensions), a binding operation to join vectors representing roles (agent, patient)
with those representing fillers (man, tiger), and a combinatory operation to build
meaningful structures out of the bound elements.4 Crucially, these operations
do not increase the size of the representations, which was a problem in earlier
distributed representation binding schemes. [20]

In Plate’s HRR framework, used in our experiments reported below, the
binding operation is circular convolution: given vectors c̃ and x̃ of dimension n,

4 Pollack’s Recursive Auto-Associative Memory [19] is a close cousin of such represen-
tations, using relatively low-dimensional vectors for fillers, and matrices for roles.



their circular convolution “trace vector” t̃ = c̃ ! x̃ is defined as

tj =
n−1∑

k=0

ckxj−k (1)

for j = 0 to n− 1, subscripts modulo-n. A noisy version ỹ of x̃ can be recovered
by circular correlation: ỹ = c̃ #© t̃ ,defined as

yj =
n−1∑

k=0

cktk+j (2)

for j = 0 to n − 1, subscripts modulo-n. The distributed vector representation
of a proposition like chases(tiger,man) can then be computed as

R(chases(tiger, man)) = R(chases) + R(tiger) ! R(agent) + R(man) ! R(patient) (3)

where R(symbol) is the distributed representation of symbol. The representation
in (3) encodes both the fact that the proposition is about chasing (first term) and
the fact that it is the tiger doing the chasing and the man being chased (last two
terms). To query, e.g., who did the chasing in this representation, we correlate the
sum in (3) with R(agent), and compare the noisy result with each of the original
symbol vectors, to see which is closest (the so-called “cleanup” operation). As
long as the original vectors are chosen randomly (zero mean, variance 1/n), and
given a sufficiently large n, this scheme can be used to encode arbitrarily complex
structures like knows(man, believes(woman, chases(tiger, man))).

For language evolution research, we also need a way of representing symbol
sequences. Plate [15] describes several ways of representing sequences with HRR.
In the work described below, we use the method of positional cues, in which a
separate set of vectors p̃i encodes the position of each element in the sequence
by means of the convolution operation:

R(〈a,b,c〉) = p̃1 ! R(a) + p̃2 ! R(b) + p̃3 ! R(c) (4)

A noisy version of the ith sequence element can be recovered from the distributed
representation of the sequence by circular correlation with p̃i. For example:

R(a) ∼= p̃1 #© R(〈a,b,c〉) (5)

As with the distributed representations of concepts discussed in the previous
section, HRR and related coding schemes have the feature that the vector rep-
resentations of similar structures (chases(tiger,man), chases(lion,man)) end up close
together in the vector space. This fact is illustrated in Table 1, for a set of simple
propositions containing a predicate (arbitrarily denoted by p, q, and r) and one
argument (arbitrarily denoted by x, y, and z) . The same property holds for the
vector representations of similar sequences.

With efficient distributed representations of arbitrarily complex meanings
and signals, we arrive at the question of how to evolve mappings between the



Table 1. Cosines between 1000-dimensional HRR’s of simple propositions

p(x) p(y) p(z) q(x) q(y) q(z) r(x) r(y) r(z)

p(x) 1.00
p(y) 0.32 1.00
p(z) 0.31 0.28 1.00
q(x) 0.71 0.04 0.03 1.00
q(y) 0.01 0.69 -0.01 0.32 1.00
q(z) 0.01 0.00 0.70 0.31 0.31 1.00
r(x) 0.72 0.06 0.04 0.70 0.03 0.02 1.00
r(y) 0.04 0.71 0.01 0.04 0.69 0.01 0.35 1.00
r(z) 0.04 0.02 0.71 0.03 0.01 0.70 0.33 0.32 1.00

two. An obvious approach would be to train a three-layer backpropagation net-
work to perform the mapping. This approach would however suffer from the
problems described in relation to backprop network earlier: training times can
grow arbitrarily long, and the algorithm itself lacks biological plausibility. The
following section reviews the Kohonen Self-Organizing Map, the neural-net ar-
chitecture that we ended up choosing for this task.

3 Kohonen’s Self-Organizing Map

The Self-Organizing Map (SOM) of Kohonen [21] is an unsupervised neural
network learning method that can be used to reveal patterns of organization in a
data set. The data set X consists of vectors of a fixed dimensionality. The network
is typically organized into a two-dimensional grid Ui,j , 1 ≤ i ≤ m, 1 ≤ j ≤ n
of nodes, each of which is associated with an initially random weight vector
w̃i,jof the same dimensionality as the members of X . On each learning iteration,
a vector x̃ is randomly chosen from the data set, and the node whose weight
vector is closest to this vector is considered the “winner” for that iteration. The
winning node’s weight vector is updated to move it closer to the vector picked
from the data set, as are the weight vectors of the winner’s grid neighbors. By
decreasing the neighborhood size with increasing iterations, the weight vectors
eventually settle into a reasonable representation of the data set.

Figure 1 shows a simple example of SOM learning. Here, the data set is
two-dimensional, so each grid point is associated with a two-dimensional weight
vector. The data set consists of points sampled uniformly from a ring shape.
Each grid node is plotted at the point corresponding to its weight vector, and is
connected to its north, south, east, and west neighbors by a line segment. The
figure shows that no matter how close together or far apart the weight vectors
are initially, they end up distributing themselves (and their associated nodes)
uniformly within the space enclosing the ring shape.

A common application of SOM is dimensionality reduction for data visualiza-
tion in two dimensions. There is, however, no restriction on the dimensionality
of the nodes U . In fact, the grid of nodes is itself a special case (discrete, two-
dimensional) of a continuous metric space, and the algorithm will work with any



U for which a neighborhood (distance) metric is defined. The Ui,j are replaced
with vectors ũi, 1 ≤ i ≤ n, and the index k of the winner ũk is defined as

k = argmin
i

|w̃i − x̃| (6)

where w̃i is the weight vector associated with ũi, and |x̃ − ỹ| is the distance be-
tween x̃ and ỹ. Instead of updating the winner and the nodes in its neighborhood,
all nodes in the network are updated, with the size of the update determined by
distance from the winner:

w̃i
t+1 ← w̃i

t + µtf(i, k, t)(x̃ − w̃i
t) (7)

where µt is a learning rate parameter, f is the neighborhood function

f(i, k, t) = e−|ũi−ũk|2/2σ2

t (8)

and σt is a neighborhood parameter. Both parameters decrease with time, allow-
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Fig. 1. Two-dimensional SOM learning a ring shape. Final (T=100) configurations are
similar regardless of whether initial (T=0) weights are clustered close together (top)
or far apart (bottom).

ing the weights to settle into an approximate representation of the data set X .
In short, the SOM forms a regular topographic map [22] from one vector space to



another. Recent work in language evolution [23] has argued for the importance
of such maps as a key to understanding the ways in which languages develop
and change.

With this broader understanding of SOM, it becomes possible to develop effi-
cient mappings between high-dimensional distributed representations of symbol
sequences and high-dimensional distributed representations of meanings. Each
meaning vector ũ can be associated with a weight vector w̃. The sequence vector
x̃ expressing ũ is then chosen as the member of the vector space X of possible
sequences that is closest to w̃. In the next section we describe an algorithm that
uses this scheme to evolve systematic, grammar-like mappings.

4 Experiments

4.1 Learning a Simple Mapping

To explore the possibility of using an SOM to evolve systematic mappings be-
tween distributed representations of meanings and sequences, we started with
a simple model not explicitly involving agents or communication. We used the
small predicate/argument propositional meanings from Table 1, and symbol se-
quences of length two over the alphabet {a, b, c}. Meanings were represented as
1000-dimensional HRR trace vectors, and sequences as 1200-dimensional HRR
trace vectors. (These sizes were chosen arbitrarily, to show that the meaning
traces and sequence traces need not agree in size.) Each 1000-dimensional mean-
ing trace was associated with an initially random 1200-dimensional weight vec-
tor, which was modified according to Equations 6 - 8, with the meaning vectors
being the U , the sequence vectors the X , and the weights between them the W .
The learning rate µt was scaled linearly from 0.5 to 0.1, and the neighborhood
value σt from 3.0 to 0.1. Our goal was to see what sorts of meaning-sequence
mappings emerged.

Table 2 shows the results of eight different experimental runs of 500 SOM
learning iterations each. In each row i, the first column shows the ith propo-
sitional meaning. The second column shows the “winning” sequence for that
meaning at the start of the experimental run; i.e., sequence j whose sequence
trace x̃j is closest to the weights w̃i for that meaning:

j = argmin
k

|w̃i − x̃k| (9)

The remaining columns show the winning sequences at the end of eight differ-
ent experimental runs. As Table 2 indicates, the meaning-sequence mappings
changed from being highly non-systematic at the beginning of the experiment
to maximally systematic at the end, for all but one of the eight runs reported.
Each randomly initialized SOM learned to map from a given predicate (p, q, or
r) to a single symbol (a, b, or c), and from a given argument (x, y, or z) to a
single symbol. For example, the last column in the table shows a “verb-final”
mapping in which the symbol corresponding to the predicate comes second, the
symbol corresponding to the argument comes first, and the systematic mappings



Table 2. Results of First Experiment

Typical Initial
Meaning Sequences Final Sequences

p(x) ac bb ca cb cc ac cc ba ba
p(y) ac cb ba bb ac cc bb aa ca
p(z) ac ab aa ab bc bc ba ca aa
q(x) ac bc cc cc ca ab cc bc bc
q(y) ac cc bc bc aa cb bc ac cc
q(z) ac ac ac ac ba bb ca cc ac
r(x) ca ba cb ca cb aa ac bb bb
r(y) ac ca bb ba ab ca ab ab cb
r(z) bc aa ab aa bb ba aa cb ab

are (p/a, q/c, r/b) for predicates and (x/b, y/c, z/a) for arguments. These re-
sults show that our approach can produce systematic mappings, for this small
learning task at least.

4.2 Opening the Bottleneck

The mappings learned in the previous experiment are, for the most part, com-

positional : a given meaning component (predicate or argument) is always repre-
sented by the same symbol, independent of where it appears. No two predicates
are represented by the same symbol, nor are any two arguments. This situa-
tion led us to ask whether our HRR/SOM learning model has a bias toward
compositionality, or whether there is some other influence at work.

To examine this issue, we repeated the first experiment with an alphabet of
six symbols instead of three. If our model were biased toward maximal compo-
sitionality, we would expect to end up with a one-to-one mapping between each
meaning element and each sequence symbol. After trying a number of parameter
settings, we were unable to obtain compositional mappings for this experimental
setup. An example final, non-compositional sequence is shown in Table 3. A look

Table 3. Lack of Compositionality

Typical Initial Typical Final
Meaning Sequences Sequences

p(x) ee af
p(y) ee fd
p(z) ee ed
q(x) ee ab
q(y) ff cc
q(z) be dd
r(x) ee ba
r(y) de cd
r(z) be dc



back at Figure 1 suggests a possible explanation for this lack of compositionality.
This figure shows that, regardless of the initial weights, SOM learning produces
a final weight configuration that is evenly distributed around the space defined
by the input data. In the first experiment, the number of sequences was identical
to the number of meanings. Hence, the there was no “room” in the input space
for the weights to expand, and this even distribution yielded a compositional
mapping. In the second experiment, there were four times as many sequences
(36) as meanings (nine). By distributing the meanings throughout the space of
sequences, the SOM produced a highly non-compositional mapping for this data
set.

This result may be seen as analogous to the bottleneck principle described by
Kirby [24], in which the constraints of cultural transmission favor the emergence
of languages describable by a small number of rules. The previous two experi-
ments show how the constraint imposed by using a smaller number of symbols
results in a similar outcome, using an entirely different computational substrate.

4.3 Evolving Word-Order Regularities

With this understanding of our HRR/SOM model in mind, we turned our at-
tention to using the model to study specific phenomena. In a third experiment,
we used the model to explore the emergence of word-order regularities among
the subject, object, and verb in a simple model of sentence production. Based
on a data set used by Kirby [24], we constructed simple proposition meanings of
the form predicate(argument1, argument2), where predicate ranged over {loves,
hates, admires, sees, detests}, and each argument ranged over {john, mary, gavin, bill,
fred}. For the sake of clarity in comparing the relative order of subject and ob-
ject, we avoided reflexives, yielding 100 (5×5×4) propositional meanings. Using
the symbol set {l, h, a, s, d, j, m, g, b, f}, we constructed all six permutations of
compositional three-symbol “sentences” for each such meaning; for example, the
proposition loves(john,mary) yielded the possible sentences {ljm, lmj, jlm, jml, mjl,
mlj}. Meanings and sequences were both represented by 2000-dimensional HRR
trace vectors. Unlike the previous two experiments, this experiment associated
the weight vectors to the sequences, rather than the meanings, resulting in a
situation in which six possible sequences were competing for each meaning. The
winner of each competition was chosen via Equation 6, after which the weights
for all 600 sequences (not just the six competitors) were updated via Equation 7.
For this experiment the learning rate µt decreased linearly from 0.125 down to
0.025.

The results of this experiment were quite consistent: over 500 iterations of
the SOM learning algorithm, the astronomically large set of possible mappings
quickly converged to one of the six possible word orders relating predicates and
arguments to verbs, subjects, and objects (VSO, VOS, SVO, SOV, OSV, OVS). Fig-
ure 2 shows a sample experimental run, where the model converged to SVO word
order. The figure shows the fraction per 10 iterations of each kind of mapping.
Note that the SVO order becomes dominant before 50 iterations have passed,



meaning that the model begins to generalize before fewer than half of the pos-
sible meanings have been presented to it.

   0   50  100  150  200  250  300  350  400  450  500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

VSO
VOS
SVO
SOV
OVS
OSV

Fig. 2. Sample run for the third experiment, showing fraction of mappings with given
word order against iterations, in steps of 10.

5 Discussion

The work described here represents a very preliminary attempt to provide a
neurally plausible alternative to traditional grammars as a basis for research in
language evolution and development. Our model learns to map between high-
dimensional, distributed representations of propositional meanings and symbol
sequences, without using a computationally expensive and biologically implau-
sible algorithm like back-propagation.

Our goal is not to supplant existing approaches to explaining the development
of language. Indeed, the very nature of our model, in which symbol sequences
compete for the propositional meanings that they signify, is very much in the
spirit of several modern approaches to these issues. The most recent and ob-
vious of these is the evolutionary approach of Croft [25], in which individual
“linguemes” (phonemes, morphemes, words, phrases, collocations) are viewed as
competing for usage in a speech community. Alternatively, our model could be
viewed in the context of an individual language learner who, presented with a
small, finite set of exemplars, must generalize to the patterns of the full language
[26]. Figure 2 suggests this sort of capability. What we hope to add to these en-
deavors is a sense of how the symbolic representations used in all of them might
be grounded in a neurally plausible model of representation. By using these sorts
of representations throughout – instead of merely at the lowest sensory/motor
level – we avoid the grounding problem associated with traditional symbol sys-
tems.



As with any new model, however, we have of necessity ignored a number of
crucial issues. Most glaring of these is perhaps our treatment of sequences, in
which we encode the absolute position of each symbol. A more psychologically
realistic model would focus on the relative position of symbols, thereby support-
ing the kinds of phenomena found in serial-order experiments. [27] Nor have we
dealt in any way with recursion, a property generally considered to be part of the
minimally adequate characterization of human language. [28] As noted above,
a desirable feature of the Holographic Reduced Representations employed here
is their ability to encode recursive structures of arbitrary complexity. Another
possible direction for this research would therefore involve exploring the kinds
of mappings that emerge from the need to communicate recursive propositional
meanings with symbol sequences, using the HRR/SOM model.

Finally, the fact that this work does not involve a direct model of transmission
of information between agents leads to the question of whether our model can be
accommodated in a more traditional agent-based approach. A test of this ability
would be to force the association of particular meaning/sequence pairs, and then
see whether the model could self-organize the remainder of the unseen meanings
– as suggested by the data shown in Figure 2. Preliminary results show that
this is indeed the case, supporting the extension of our model to an agent-based
setting.
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