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1  Introduction 
The Iterated Learning Framework (Kirby 2002a, Kirby 2002b, Kirby and Hurford 

2002) has been used to explore how human-type languages can emerge and evolve 

through a process of cultural transmission, given that agents have the necessary bio-

logical hardware to learn, use and process it.  Different models have different built-in 

assumptions about the mechanics of language learning, use and processing, and can 

range from connectionist models (i.e. Tonkes 2002) to rule-induction models and 

other symbolic models (i.e. Kirby 2002a, Kirby 2002b, Kirby and Hurford 2002) to 

models in which agents are driven mostly by an attempt to find a compressible gram-

mar (i.e. Teal and Taylor 1999, Brighton and Kirby 2001, Brighton 2002).  The re-

search described in this dissertation will deal mostly with an exemplar-based learning 

model described by Batali (2002), and will go into an in-depth examination of certain 

aspects of the model and attempt to answer two specific questions:  1) How does the 

lack of population turnover affect the behaviour of the model, if at all?  2) Does ex-

emplar discouragement and pruning in the model implement a linguistic "bottleneck" 

with effects on the model similar to those described by Kirby and Hurford (2002, 

Kirby 2002b).  I will also go into some comparisons with other models of the emer-

gence of compositional language, specifically with the symbolic rule-induction model 

described by Kirby (2002b) and with findings discussed by K. Smith (2002), as well 

as other interesting things that came up in the course of the research, especially hav-

ing to do with the effect of the types, complexity, and distribution of meanings given 

to the agents to discuss on the behaviour of the model. 

 The layout of the dissertation is as follows:  First, a background section on It-

erated Learning, in which iterated learning is defined, a layout of the components of 

the iterated learning framework is provided, a classification of different learning 

strategies into categories is discussed, some studies will be presented that look into 

how syntax can arise from a process of iterated learning, the role of meanings in the 

iterated learning model is discussed, some questions that the iterated learning model 

tries to answer will be laid out, and a brief look will be taken at some models that ex-

amine the interaction between learning and biological evolution.  After the back-

ground section follows a section that looks more deeply into the exemplar-based 

learning model described by Batali (2002), what is unique about it, and what ques-

tions I attempt to answer with my research.  Specifically, I will briefly describe 

Batali’s model, discuss the lack of population turnover in his model, propose the exis-
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tence of a “bottleneck” in the model, based on Batali’s exemplar discourage-

ment/pruning scheme, look into the “flat” semantic representation used, and compare 

it to the semantic representation used by Kirby’s (2002b) symbolic rule-induction 

model, and finally discuss the history and merits of exemplar-based learning models, 

in general. 

 Following this discussion of Batali’s model is a results section, in which I dis-

cuss differences between my implementation of the model, and the implementation 

originally put forward by Batali (2002), the results of a basic simulation using the 

model, and more detailed results addressing the specific questions my research was 

intended to address, as well as other interesting results that came out during the re-

search.  Finally, a general conclusion and discussion section is supplied at the end. 

 

2  Background – Iterated Learning 
The origins and evolution of human language can be seen as one of the most difficult 

problems in science.  This is because it arises from, and continues to be influenced by, 

the interaction of multiple complex systems, each of which evolves adaptively, and 

each of which influences the adaptive evolution of the other.  Human language 

evolves over time through different mechanisms including biological adaptation of 

human phylogeny over the course of many generations over thousands of years, indi-

vidual learning during the ontogenetic lifespan of individuals, and cultural evolution 

from generation to generation, which lies on a time scale somewhere between those 

two (called glossogenetic: Hurford 1990).  Kirby (2002a) details the interaction be-

tween these systems, and how they can influence each other, as summarised in figure 

1. 
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Figure 1: "Language is the result of an interaction between three complex adaptive 

systems that operate on different timescales: the timescale of biological evolution 

(phylogeny), the timescale of individual learning (ontogeny), and the timescale of 

language change (glossogeny)" (reproduced from Kirby 2002a, page 190). 

 

 What is represented by the bubbles in figure 1 and the interactions between 

them can be described as follows (Kirby 2002a): humans learn languages by observ-

ing the language use of others (ontogeny), languages change through this process of 

cultural learning (glossogeny), which changes the environment, and along with it the 

selection pressures that guide human biological evolution (phylogeny).  This, in turn, 

can cause changes in the learning mechanisms that humans bring the problem of lan-

guage learning, which again changes the way in which humans learn languages from 

their observations in a cultural context…which brings us back to where we began, re-

sulting in a very drawn-out historical process of interactions between dynamically 

complex systems that is not completely unrelated (an can be seen as an extension of) 

Hurford’s Diachronic Spiral (Hurford 1987). 

 Kirby and Hurford (2002) introduced a model whereby the evolution of cul-

tural entities (such as human language) can be seen as (at least weakly) analogous to 

the biological evolution of organisms (though see discussion in Kirby, Smith and 

Brighton 2004 for a discussion on the dangers of taking this analogy too far).  In this 

model, it is maintained that human languages, or certain aspects of human languages, 

can be seen as organisms living in an environment that is made up of human brains, 
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utterances, and written work, and that these languages have differing fitness with re-

spect to their environment, which causes them to evolve over time, changing in an 

adaptive fashion as languages and language constructs that are maladjusted to us, the 

language users, die off over time. 

 This model (called the Iterated Learning Model), as described by Kirby (2002a) 

is focused on a historical process whereby information in transmitted across genera-

tions through a repeating cycle in which people learn from the performance of others 

(especially their elders), and later exhibit behaviour based on that learning to create 

performance data for the next generation.  Specifically in relation to language, this 

model focuses on a process whereby observed linguistic utterances of an older 

(teacher) generation shape the internal state of a younger (learner) generation, which 

then eventually become the teacher generation and create linguistic utterances of their 

own, based on what they had learned from their teachers. 

It should be noted here that there is a difference between the historical process 

of the cultural evolution of language described by the Iterated Learning Model, and 

the historical process of language change studied by historical linguistics.  The Iter-

ated Learning Model looks at qualitative changes in the state of a language (i.e. from 

holistic to compositional), whereas historical language change studies movement of a 

language within one of these language states. 

 

2.1  Components of the Iterated Learning Framework 

The iterated learning framework consists of four major components (Brighton 2002, 

Brighton & Kirby 2001, Kirby 2001, Kirby & Hurford 2002): 

1) A meaning space 

2) A signal space 

3) One or more learning agents 

4) One or more adult agents 

The structure of these components in any given incarnation of the iterated learning 

framework can vary widely: the meaning space can consist of some set of atomic 

meaning parts that can be re-combined to create more complex meanings (i.e. Kirby 

2002b, Batali 2002), or it could consist of a more continuous set of meanings, such as 

a continuous colour space (i.e. Belpaeme 2001); the signal space can consist of strings 

built up from discrete characters (i.e. Kirby 2002b), or it could consist of a more con-

tinuous range of acoustic signals, in which case the agents might have to negotiate a 
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shared set of signal categories, instead of or in addition to negotiating a mapping be-

tween these signals and their corresponding meanings in the semantic space (i.e. De 

Boer 1999). 

The population of learning agents can be completely distinct from the popula-

tion of adult agents with new agents always learning from the linguistic behaviour of 

adult agents, with no horizontal transmission (i.e. Kirby 2002b, Oliphant 1997, figure 

2).  The populations of learning and adult agents could be one and the same set of 

agents (i.e. Batali 2002, which he refers to as a model of grammar “negotiation” be-

tween an unchanging set of language-using agents).  It would even be possible to 

build a model that lied somewhere between these two, in which all agents play dual 

roles of teacher and learner, but at some point agents may die out and be replaced by 

new agents starting out with no linguistic knowledge. 

 

 
 

Figure 2: A cycle in which old agents continually die off and are replaced by new 

agents.  The new agents learn from the communicative behaviour of the existing 

population (reproduced from Oliphant 1997, page 59). 

 

2.2  Classification of Learning Categories 

Another variable parameter in any iterated learning model is that of the observational 

learning strategies employed by the individual agents being modelled, and the innate 

biases that are built into those strategies.  Oliphant (1999) classifies the abilities of 
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populations of agents employing these different observational learning strategies into 

three categories: 

1) Acquisition – the population is able to acquire an optimal system of communi-

cation 

2) Maintenance – the population is able to acquire an optimal system of commu-

nication, even in the presence of noise 

3) Construction – the population is able to construct an optimal system of com-

munication when it begins with an initial random system 

As Kirby (2002a) points out, it is essential to take iterated learning into account when 

studying the emergence of linguistic systems, since a learning strategy that allows an 

individual agent to succeed in learning a system of communication may not allow a 

population of agents employing such a learning strategy to construct the system of 

communication in the first place. 

 The importance of taking the process of iterated learning in a population into 

account when trying to explain the structures of natural languages is shown by Tonkes 

(2002), in his doctoral thesis.  He shows that the adaptation of languages to the biases 

of general-purpose connectionist learners, who are not necessarily innately geared to-

ward learning systems of communication, can result in the appearance that the agents 

have evolved into a population of especially "language-savvy" learners.  He also 

shows that the iterated process of language production and acquisition can be used to 

help explain the emergence of optimally learnable languages, without positing espe-

cially language-specific constraints on the learning strategies of the individual agents. 

 K. Smith (2002) has shown that there is a crucial property that learning strate-

gies of agents in a population must have in order to fall into the "constructor" category, 

that is, to be able to construct an optimal system of communication from randomness 

in the context of iterated cultural transmission: there must be a bias toward creating 

one-to-one mappings between signals and meanings.  The model he uses consists of a 

population of agents that use Hebbian-like (Hebb 1949) learning networks to associ-

ate signals with meanings.  During any given learning experience, the nodes repre-

senting the meaning as well as the nodes representing the corresponding signal are 

activated.  Any pair of nodes will either be configured so that both of the nodes are 

active (a), both of the nodes are inactive (b), the meaning node is active while the sig-

nal node is inactive (c), or the signal is active while the meaning node is inactive (d).  



- 7 - 

A range of learning strategies were examined, in which for any of these cases the 

weight between the nodes was increased by one, decreased by one, or left unaltered. 

The learning strategies that resulted in the ability to construct an optimal sys-

tem of communication from randomness all shared two similar attributes: weights of 

connections between nodes with configuration (a) have a greater change (in the posi-

tive direction) than weights of connections between nodes with configuration (c), and 

weights of connections between nodes with configuration (b) have a greater change 

(in the positive direction) than weights of connections between nodes with configura-

tion (d). In linguistic terms, this means that there must be a bias against synonymy as 

well as a bias against homonymy.  In addition, communication systems that conform 

most closely to these biases (systems that are free of synonyms and homonyms) are 

more likely to be acquired by agents that exhibit them, with the result that communi-

cation systems with synonymy and homonymy will eventually be weeded out through 

a process of iterated learning, leaving the population with an optimal and unambigu-

ous system of communication. 

 

 
 

Figure 3: Mental representation of the mapping between meaning and signal as de-

scribed by Saussure (1959). 

 

 The one-to-one mapping between meanings and signals that result from a 

process of iterated cultural transmission in a population of constructor agents is 

known as the Saussurean Sign (Saussure, 1959, figure 3).  Oliphant and Batali (1997, 

also Hurford 1989) discuss how agents could learn a linguistic system that uses and 

maintains these mappings, and explain it in terms of what they call the 'Obverter' 

property.  Under the obverter property, when an agent needs to express a meaning, it 

chooses the signal that, if it was heard by this agent, would most likely be interpreted 

as that meaning.  Oliphant and Batali prove that populations of agents employing ob-

apple 
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verter learning strategies in an iterated learning context will always result in and op-

timal system of communication. 

 Batali (1998, reproduced with partial success by Goroll, 1999), studied the 

emergence of structured systems of communication in a population of neural-network 

based learning agents.  He used a simple recurrent network that were fed sequences of 

characters one at a time at the input layer, and then treated the output layer after the 

last character was processed as the interpreted “meaning” of the string.  To express a 

meaning, the agents basically chose the shortest string that would result in the closest 

match on their own output to the meaning to be expressed.  Thus there is a sense of 

using an obverter strategy to express meanings, as well as a definite built-in bias to-

ward shorter utterances.  This model shows how slight statistical advantages of spe-

cific signal-meaning mappings can lead to structured agreement over time. 

 

2.3  Syntax from Iterated Learning 

One of the more interesting results to come out of studies of iterated learning is the 

emergence of syntax in the systems of communication of populations of agents in an 

iterated learning context.  An important aspect of these communication systems is 

compositionality.  A language is compositional if the meaning of an utterance is a 

function of the meanings of its constituent parts and the way they are put together 

(Kirby 2002a, Montague 1970).  This is in contrast to holistic languages, in which 

there is an utterance for every meaning, and whose utterances are not mapped to 

meanings based on the meanings of their constituent parts and the way they are put 

together.  Some examples of compositional English phrases and some equivalent 

holistic expressions are shown in the table below (from Kirby 2002a, page 203): 

 

 

Table 1: Examples of compositional English phrase and some equivalent holistic ex-

pressions. 

 

Compositional Holistic 

walked went 

I greet you hi 

died bought the farm 

I thought I saw a pussy cat bark (vervet alarm call, a la 

Cheney and Seyfarth 1990) 
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Compositionality orders the mappings between meanings and signals in such a 

way that meanings that are nearer to each other in semantic space are expressed by 

signals that are more similar, this is in contrast to holistic systems of communications 

in which the closeness of meanings in semantic space bears little or no relation to the 

similarity of the strings used to express them (figure 4). 

 

 
 

Figure 4: On the left, a holistic language with an unstructured mapping between 

meanings and signals, on the right, a compositional language in which the mapping is 

more structured (reproduced from Kirby 2002a, page 203). 

 

 It seems quite surprising, actually, how few compositional communication 

systems can be found in nature, given the number of communication systems that are 

used, and the efficiency and expressiveness that compositionality can impart to one.  

It seems that the only two that have been discovered so far are those used by humans, 

and the dance language employed by bees to communicate the location of food 

sources to the hive (von Frisch 1974). 

 Kirby (2000) describes a symbolic simulation in which agents represent lin-

guistic knowledge internally in terms of context-free grammars.  In this simulation, 

agents learn by observation alone, using the observed behaviour of other agents to 

guide their own and inventing random behaviour when necessary.  The agents assign 

arbitrary numeric category labels to the parts on the right-hand side of their grammar 

MEANINGS

SIGNALS 
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rules.  In the results of his simulation, Kirby shows that in the context of iterated 

learning, compositional languages eventually emerge, and the agents eventually reach 

some kind of agreement on how the constituent string-meaning pairs should be cate-

gorized, giving rise to what could be interpreted as a kind of semantic categorization. 

 Kirby and Hurford (2002, Kirby 2002b) use a symbolic simulation (quite simi-

lar to the one described in Kirby 2000) to explore the emergence of a recursive com-

positional communication system in a population of agents in the context of the iter-

ated learning framework.  The symbolic model they describe uses character strings as 

signals and a simple predicate logic variant for meanings.  Agents in the simulation 

can store string-meaning pairs that they observe, and use them to determine their own 

production when prompted by the environment to express meanings as strings.  They 

also have the ability to notice when two or more of the string-meaning pairs they have 

observed have simultaneous overlap in their string and meaning parts, and use that 

information to abstract more general rules to guide their production. 

 At the beginning of a simulation run, agents have entries in their grammars for 

every meaning they can express, and similarity between two meanings has little or no 

correlation with similarity of the strings used to express them.  For example, a set of 

strings that an agent might use to express a set of corresponding meanings might be as 

follows (Kirby and Hurford 2002, pages 130-131, meanings are given as English 

glosses): 

 

ldg 

“Mary admires John” 

 

xkq 

“Mary loves John” 

 

gj 

“Mary admires Gavin” 

 

axk 

“John admired Gavin” 

 

gb 

“John knows that Mary knows that John admires Gavin” 
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After many generations, however, the mappings between meanings and the strings 

used to express them become much more structured, with similar meanings being ex-

pressed by similar strings.  The set of utterances for the same meanings expressed 

above are given below, with spaces added to aid understandability for the reader: 

 

gj h f tej m 

John  Mary admires 

“Mary admired John” 

 

gj h f tej wp 

 John  Mary loves 

“Mary loves John” 

 

gj qp f tej m 

 Gavin  Mary admires 

“Mary admires Gavin” 

 

gj qp f h m 

 Gavin  John admires 

“John admires Gavin” 

 

i h u i tej u gj qp f  h m 

 John knows  Mary knows  Gavin    John admires 

“John knows that Mary knows that John admires Gavin” 

 

 An important result that emerged from the model described by Kirby and Hur-

ford was that the types of languages that emerged from the simulations depended 

largely on the number of observational episodes that agents in any given generation 

had as learners before they became the adult generation.  They termed this restriction 

on the number of meanings expressed during learning for a given generation the 

learning 'bottleneck', also referred to as a "semantic bottleneck" as opposed to a "pro-

duction bottleneck" as defined below (both definitions are from Hurford 2002, page 

306). 
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Semantic Bottleneck – Individual speakers are prompted with only a (random) 

subset of meanings, so that the data given to an acquirer lacks examples of the 

expression of some meanings. 

 

Production Bottleneck – Individual speakers' production mechanisms are de-

signed to produce only a subset of the utterances that are possible for given 

meanings as defined by their grammars. 

 

 The languages that emerged from the simulations were qualitatively different, 

given different sizes of bottleneck, and they grouped these bottleneck size values into 

three different categories, based on the difference of the resultant emerging systems of 

communication. 

 If the bottleneck is too small, and the learning agents don't have enough learn-

ing episodes before becoming adult speakers, the result is an unstable, inexpressive 

language.  Most meanings are expressed by holistic, unanalysed signals and the lan-

guage changes rapidly from generation to generation without ever converging on a 

stable shared language.  If the bottleneck is too large, and the learning agents see a 

large proportion of the possible meaning space before becoming speaking adults, the 

agents will eventually converge on a fairly stable, expressive language, but the even-

tual convergence on a stable shared language takes a relatively long period time. 

 For an intermediate size of bottleneck, though, the languages that emerge are 

completely stable, maximally expressive, as well as compositional.  In addition to this, 

these languages emerge much more quickly than the fairly stable ones that emerge in 

simulations with large bottlenecks.  It appears that this is the case because the inter-

mediate bottleneck size puts a pressure on the language to adapt in such a way that 

they become compositional, whereas a large bottleneck removes that pressure.  If 

agents can rote-learn a holistic string expression for every possible meaning in the 

meaning space, then there is no pressure for signal/meaning pairs to be analysed and 

broken down into constituent parts. 

 Batali (2002) uses an exemplar-based learning model to explore the emer-

gence of compositional grammars in a population of agents.  In his model, agents do 

not explicitly encode linguistic knowledge into grammatical rules, but instead directly 

store information from observational experience in the form of exemplars, and then 

use that information when prompted by the environment to produce their own utter-
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ances for other agents to observe.  This model is especially interesting because of the 

fact that the agents never explicitly form grammatical rules, and also because the se-

mantic representations are set up in such a way that their structure will not influence 

the ways agents find to express them.  This model will be looked at in more detail be-

low. 

 Teal and Taylor (1999) look at this language adaptation in terms of compres-

sion.  They point out that the kind of generalisation across observed utterances de-

scribed above is a way for agents to compress their knowledge of a language into a 

description that takes up less space (known as minimum description length, or MDL).  

They show that languages whose longer utterances are made by recombining con-

stituents from a set of smaller utterances (what they describe as more “smooth”) are 

more compressible, and that in an iterated learning context, languages evolve to be-

come more compressible.  A significant difference between the simulation described 

by Teal and Taylor and most of the others mentioned in this section is that their re-

sults deal only with signals and do not take meanings or semantics into consideration, 

in their model structure emerges in signals without being driven by structure in the 

meaning space. 

 Brighton and Kirby (2001, as well as Brighton 2002) also examine language 

adaptation in terms of MDL.  This model attempts to deal with criticisms of models 

such as ones previously used by Kirby (2000) and Batali (2002), which argue that the 

learning algorithms used by the agents are too strongly biased towards compositional-

ity, making the outcomes of the simulations inevitable.  They argue that the minimum 

description length principle gives them a theoretical justification for the generalisa-

tions made by the agents in their simulation.  Their findings uphold previous findings 

that compositional languages are more compressible than holistic ones, as well as 

more stable, and that iterated learning, in the presence of large, non-holistic meaning 

spaces and small transmission bottlenecks results in language adapting over time to 

become more compositional and more stable. 

 Zuidema (2001) discusses the mathematical model of Nowak, Komarova and 

Niyogi (2001) that explores the evolution of grammar in human language, and possi-

ble A-life extensions to the model to fit it into the iterated learning framework.  He 

shows that the lower bound of the Q value they determine for the number of training 

samples that agents in a population need in order to achieve a coherent system of 

communication can be lowered further if iterated learning is taken into account.  He 
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also shows that some classical learnability problems, such as those discussed by Gold 

(1967), can be overcome by iterated learning. 

 Kirby (2001) explores the role that iterated learning can play in helping to un-

derstand the emergence and evolution of other features of language.  Specifically, he 

looks at the how a non-uniform distribution in the space of meanings that are ex-

pressed by adult agents to learner agents from generation to generation can result in 

the emergence of regularity and irregularity, in the iterated learning framework.  He 

shows that competing pressures on induction and production at an individual level can 

lead to compositionality under iterated learning, and features of regularity and irregu-

larity when a non-uniformly distributed meaning space is taken into account. 

 Some research has also suggested that the iterated learning model can help ex-

plain the subjacency principle, which seems to be a universal feature of human lan-

guage, without resorting to it being an innately specified feature, as it had been previ-

ously argued to be (i.e. Newmeyer 1991).  Christiansen and Ellefson (2002) used a 

combination of Artificial Language Learning and neural network learning tasks to 

support the theory that subjacency evolved in order to satisfy non-linguistic con-

straints on human memory and comprehension, as opposed to a more classical view 

that it is an arbitrary rule specified as part of innate human Universal Grammar.  They 

suggest, based on their results that the subjacency principle evolved through a process 

of language change, based on pressure from general human learning and cognition, 

and perhaps not through biological evolution of human Universal Grammar. 

 

2.4  The Role of Meanings in the Iterated Learning Model 

Most of the models discussed above use some kind of representation of meanings and 

semantic space, and the languages that emerge from them map strings or utterances 

onto those meanings.  Teal and Taylor’s (1999) model doesn’t, and neither does 

Zuidema’s (2003, though he did build in a minimum expressiveness constraint which 

he describes in section 5 of his paper, which keeps his agents' grammars from com-

pletely collapsing under the compression pressure; this constraint can be interpreted 

as taking over the role that a meaning space might otherwise fulfill), but the results 

they find are quite similar to the results that arise from the models in which meanings 

are represented.  For example, the grammars in Teal and Taylor's (1999) simulations 

became simplified over time under iterated learning in a way that is comparable to the 

simplification of grammars in Kirby's (2000) model.  Also, in Zuidema's (2003) 
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model, the learnability of languages increased and the number of rules needed to en-

code the language decreased while expressivity remained fairly constant, which seems 

to support similar results of increased learnability of the language evolving alongside 

a simplification of the encoding of the language in the other iterated learning models 

described above.  This leads to the question: if the results of iterated learning are de-

monstrable using "semantic-free" models of language evolution, then why model 

meanings at all? 

 While it is true that basic syntax can be studied to some extent without taking 

account for meanings, and the two meaning-free models mentioned above can help to 

explain the emergence of certain syntactic regularities, we are also interested in the 

semantic side of things, specifically compositionality, which uses syntax to build a 

structured relationship between utterances and their meanings, as well as how the 

meanings space can be defined and partitioned through the process of repeated com-

munication. 

 Different models represent meanings in different ways, and depending on 

those representations, can have different effects on the workings of those models.  For 

example, the meanings in Tonkes’s (2002) model are represented as a point on the 

one-dimensional line between (and including) 0.0 and 1.0 (i.e., 0.8125), whereas in 

Kirby’s (2002b) model, they have a predicate logic-like representation, with a possi-

ble element of recursion (i.e., loves(John, Mary) or knows(Victor, loves(John, 

Mary)) ).  In Kirby’s model, the meanings represent actions that can be taken, as well 

as things that can take action or have action taken on them, and in the simulation, they 

are used to help guide the agents to make consistent generalisations over string-

meaning pairs, and their recursive structure ends up being represented in the recur-

sively-structured syntax of the agents’ grammar.  In Tonkes’s model, the structure of 

the meanings space is represented by how near two points are in one-dimensional 

space, and the resulting languages were structured so that strings that were more simi-

lar mapped to meanings that were closer to each other in the meaning space.  In both 

cases, the strings of the resulting languages matched closely with the structure of the 

meaning spaces, in Kirby’s model, the agents learned a grammar with recursively-

structured syntax that mapped directly onto the recursive structure of the meanings, 

whereas in Tonkes’s model, the strings can be seen as a discrete representation of the 

continuously-valued meaning space, similar to how binary values are used by com-

puters to represent continuously-valued floating-point numbers. 
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 Batali (2002) uses a semantic representation that is similar to Kirby’s in that 

meanings are given a predicate-like representation, and complex meanings are built 

up from smaller, atomic, constituent parts, but Batali’s representation does not have 

built-in recursive structure (at least not in the sense that Kirby's model does), though 

recursive structure does arguably emerge in the languages negotiated by the agents in 

his simulation.  A more in-depth discussion of how the difference between these two 

semantic representations is relevant will follow further below, along with a more de-

tailed account of Batali’s model. 

 Models that start with an a priori specified set of meanings have been criti-

cised as unrealistic for two reasons.  Firstly, they leave us with the question of where 

the meanings came from in the first place, and secondly, it may not be realistic that 

agents are really able to directly observe the meanings to be paired with utterances 

during language learning. 

 Vogt (2003) and A. Smith (2003) both attempt to circumvent the first criticism 

by using models in which meanings co-evolve with utterances within the iterated 

learning framework.  In Vogt’s model, agents are presented with a visual space (the 

environment) that has objects of different size, shape, and colour, arranged in two-

dimensional space, and agents are able to partition the semantic space based on these 

features of the objects.  It has been shown, using this model that for agents to con-

verge upon a maximally efficient shared language, their set of meaning representa-

tions must eventually converge within some acceptable threshold, and the conditions 

under which this occurs have been explored.  A. Smith’s model shows how successful 

communication systems can emerge when agents are not allowed to transfer meanings 

to each other at all, through a process whereby the agents develop a highly synchro-

nized set of internal conceptions, when agents can bring an intelligent strategy for 

creating meanings to the task. 

 As for the second criticism, the question of whether it is realistic to allow both 

meanings and utterances to be transferred during learning, it has been discussed in the 

literature (i.e. K. Smith 2002) and there has been some preliminary work toward mod-

els that don’t make the assumption that learners can observe both meanings and utter-

ances (i.e. A. Smith 2003), and it seems clear that the assumption has to be made for 

models in which the agents are not situated in an environment that they can somehow 

sense and create their own interpretations of, and that agents will need some similar 
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internal representations of the external world in order for syntactic language to 

emerge.  

 

2.5  Questions that the Iterated Learning Model tries to Answer 

In the following few paragraphs, I will discuss some of the questions that the Iterated 

Learning Model attempts to answer.  Much of the discussion will be drawn from 

Kirby, Smith and Brighton (2004), which I will reference below simply as KSB. 

 What kinds of prior learning bias are necessary for construction and mainte-

nance of human-like languages?  KSB treat innate Universal Grammar as a specifica-

tion of the initial state of a language-learning child, along with the machinery that that 

child will use during language learning.  It is a specification of what the child brings 

to the language learning task (the child’s prior bias); independent of the data they will 

be exposed to, and is closely related to the Chomskyan Language Acquisition Device 

(Chomsky 1965, 1980).  The Iterated Learning Model attempts to provide a frame-

work within which different theories of Universal Grammar might be tested, to de-

termine what kind of innate biases are necessary at an individual level in order for 

human-like languages to emerge in and be maintained by a population of language 

learners.  As mentioned above, K. Smith (2002) has made one of the most thorough 

investigations of this question using the iterated learning framework to date. 

 How language-specific must out innate biases be?  KSB point out that we as 

language learners must have some kind of innately-specified biases that we bring to 

the language-learning task.  An example is the bias toward generalisation.  The ability 

to learn language relies on a tendency to generalise over data from many examples.  

They make the distinction, though, between an innate bias toward generalisation that 

is general-purpose, and one that is specific to language learning.  This is related to the 

discussion of FLN (faculty of language in the narrow sense) vs. FLB (faculty of lan-

guage in the broad sense) by Hauser, Chomsky and Fitch (2002).  Iterated Learning 

Model experiments can help us determine what innate biases, if any, must be specific 

to language, rather than for general-purpose learning. 

 How can we explain the process that links Universal Grammar to Language 

Universals?  KSB note that an explanation of Language Universals directly in terms 

of innate Universal Grammar is missing something.  Because it is not immediately 

clear that embedding innate biases that seem to fit observed language universals in 

individuals would result in the emergence of those universals over time in a popula-
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tion, there must also be an explanation of the process by which the biases coded in 

innate Universal Grammar give rise to the universals traits that we observe in lan-

guages today.  The Iterated Learning Model attempts to provide just such an explana-

tion.  By embedding agents with different types of innate biases into a generational 

model with cultural transmission, we can get a better grasp on what role those biases 

play in shaping the languages that emerge, and how they influence those languages. 

 How does language learning interact with language usage in a cultural envi-

ronment?  As KSB point out on page 593, “Human language is an obvious example of 

a behaviour that is transmitted through iterated learning.”  Humans learn language 

based on the language usage of their parents, teachers, and peers, and their language is 

used as learning data by their children, students, and peers.  It seems sensible to seek 

an explanation of how these two behaviours (language learning and language usage) 

interact within the framework of iterated learning.  The Iterated Learning Model sheds 

light on this interaction, and the results of many of the studies discussed above show 

that it is non-trivial. 

 What are the impacts of the mechanisms that translate back and forth between 

mental representations and utterances over time?  Language change differs from bio-

logical evolution in the way that information is transmitted (figure 5).  As discussed 

by KSB, in the case of biological evolution, information is transmitted through genes, 

the genes are carried by the organisms they help determine, and when it comes time 

for the genetic information to be transmitted, the replication is more or less directly 

from gene to gene.  In the case of language change, though, information is not repli-

cated directly from one mind to another, instead it undergoes a process of transforma-

tion in which it is converted back and forth between what Chomsky (1986) refers to 

as I-language (the internal representation of language, such as is stored in the brain or 

in an internal grammar) and E-language (the external utterances produced when peo-

ple use a language).  Through this process, some linguistic form is translated from in-

ternal linguistic knowledge into an external utterance by the speaker, and then trans-

lated back from the utterance into linguistic knowledge internal to the listener.  The 

Iterated Learning Model can help us understand how this continuous translation back 

and forth between mental representations and utterances impacts on the languages be-

ing transmitted over time. 
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Figure 5: Similarities and differences between linguistic transmission and genetic 

transmission.  In linguistic transmission, grammatical competence (GC) leads to the 

production of primary linguistic data (PLD), which is, in turn, used as learning input 

to shape the grammatical competence of the next generation.  In genetic transmission, 

DNA is translated to create proteins, selection acts on the proteins that are created in 

order to determine what DNA is replicated to create the DNA of the next generation 

(reproduced from Kirby, Smith and Brighton 2004, page 602). 

 

 Can language universals arise “for free” from a process of repeated cultural 

transmission?  The Iterated Learning Model can be used to show how a process of 

repeated cultural transmission can result in the emergence of language universals, 

eliminating the need to invoke extra innate language-specific machinery as an expla-

nation, which often seems an unsatisfying ‘hand-waving’ way of explaining the uni-

versals (though by no means does this prove that such innate language-specific ma-

chinery doesn’t exist, it puts pressure on researchers that would use it as an explana-

tion to provide more convincing evidence of its existence).  An example cited by KSB 

is that of Jäger (2003), who demonstrated the emergence of the case hierarchy of Ais-

sen (2003), as a result of iterated learning in a functional Optimality Theory-based 

case-system variation model. 

 How can we explain dysfunctional yet stable aspects of language?  The lan-

guages that arise in Iterated Learning Model simulations are much better for commu-

nication, from a functional viewpoint, than the initially random systems that the simu-
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lations are usually seeded with.  As KSB point out, this result is a by-product of lan-

guages adapting to the problem of transmission.  There are some language universals 

that are difficult to use, such as centre-embedded relative clauses, but persist in lan-

guages throughout the world.  The process of Iterated Learning might shed some light 

on why apparently dysfunctional language constructs would persist from generation to 

generation, and perhaps why some more functional alternative does not crowd them 

out, but so far little research has been directed at this specific question. 

 How can recursive communication systems come to be?  Simulations by Kirby 

(2002b, described above, and in more detail by KSB), and by Batali (2002, described 

above briefly and in more detail below) have both looked into how recursive commu-

nication systems can evolve through a process of iterated learning.  The kind of recur-

sive compositionality that emerged in these two models is a fundamental property of 

human language that allows a potentially infinite number of meanings to be expressed 

by utterances built up from a finite set of discrete constituents.  One thing that is strik-

ing about the results of these experiments is that the recursive compositionality arose 

as a result of adaptation of the language to the learners, without any recourse to bio-

logical evolution and without any notion of biological fitness of the agents. 

 

2.6  Modeling the Interaction between Learning and (Biological) Evolution 

Though this dissertation will deal mainly with the emergence and subsequent evolu-

tion of languages within the iterated learning framework, it should be mentioned that 

there have been attempts to model the interaction between the learning strategies em-

ployed by agents in a population, and the biological evolution of those learning strate-

gies over time.  An example is a simulation studied by Batali (1994), in which recur-

rent networks were trained on a next-character prediction task from anbn languages, 

and the initial weights of the networks were allowed to evolve over many generations, 

using agents’ success at the next-character prediction task as a fitness measure. The 

result of the simulation was the evolution of agents with initial connection weights 

that allowed them to learn any language in the anbn class. 

 This simulation shows how agents can evolve to learn a functional language, 

but doesn’t address the emergence of such a language in the first place.  Later work 

by Kirby and Hurford (1997) attempted to simulate the interaction between learning, 

cultural transmission, and biological evolution.  The results of their simulations varied 

widely depending on the parameters used to control the interaction between the three 
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systems, highlighting the fact that even in very simplified models the interactions be-

tween the different complex dynamical systems at work in language evolution cannot 

be ignored, if the entire process is to be understood. 

 In his PhD thesis, K. Smith (2003) introduced a model whereby the initial 

leaning biases of a population of agents (K. Smith 2002, discussed above) are allowed 

to evolve over time, and communicative accuracy of agents was used as a fitness 

function.  He found that if, through the process of genetic drift, enough agents with 

constructor biases are introduced into the population of agents, cultural evolution of 

the language will begin having an effect, which in turn increases the fitness of agents 

with constructor biases.  The result is that once a threshold proportion of agents with 

constructor biases is reached, the proportion will then steadily increase until it reaches 

a plateau level where constructor agents don’t have a large advantage over agents 

with a maintainer bias, then drift will allow it to wander within a small distance. 

 

3  The Exemplar-Based Learning Model 
My research is based directly on an exemplar-based learning model developed by 

Batali (2002), and explores certain aspects and implications of his model in more de-

tail through a replication and some extensions of his model's framework.  In the sec-

tions that follow, I will give a brief description of Batali’s model (though see the 

original paper for more detail), what are some of the major differences between this 

model and other iterated learning models, and what specific questions I attempted to 

address in my research. 

 

3.1  (Brief) Description of the Model 

Batali’s (2002) model simulates the process of negotiation of a recursive grammar.  

Agents in the simulation are given the machinery necessary to communicate with each 

other and to negotiate a system of communication, but they don’t start out with any 

shared system of communication.  Agents start out with no communication system 

and begin the simulation “making up” random utterances in order to express meanings 

that the environment prompts them to express to each other.  Through a process of 

iterated learning from each other and using the utterances that have heard from other 

agents, a shared, recursive system of communication is shown to emerge. 

 Agents store internal representations of learning observations in what Batali 

calls exemplars, which are made up of phrases that represent a structured (or unstruc-
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tured) mapping between meanings and strings.  Meanings are represented as sets of 

formulas that are linked by arguments, for example the meaning of the English sen-

tence “A cat chased a dog” could be represented as {(cat 1) (chased 1 2) (dog 2)}.  

Phrases are structured as binary trees, in which a string-meaning pair can be broken 

down into a left and right sub-tree, and those sub-trees can likewise be broken down.  

Arguments are assigned to formulas through the use of argument maps, which may 

map one or more arguments of a sub-tree to different arguments (figure 6). 

 

 
 

Figure 6: a) an argument map is used in a phrase to create the meaning {(goose 2) 

(chased 2 2)} from the meaning {(goose 1) (chased 1 2)}, effectively changing the 

meaning from “a goose chased something” to “a goose chased itself”. b) an argument 

map is used to change the order of the right sub-tree’s arguments, without changing 

the meaning of the right sub-tree itself. 

 

 A system of costs is in place to guide the agents’ preferred expressions for 

meanings and interpretations of strings, in which agents prefer to use the lowest-cost 

exemplars for learning, expression, and interpretation.  The cost of an exemplar stored 

in any agent’s exemplar set is determined as a function of how often it has been suc-

cessfully used during learning experiences and how often the agent has made learning 

observations that were inconsistent with it.  When an agent is prompted by the envi-

ronment to express a meaning or to interpret a string, it builds the lowest-cost phrase 

possible that matches the string or meaning that it was given to interpret or express, 

and uses the meaning or string (respectively) of the resulting phrase to guide it’s in-

terpretation or expression.  The cost of one of these phrases is some function of the 

costs of the exemplars used to construct them, and the method that was used to put the 

exemplars together.  Similarly, when an agent is given a string-meaning pair to learn, 

it constructs the lowest-cost phrase that is consistent with both the string and the 

meaning and stores it in its exemplar set with an initial cost of 1.0. 
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 An agent can create phrases from its stored exemplar sets in four ways: 1) it 

can use a stored exemplar directly, if it is consistent with the required string and/or 

meaning, in which case the cost of the solution phrase is equal to the cost of the ex-

emplar used; 2) it can create a new phrase with no meaning, or with a random string, 

in which case the cost of the solution phrase is equal to the sum of the number of for-

mulas in the meaning and the number of characters in the string; 3) a sub-tree of an 

exemplar may be replaced by another exemplar (but only if the replacing exemplar 

has the same arguments as the sub-tree that is being replaced, a restriction that Batali 

refers to as the Replacement Condition, see figure 7a for an example), in which case 

the cost of the solution phrase is equal to the sum of the costs of the exemplar whose 

sub-tree was replaced, the exemplar that replaced it, and the replacement cost of 0.1; 4) 

two exemplars may be joined together in a specified order, with an argument map ap-

plied to either of the two (see figure 7b for an example), in which case the cost of the 

solution phrase is equal to the sum of the costs of the two exemplars that were joined 

together, and the new structure cost of 1.5. 

 

 
 

Figure 7: a) a sub-tree of an exemplar is replaced by another exemplar (that satisfies 

the Replacement Condition), the cost of the solution phrase is the sum of the cost of 
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the two exemplars being used, plus the replacement cost of 0.1.  b) two exemplars are 

joined together in a specified order using an argument map to switch the arguments of 

the two-place predicate, the cost of the solution phrase is the sum of the cost of the 

two exemplars being used, plus the new structure cost of 1.5. 

 

 In the simulation runs that Batali describes, ten agents were used and there 

was no population turnover.  Any exemplar that has not been used by the agent in one 

of the 200 previous speaking, interpreting, or learning episodes is deleted from the 

agent's exemplar set, as it is unlikely that it is being used actively, and to satisfy com-

puter memory constraints.  My research (as described below) shows that this pruning 

of little-used exemplars is not only useful for keeping computer memory usage within 

tolerable bounds, but that it is a key component in the emergence of structure in the 

languages negotiated by the agents. 

 

3.2  No Population Turnover 

This model differs from most other iterated learning models in that is has no popula-

tion turnover.  Tonkes (2002) calls this model and others like it (i.e. Batali 1998) ne-

gotiation models in order to set them apart from iterated learning models that use 

population turnover. 

 The fact that this model has no population turnover is significant because 

many other iterated learning models (especially those studied by Simon Kirby and 

others in the Language Evolution and Computation section of the University of Edin-

burgh Linguistics department, i.e. Kirby 2000, Kirby 2002b, Brighton and Kirby 2001, 

Kirby, Smith and Brighton 2002, Kirby and Hurford 2002) have shown the emergence 

of successfully stable, compositional languages relies on the languages being trans-

mitted across a "bottleneck".  This bottleneck has been implemented in these models 

by having a generation of learners learn a language or languages based on observa-

tions of utterances created by a generation of speakers expressing some subset of all 

the meanings expressible by their language(s). 

 One of the questions I had about Batali's model is whether or not the lack of 

population turnover has a significant effect on its predictions.  In order to determine 

this, I added a parameter to the model that, when switched on, had two effects on the 

agents: 1) exemplar pruning was disabled; 2) every five hundred rounds an agent was 

selected at random, and its memory blanked.  The blanking of one agent's memory in 
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step (2) is equivalent to removing an agent from the population and replacing it with a 

new agent with no linguistic knowledge (see figure 2 above).  Activating the popula-

tion turnover parameter also changed the communicative accuracy tests slightly in 

that the oldest two agents in the population were always selected to communicate with 

each other for the tests.  Results of this test are discussed below. 

 

3.3  Possible Bottleneck: Exemplar Discouragement/Pruning 

I propose that a bottleneck similar to the one discussed by Kirby and Hurford (2002, 

Kirby 2002b) is implemented in Batali's model, but that it takes a different form than 

the semantic bottleneck that they describe (Hurford 2002 attributes a "production bot-

tleneck" to this model, which is similar to the one I am proposing though not exactly 

the same).  My proposal is that a semantic bottleneck is implemented in Batali's (2002) 

model in the form of the process of discouragement of exemplars (i.e. increasing their 

cost) and pruning exemplars from an agent's exemplar set if they haven't been used 

during the last two hundred rounds that the agent participated in. 

 The reason for this is that if a simulation run has a large number of possible 

meanings that can be expressed, it is inevitable that meanings will go unexpressed for 

spaces of time long enough that Exemplars representing holistic form/meaning pairs 

for those meanings will be pruned out of the simulation.  But, if an exemplar can be 

used consistently to form a useful compositional rule, its cost will remain low.  This 

process of encouraging exemplars that embody useful compositional rules and dis-

couraging ones that represent holistic meaning/form pairs will create a pressure for 

the language of the agents to become more compositional over time. 

 This proposal was tested by comparing simulation runs that have the standard 

exemplar discouragement/pruning process with ones that either prune more exemplars 

(say any that have not been used in the past ninety or so rounds, instead of the past 

two hundred) and ones that have no pruning, or not nearly as much (say pruning ex-

emplars that haven't been used for two thousand rounds instead of two hundred), and 

seeing if the differences in the emerging languages are similar to the differences in 

languages that emerge under different bottleneck conditions in other iterated learning 

models (say that described in Kirby and Hurford 2002).  The results from these runs 

are discussed below, along with a comparison with the results of the runs with popula-

tion turnover.  My prediction was that if exemplars are pruned too quickly, there will 

never be enough exemplars in a given agent's exemplar set to make the generalisa-
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tions necessary to support a shared compositional language, and that if pruning is 

completely removed, or more exemplars are allowed to build up in the agents' exem-

plar sets, the result will be many exemplars representing holistic meaning/form map-

pings, and that a compositional language will not emerge, or will take a much longer 

time to emerge. 

 

3.4  "Flat" Semantic Representation 

Another difference between Batali's (2002) model, and other symbolic iterated learn-

ing models1 is that the semantic representation used is "flat" in a sense that the seman-

tic representations of the other models aren’t.  By this I mean that the kind of syntac-

tic structure that emerges in the model is not "built into" the structure of the semantic 

representation used by the model.  This is a point in its favour, as the syntactic struc-

tures that emerge in other models that use more hierarchically structured semantic 

representations can arguably be the result of a simple mapping of the semantic struc-

ture onto the agents' utterances. 

 An important example of this in the case of recursion is illustrated by the sym-

bolic model described by Kirby and Hurford (2002).  This model uses predicate logic-

style semantic structures which can be embedded recursively, to create arbitrarily 

complex meanings with recursive structure, such as knows( john, thinks( mary, 

loves( gavin, sue ) ) ).  In this case, the emergence of a language with recursive struc-

ture may not be all the surprising, since any direct lexical mapping between names for 

predicates or the objects acted on by predicates in the semantic representation will 

necessarily have recursive structure. 

 In the case of Batali’s (2002) semantic representation, though, there is no ex-

plicit embedding of formulas: any recursive relational embeddings happen only im-

plicitly.  For example, the meaning {(snake 1) (goose 2) (sang 2) (noticed 2 1) (bit 1 3) 

(moose 3) (danced 3)} contains a recursive relation, in that the snake is both the thing 

                                                 
1It's not clear that making the same comparison with the connectionist iterated learn-

ing models discussed above would make sense, because the languages in these models 

aren't recursive.  It is possible, though, that such a model might be implemented in the 

future that uses recurrent networks in a different way than in the models discussed 

above. 
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that was noticed by the goose, as well as the thing that bit the moose.  A string that 

expresses this meaning may or may not be recursively structured, and since meanings 

are treated as unordered formula sets, there is not way for the “order” of the formulas 

in the meaning to influence the structure of the resulting string. 

 

3.5  Exemplar-based Learning Model 

Batali’s (2002) model is also unique in that it uses an exemplar-based learning model, 

instead of a neural-network based connectionist model, or a symbolic rule-induction 

model (such as the ones described in Kirby and Hurford 2002).  This is important both 

because it allows us to test the differences that exemplar-based learning models make, 

as opposed to the predictions made by rule-induction models, and also because it 

might provide a more realistic representation of language learning than other sym-

bolic simulation approaches. 

 Exemplar-based models of learning have been used since the late 1970s (Me-

din and Shaffer 1978), originally to explain how contextual information was used in 

the process of classification, and later as support for a functionalist framework 

(MacWhinney and Bates 1987).  Also, Barsalou (1989) showed that category repre-

sentation through abstraction could be explained through the use of exemplar memory.  

Aha, Kibler and Albert (1991) discussed various algorithms for implementing in-

stance-based learning, Hammond (1990) developed a framework for using exemplar-

based learning for planning tasks, and Bod (1998) makes an argument for exemplar-

based language learning over explicit grammar induction. 

 More recently, Alison Wray (2005) proposed that exemplar-based learning 

models in which language users' intuitions are very strongly tied to their experienced 

input may be a better match for mental reality than models that explicitly search for 

systematicity in the input, such as the symbolic rule-induction models discussed 

above.  She discusses compelling evidence in real-life language use that seems to 

match predictions that would be made by an exemplar-based model of language learn-

ing, especially when it comes to preferred interpretations of utterances as well as pre-

ferred utterances for expressing meanings that have been previously encountered. 

 Wray (2002, 2005) describes a mechanism of needs only analysis in which 

input is only broken down by an individual as much as is necessary to create or ex-

tract meaning. 
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That is, there is no gratuitous analysis of form beyond the point where form-meaning 

mapping is sufficient for the present comprehension event, or for the construction of 

the presently required output.  Over a period of time, an accumulation of event-

specific comprehension and production requirements will lead to the identification of 

many small, recombinable items, plus rules for their recombination.  However, large 

units that never require such reduction will remain intact, and this will result in a 

mixed inventory of small and large items, as determined by the patterns in the input 

(Wray 2005, page 154). 

 

Supporting evidence for needs only analysis given by Wray (2005) are listed below: 

• The existence of preferred interpretations for complex utterances over possible 

logical and grammatical interpretations (i.e. "don't count your chickens" and 

"the thing is"). 

• The existence of a preferred choice of interpretation between two logical and 

grammatical interpretations (i.e. native English speakers would not interpret 

"tear along the dotted line" as an instruction to run down a dotted divider line 

in the middle of a road, without substantial contextual clarification). 

• The existence of preferred choices of expression, due to the relative ease of re-

trieving the preferred unit directly, rather than constructing a new one (i.e. na-

tive English speakers would not instruct someone to separate a piece of paper 

along a perforation by saying "rip along the marked pathway"). 

• The existence of unanalysed multi-word idioms (such as "by and large") that 

are never changed at the single-word level to create novel meanings (for ex-

ample, there is no "by but large" or "by and small"). 

• The existence of partially analysed multi-word idioms (such as "from now on", 

"from then on", "from Tuesday on" and "from that moment on") in which 

some part of the phrase may be replaced to create novel meanings, but other 

parts of the phrase remain idiomatically fixed (for example, there is no "till 

now on" or "from now off"). 

• Findings by Bergen (2001) that native Esperanto-speaking children introduced 

irregularities into what was previously a perfectly regular system, which are in 

line with a needs only analysis model of learning, but not by a model in which 

systematic input automatically leads to generalisation. 
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 The process described by Wray closely matches the process of learning under-

gone by the agents in Batali’s model.  Whereas in symbolic rule-induction models (i.e. 

Kirby 2002b) matches each learning experience against the agent’s entire internalised 

grammar in order to generalise rules, and then throws away the old rules that are su-

perseded by the new ones, Batali’s model uses the most preferred (lowest cost) exem-

plars that can be used to express a given meaning or interpret a given string.  This 

process may lead to the creation of new exemplars, but only the new exemplars that 

are created and the exemplars used to create them are affected by the process, there is 

no exhaustive search of the agent’s grammar and no induction of “rules” that aren’t 

tied to specific learning experience.  Through this process, token exemplars are cre-

ated, and a set of exemplars controlling how those tokens are to be recombined to cre-

ate more complex meanings eventually becomes preferred (much like Wray’s “re-

combinable items”).  However, it is completely possible for large unanalysed exem-

plars to persist in an agent’s exemplar set, if it can often be reliably used for expres-

sion, interpretation and learning.  The persistence of such exemplars would be due to 

patterns in the agent’s input, an outcome that is also described by Wray. 

 

4  Results 
In this section I describe the implementation and results of the experiments mentioned 

in the previous section, as well as some interesting results that came out during the 

course of conducting them. 

 

4.1  Implementation Differences 

One difference between my implementation2 and the model described by Batali is that 

in my implementation agents are never prompted by the environment to discuss mean-

ings involving reflexive predicates, such as {(cow 1) (bit 1 1)}.  Though my imple-

mentation handles this correctly in some instances, there can be cases in which it 

wouldn’t be handled correctly, due to differences in the way I determine if one for-

mula is equivalent to another vs. if one formula set contains another, in order to avoid 

                                                 
2  The source code for the implementation is available at 

http://www.jceddy.com/research/language_evolution/ along with discussions of con-

tinuing work. 
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incorrect behaviour, I decided to remove reflexive predicates from the simulations 

completely. 

 Also, in most of the simulation runs discussed in this section, I used smaller 

potential meaning spaces than those used by Batali in the simulation runs he discusses, 

due to constraints on time and computing resources.  The size of the potential mean-

ing spaces was reduced in three ways: 1) Only two participants were allowed in any 

meaning that agents were prompted to express (Batali allowed up to three, personal 

communication); 2) In addition to constraint (1), the number of formulas allowed in a 

meaning that agents may be prompted to express was limited to five (Batali allowed 

up to seven, as described in Batali 2002, page 122); 3) meanings were drawn from a 

pool of 17 property predicates and 10 relation predicates for all simulation runs 

(Batali’s were drawn from a pool of 22 property predicates and 10 relation predicates, 

as described in Batali 2002, page 122).  This doesn’t seem to affect the qualitative re-

sults, but due to some results that seemed inconsistent to Batali’s discussed results, 

one simulation run has restriction 2 removed (I also ran the simulation with both re-

strictions 1 and 2 removed, but it has not finished running in time for submission of 

this dissertation, any significant differences in results will be discussed in future 

work).  Differences in results due to differences in these restrictions will be discussed. 

 

4.2  Basic Simulation Results 

The basic simulation run, that others will be compared to, was run with the constraints 

described above.  A discussion of the results of that run follows, as well as a descrip-

tion of the graphical representation of the data that will be used in the discussion of 

other runs. 

 The two graphs in figure 8 show the communicative accuracy of the agents 

during the simulation, as well of the average amount of different kinds of exemplars 

in the agents' exemplar sets.  The red line in the first graph is the measure of commu-

nicative accuracy used by Batali, and based on the "precision" and "recall" values 

used by Kent et al. (1955).  Communicative accuracy for a communicative episode is 

given by the formula 0.5*(c/s + c/r) where s is the number of elements in the sender's 

formula set, r is the number of elements in the receiver's formula set, and c is the 

number of formulae common to both sets.  The green line in the first graph is a meas-

ure of communicative accuracy that is more like the measure used in most of the iter-

ated learning models discussed in previous sections, where total communicative accu-
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racy for a given utterance results in a value of 1, and anything less than total accuracy 

results in a value of 0 (Batali does not discuss a similar measurement).  This alternate 

measure is given in order to illustrate the difference between merely understanding 

the words of an utterances and understanding the differences in meanings implied by 

how the words are put together.  The red line in the second graph shows the average 

number of exemplars in the agents' exemplar sets, and the green line shows the aver-

age number of token exemplars in the agents' exemplar sets. 
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Figure 8: The communicative accuracy of the agents in the simulation rises sharply 

for the first 8000 rounds or so, then levels off, hovering around 0.7 for the remainder 

of the simulation.  At the very beginning of the simulation, almost all of the exemplars 

in the agents' exemplar sets are tokens, until the count reaches just above 100, then the 

number of complex exemplars rises sharply while the number of token exemplars re-

mains constant for a time.  At about round 8000, the number of token exemplars drops 

as the agents negotiate an agreed-upon set of singleton tokens, and the number of 

complex exemplars drops and levels off.  There are some complex exemplars that are 

agreed upon by the agents, which have low costs and remain in the simulation, other 

complex exemplars are created as needed and eventually pruned. 

 

 The two graphs in figure 9 show the average costs of exemplars in the agents' 

exemplar sets, as well as an illustration of how some types of communicative agree-

ment is reached by the population.  The red line on the first graph shows the average 

cost of complex exemplars in the agents' exemplar sets, the green line shows the aver-

age cost of token exemplars in the agents' exemplar sets.  In the second graph, the red 

line shows the average singleton token ratio of the population.  A token exemplar is 

any exemplar that maps a string directly to a meaning, with no structure linking any 

part of the string to any part of the meaning, whereas a singleton token has the added 

property that the exemplar's meaning can not be broken down any further.  As the sin-
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gleton token ratio goes up, it means that complex meanings are more often being ex-

pressed by complex exemplars that contain structure in the mapping from string to 

meaning.  The green line in the second graph shows the rate at which agents either 

invent new token phrases for communication, or put two tokens together in a specified 

order to create a new complex exemplar.  A low value for this measurement means 

that complex phrases are more often being expressed by combining existing exem-

plars through a process of sub-phrase replacement. 
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Figure 9: The cost of complex exemplars remains near 1 during the entire 

simulation, the cost of token exemplars declines slowly near the beginning, 

then drops sharply once the agents have agreed upon a shared set of singleton 

tokens.  The average cost of token exemplars levels off just above 0.4, when 

the cost of agreed-upon singleton tokens nears 0.  The remaining cost is due to 

non-singleton tokens that are continually being created and deleted by the sys-

tem.  The ratio of singleton tokens to non-singleton tokens rises for the first 

10,000 rounds or so, and then levels off.  At the same time, the rate at which 

new structures are created by agents during communicative rounds drops.  

Once the population has an agreed-upon set of singleton tokens, and each agent 

has a set of lower-cost complex exemplars to use for communication, the 

agents seldom need to invent new random string-meaning mappings, or arbi-

trarily decide on orderings for novel phrase structures. 

 

 The graph in figure 10 illustrates a measure of compositionality in the agents' 

production (this measurement is also one that I have introduced, Batali doesn't attempt 

to measure the compositionality of his agents' language use in a quantifiable way).  

The compositionality measure is determined by dividing the number of formulas at 

the simplest level of a phrase structure by the number of meanings in its formula set.  
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For example, the compositionality measure of a singleton token phrase will always be 

1, since there will always be a single formula at the simplest level of the phrase struc-

ture and one meaning in the formula set, but the compositionality measure of a phrase 

with five formulas in its formula set could range from 0.2 (for a 5-formula token 

phrase) to 1.0 (where at the simplest level every formula in the phrase's formula set is 

mapped to a string). 
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Figure 10: The compositionality measure rises quickly to 1, meaning that the agents 

are building up complex phrases from simpler components, instead of using holistic 

string-meaning mappings. 

 

 In a test of the agents' communicative ability at the end of this simulation, it 

was found that most of the time agents were not able to unambiguously communicate 

different meanings in which the only difference between the meanings was a different 

distribution of arguments.  An example is that a speaking agent might express both 

the meanings {(cat 1) (chased 1 2) (rat 2)} and {(cat 1) (chased 2 1) (rat 2)} using the 

same string, and the receiving agent might interpret that string as {(cat 1) (chased 1 2) 

(rat 2)} or even {(cat 1) (rat 1) (chased 1 2)}, resulting in ambiguity in both produc-

tion and reception.  This looks qualitatively similar to a "protolanguage" described by 

Bickerton (1990).  I discuss this phenomenon in more detail in the Meaning Fre-

quency Discussion section, along with some ideas about what conditions are needed 

in the model to allow this kind of ambiguity to be overcome. 

 

4.3  Population Turnover 

In the simulation runs with population turnover (an extension to Batali's model), ex-

emplar pruning was disabled.  The eventual deletion of an agent takes the place of the 

exemplar pruning that occurs in Batali's (2002) original model; unused exemplars are 

deleted along with the agent in whose exemplar set they are stored.  Due to limitations 
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on computer memory, the pool of meanings that built up the complex meanings 

agents communicated about was limited.  Meanings were built up from a pool of five 

property predicates and three relational predicates.  In the simulation described below, 

once every 500 rounds an agent was selected at random, and its memory was blanked, 

effectively removing an agent from the population and adding a new "child" agent 

with no linguistic knowledge.  Figure 11 below illustrates the behaviour of the genera-

tional model. 
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Figure 11: A simulation run with population turnover.  Communicative accuracy ap-

proaches 1, the average exemplar count rises logarithmically, eventually leveling off, 

with discontinuities every 500 rounds when an agent is replaced.  Average exemplar 

cost remains high, with the average complex exemplar cost remaining above 1.  Sin-

gleton token ratio remains low.  New structure rate continually decreases, with larger 

discontinuities every 500 rounds.  The compositionality measure remains low, even 

though the system does exhibit compositional behaviour (as discussed in the main 

text). 
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 As seen from the graphs above, the communicative accuracy approaches 1 

quickly in this simulation.  This cannot be directly compared to the communicative 

accuracy behaviour of the basic simulation results, because such a smaller meaning 

space was used, but it is comparable to the behaviour of other runs with smaller mean-

ing spaces described below.  The two most interesting phenomena that are apparent 

from the graphs in figure 11 are the complex exemplar cost measures and the new 

structure measures.  At the beginning of the simulation, many holistic string-meaning 

mappings are created, but also some singleton token exemplars are created, which are 

then used in construction of some of the new phrases used to express complex mean-

ings.  As agents communicate, often these new complex exemplars are inconsistent 

with existing holistic expressions, and are discouraged.  As the simulation progresses, 

though, negotiation is taking place, and some agreement is being reached on expres-

sions for different meanings.  As this agreement becomes more and more entrenched, 

new agents are more likely to observe the agreed-upon phrases during learning, mean-

ing that they need to create new structure less often, hence the steady decline of the 

new structure rate measurement. 

 Taking a detailed look at how meanings were expressed in the system was in-

teresting.  Even though the compositionality measure was low (agents were using 

many phrases without explicit internal structure when expressing meanings or inter-

preting strings), a more objective observer that didn't have access to the agents' inter-

nal state might be persuaded otherwise.  For example, at the end of the simulation run, 

one agent in the population expressed the meaning {(duck 1) (slapped 1 2) (goose 2)} 

using the string "anefezif".  The phrase that was used to express the meaning con-

tained internal structure that mapped the string "an" to the meaning {(goose 1)}, the 

string "ef" to the meaning {(duck 1)} and the string "ezif" to the meaning {(slapped 2 

1)} which were put together to form the required meaning.  The receiving agent cor-

rectly interpreted the string "anefezif" to mean {(duck 1) (goose 2) (slapped 1 2)}, but 

the phrase it used to interpret the string was a token exemplar that mapped the string 

directly to the meaning with no explicit internal structure (this is similar to structure 

maintained in rote-learned meaning-string pairs in Hurford, 2000).  This phenomenon 

arises because once older agents have negotiated consistent compositional phrases for 

expressing meanings, they will use their complex, compositional exemplars to teach 

the meaning-string mappings to the younger agents.  If the younger agents do not yet 



- 36 - 

possess exemplars that can be combined to match the learning observations, they will 

create token exemplars containing what is internally stored as a holistic mapping from 

string to meaning, but might be viewed by an objective observer as containing com-

positional structure.  There is a chance of similar phrases appearing in the original 

model which lacks population turnover, but it is much less likely, given that in the 

original model the survival rate of exemplars depends partly on agents being able to 

recombine them with others, allowing them to be used more often to express different 

meanings: exemplars with complex structure can be used to express meanings that 

correspond exactly to one they express, meanings that contain the one they express, as 

well as meanings that share something (but not everything) in common with the one 

they express; token exemplars cannot be used to do the latter, which very much re-

duces their survival rate in the original model. 

 

4.4  Size of Bottleneck 

(Note that the simulations in this section do not use population turnover.)  First, we 

will look at what happened when exemplars that had not been used for the past 

ninety-five communicative episodes were pruned (a number of simulations were run 

with an exemplar "time to live" of about this value, with similar results, it seems that 

there is a cutoff around a time to live of 100 rounds; simulations where exemplars 

were pruned after remaining unused for 100 rounds behaved in much the same way as 

the basic simulation).  Unsurprisingly, we see that the agents fail to negotiate a system 

of communication that is even remotely reliable (figure 12).  The communicative ac-

curacy of the agents remains below 30% for the entire course of the simulation, the 

agents fail to reach agreement on a small set of shared singleton tokens, with the to-

ken count hovering around fifty for most of the simulation, of which about 20% are 

singleton tokens, exemplar cost remains high (above 0.8 for both complex and token 

exemplars) for the duration of the simulation, new token exemplars are constantly be-

ing created and randomly re-combined as needed, and the agents' utterances remain 

for the most part non-compositional. 

 The reason for this is that no exemplar is ever reinforced to the point that it 

will be consistently used for constructing phrases before it is pruned.  During the 

course of the simulation some singleton tokens were reinforced often enough for their 

costs to drop below 0.5, but they were consistently lost from the simulation before 

becoming much cheaper. 
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Figure 12: Graphical representation of the behaviour of a simulation in which exem-

plars were pruned after not having been used in the agent's past ninety-five communi-

cative episodes.  Communicative accuracy remains below 30% for the duration of the 

simulation, exemplar sets average a little more than fifty token exemplars, about 20% 

of which are singletons.  Exemplar costs stay relatively high for the entire simulation, 

and the compositionality measure remains low.  The high new structure rate shows 

that agents are continually creating new token exemplars and putting them together 

randomly as needed. 

 

 Figures 13 and 14, below, depict a typical communicative episode between 

two of the agents in the simulation. 
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Figure 13: The sending agent is prompted by the environment to communicate the 

meaning {(duck 1) (bit 1 2) (fox 2)} to another agent, and puts three exemplars to-

gether to do it using the string "nugexazuzahocoyi", showing the partial composition-

ality of the system. 

 

(duck 1) (bit 1 2) (fox 2)Meaning to Express: (duck 2) (fox 1) (bit 2 1) 

(duck 1)
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1:2

2:1

nugexazu zahoco yi 
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Figure 14: The receiving agent gets the string "nugexazuzahocoyi" to interpret, and 

uses three existing exemplars to do it, interpreting the meaning as {(duck 2) (fox 1) 

(sang 2) (fainted 1) (shoved 2 1) (duck 1) (lizard 2)}, demonstrating again partial 

compositionality along with unanalysed holistic expressions for some complex mean-

ings in the system. 

 

 This communicative episode demonstrates the failure of the agents to negoti-

ate a shared compositional system, and also illustrates how the learning biases of the 

agents drive the system towards a partial compositionality combined with large holis-

tic chunks.  The sending agent's exemplar that has the meaning {(duck 2) (slapped 1 

2)} has been used consistently in many communicative episodes by the agent, and its 

resulting low cost allows it to be used to express meanings and interpret strings, but 

the other exemplars used have not.  The receiver agent also has one low-cost exem-

plar (the one with meaning {(duck 2) (insulted 2 1)}) which has been used consistently 

by the agent in many communicative episodes, and can be used to build new phrases 

(duck 2) (fox 1) (sang 2) (fainted 1) (shoved 2 1) (duck 1) (lizard 2) 

(duck 2) 

(fox 1) (sang 2) (fainted 1) (shoved 2 1) (duck 1) (lizard 2) 

(fox 1) (sang 2) (fainted 1) (shoved 2 1) (duck 1) (lizard 2) 
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2.08848 

(duck 2) (insulted 2 1) 

(duck 2) (insulted 2 1) 

nugexazu enox 

0.166772 (fox 1) (rat 2) (bit 2 1) 
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to express meanings and interpret strings, but must resort to combining it with higher-

cost more holistic exemplars in order to interpret the string. 

 In this example, the low-cost exemplars being used by the agents have been 

able to be used consistently in many recent rounds, but that is due mostly to random 

variation in the meanings that the agents are being prompted to communicate about.  

Low-cost exemplars such as these occur often during the course of the simulation, but 

are usually eventually lost due to under-representation of the meanings covered by the 

exemplars in the randomly-generated meanings discussed by the agents.  They are 

then replaced by newly-created phrases (often large holistic ones like the sender's ex-

emplar with the string "yi" in the example above).  This cycle of exemplar loss and re-

creation results in a very unstable system of communication with newly created holis-

tic chunks being constantly created. 

 Now we look at the case where exemplars are never pruned.  The absence of 

exemplar pruning does create a problem when it comes to computer memory limita-

tions, so the only way I was able to successfully run simulations in which pruning was 

completely disabled was to reduce the space of meanings that it was possible for 

agents to talk about.  In the simulation described below, meanings were chosen from a 

pool consisting of five property predicates, and three relational predicates.  Figure 15 

shows a graphical representation of the behaviour of the model when exemplar prun-

ing is removed completely. 
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Figure 15: Communicative accuracy (by both measures) rises quickly to 1, as the 

agents negotiate agreed-upon ways of expressing most of the possible meanings in the 

simulation.  The average exemplar count grows logarithmically, as agents build col-

lections of consistent exemplars that cover most of the meaning space.  The average 

token exemplar count rises more slowly than the average total exemplar count, imply-

ing that there is some structure in the system.  The average exemplar cost decreases 

slowly.  Since singleton tokens are not being used often for the expression of complex 

meanings, their cost does not plummet quickly as it does in the basic simulation.  The 

new structure rate quickly falls toward zero, since once an agent has an exemplar cov-

ering a meaning, it is never lost.  The average singleton token ratio rises slowly, as 

there is much less pressure to create complex exemplars to cover complex meanings.  

The compositionality measure hovers around 0.45; compositionality has not emerged 

in the system. 

 

 In the simulation runs where exemplar pruning was disabled completely, the 

languages that arose remained mostly holistic, though some compositionality did arise.  

For instance, in the simulation run described above, the population had agreed upon a 
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mapping between the meaning {(pig 1) (insulted 1 2) (goose 2)} and the string "koqo".  

To express the meaning {(pig 1) (insulted 2 1) (goose 2)}, the string "om" was used, 

and agents had unanalysed mappings in their exemplar sets for both, with relatively 

low associated costs (mostly less than 0.5).  Most three-predicate meanings followed 

this pattern, but the meaning {(goose 1) (duck 2) (insulted 1 2)} was expressed using 

the string "teyoza", which was built up from an exemplar mapping the meaning 

{(goose 2)} to the string "teyo" and the meaning {(duck 1) (tickled 2 1)} to the string 

"za".  Some agents in the simulation had an exemplar that reflects this partial structure, 

but most of them had a token exemplar mapping the three-predicate meaning directly 

to the string "teyoza", illustrating the fact that agents did not break it down if they did-

n't need to. 

 The farther we get into the simulation, the more chance there is for structure to 

emerge.  If an agent has a set of exemplars that can be put together to cover a meaning, 

but no exemplar that covers it alone, it is more likely to combine the existing exem-

plars to create a new one than to invent a new token with a random string.  Since ex-

emplars are never deleted, complex meanings that are encountered early on in the 

simulation are likely to be represented by unanalysed token exemplars throughout the 

entire simulation, whereas complex meanings that show up later in the simulation are 

more likely to be expressed using more structured phrases. 

 

4.5  Meaning Complexity Effects 

Figure 16 below shows the results of a simulation run in which restriction (2) was re-

moved: meanings that agents were prompted to communicate with each other could 

have up to seven formulas. 
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Figure 16: Restriction (2) is relaxed: communicative accuracy gets relatively high, the 

average exemplar count shows the effects of the meaning bottleneck, and the eventual 

negotiation of a shared set of singleton token exemplars, the new structure rate falls 

dramatically in the rounds leading up to round 10,000, and the compositionality 

measure get close to and stays near or at 1 at about the 10,000th round. 

 

 As we can see, the qualitative behaviour of the system with a greater range of 

meaning configurations is similar to that of the basic simulation.  When we look in 

more detail at some of the communications between agents in the simulation illus-

trated in figures 17 through 20, we see more similar behaviour.  Figures 17 and 18 

illustrate two communicative episodes in which the only difference in the meanings to 

be communicated is that the relational formula has its arguments switched, figures 19 

and 20 show a communicative episode where accurate communication was not 

achieved. 
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Figure 17: The sender builds a phrase to express the meaning that is has been 

prompted to express, and passes it to the receiver, who interprets it correctly. 

 

 
Figure 18: The sender agent is prompted to express a meaning that is identical to the 

one in figure 12, except that the arguments in the relational formula are switched.  The 

agents accurately communicate this meaning as well, using a different word for the re-

lational formula than in the previous communicative episode. 

 

 In this case, the sending agent's preferred expression for the "slapped" rela-

tional formula on its own is given by a token exemplar that maps the meaning 

{(slapped 3 2)} to the string "urar", but there are a few low-cost complex exemplars in 

which a sub-phrase maps the meaning {(slapped 2 1)} to the string "ux".  The receiver 
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agent's exemplar set shows the same phenomenon, except that in its case, the strings 

"urar" and "ux" are both mapped to the meaning {(slapped 2 1)}.  These exemplars 

can co-exist in the model and achieve low costs because the exemplars that use the 

former formula are consistent with the exemplars that use the latter; the phrases used 

by the sender in figures 19 and 20 are an example of this. 

 
Figure 19: Three exemplars are used to create a phrase that maps the meaning {(cow 

2) (insulted 2 1) (rat 1)} to the string "oninidiyijse". 
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Figure 20: The receiver agent interprets the sting "oninidiyijse" as meaning {(cow 2) 

(rat 2) (insulted 1 2)}, illustrating remaining ambiguity in the system. 

 

 When I first did this simulation run, I thought that there may have been an ef-

fect of the complexity of the meanings the agents are exposed to during learning on 

the complexity of the exemplars that the agent's negotiate non-ambiguous phrases for.  

This is because a more complex meaning with seven predicates allowed is more likely 

to use a larger number of exemplars to express during any given round, meaning that 

a larger number of exemplars remain in the agents' exemplar sets, giving the agents 

more of a chance to negotiate shared non-ambiguous phrases for dealing with the con-

stituent meanings that make up the more complex meanings. 

 The results of the run, on the whole, seem to mean that this isn't strictly the 

case, at least not the way I thought it would be, but the fact that the agents in the more 

complex simulation did negotiate an unambiguous method for dealing phrases using 

the "slapped" relational predicate, and that this negotiation, in part, was due to the us-

age of three variables instead of two, I wondered if allowing more participants in the 

meanings discussed would have more of an effect on successful negotiation of an un-

ambiguous grammar than meaning complexity.  To test this, I ran two much smaller 

simulations: one in which a small subset of meanings consisting only of two partici-

pants and a single relational predicate using the variables 1 and 2 were allowed, and 

then one in which the variables 1, 2 and 3 were randomly chosen for the different ar-

gument positions. 

 The results of the smaller simulations did not support the hypothesis.  The 

only effect of introducing more variables into the simulation was to lower the com-

municative accuracy that was eventually achieved by the agents.  Due to the Re-

placement Condition, the addition of more variables effectively increased the number 

of exemplars needed to effectively cover what amounted to precisely the same set of 

meanings.  The precise conditions that lead to the behaviour illustrated in figures 19 

and 20, as opposed to that in figures 17 and 18, have not yet been completely under-

stood, and will have to be more closely examined in future work. 

 

4.6  Findings 

Four main findings come out of the results described in this section: 
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• Population Turnover – Population turnover can replace exemplar discourage-

ment/pruning in Batali's model.  Under population turnover systems of 

communication emerge that have compositional behaviour, but rote-learning is 

more important and apparent; agents don't break down meanings to create 

structured phrases because there is no need to. 

• Small Bottleneck – If the production bottleneck on the agents is below some 

threshold, exemplars are continually lost before they can be used to negotiate a 

shared set of consistent meaning-string mappings in the population, resulting 

in low communicative accuracy for the entire course of the simulation. 

• Large Bottleneck – If the production bottleneck on the agents is removed 

completely, the emerging system of communication remains largely holistic, 

since holistic meaning-string mappings invented and used for learning early on 

in the simulation are never lost. 

• Meaning Complexity – Allowing more complexity in meanings has an effect 

on the behaviour of the simulation, especially in that it seems to allow more 

flexibility in the strategies agents end up using to disambiguate meaning-string 

mappings.  Exactly what differing conditions lead to this, though, are not 

completely clear. 

 

5  Conclusions and Discussion 
Batali's (2002) model is different from the symbolic model explored by Kirby (2002b) 

in many ways, and though there are differences in the behaviour of the two models 

(i.e. the agents in Kirby's model never forget generalisations they have made, whereas 

the agents in Batali's model the persistence of generalisations in any agent's exemplar 

set is dependent on meanings that utilise the generalisation being communicated with 

some frequency), there are also some similarities.  One similarity is the loss of holistic 

mappings from strings to complex meanings in mature agents.  In Kirby's model, 

those holistic mappings are lost due to being thrown away outright when a generalisa-

tion that covers it is made, in Batali's model, they are "forgotten" since they are 

unlikely to be usable for successful communication every two-hundred rounds. 

 In the following sub-sections, I will discuss the results pertaining to specific 

questions that my research attempted to address, as well as other issues I discovered 

during the course of the research. 
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5.1  Population Turnover 

The introduction of population turnover into the model, along with the removal of ex-

emplar pruning, shows that exemplar pruning does the job in this model that popula-

tion turnover does in other iterated learning models.  The direct pruning of exemplars, 

as described by Batali (2002), serves the same purpose as population turnover, caus-

ing inconsistent exemplars to be removed from the system, and creating a pressure 

toward compositionality that causes the language to change over time.  It is interesting 

in this model, though, that population turnover allows the agents to converge on a sys-

tem of communication that is compositional to an objective observer, but that the 

agents don't necessarily store the structure explicitly in their internal representations.  

In linguistic terms, this matches the needs only analysis model in which parts of lan-

guage may remain idiomatic if the language user has no need to analyse it further. 

 

5.2  Size of Bottleneck 

The discouragement and pruning of exemplars creates a bottleneck effect similar to 

the one described by Kirby (2002b).  If exemplars are pruned too quickly, generalisa-

tions are not often made and the communication systems used by the agents remain 

unstable and for the most part non-compositional.  If exemplars are seldom pruned, 

holistic expressions will by chance be reinforced much more often and will remain in 

the system.  Although agents in those systems reach a high level of communicative 

accuracy by the end of the simulation run, the systems of communication that emerge 

are much less compositional than those that emerge under ideal conditions of discour-

agement and pruning. 

 Exemplar encouragement and discouragement create a bias toward composi-

tionality in the model, as discussed by K. Smith (2003).  Exemplar discouragement 

amounts to a pressure against homonymy, penalising exemplars that can be used to 

cheaply interpret strings in incompatible ways.  Exemplar encouragement rewards 

consistent exemplars, and exemplars that can be used consistently in learning, expres-

sion and interpretation, and lowers their cost, which in turn makes them more likely to 

be used in compositional utterances in future communicative episodes.  This is only 

part of the story, though.  Encouragement and discouragement, along with the fre-

quency with which different meanings arise, determine which exemplars get pruned, 

but the pruning process itself creates a bottleneck, by forcing out exemplars that holis-
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tically map strings to complex meanings, if those meanings do not arise often in 

communication.  If these non-compositional exemplars are not pruned out, they can 

often be the cheapest way of expressing the meaning they cover, and if they are used 

often enough in the simulation, will become the preferred phrases to use.  This is clear 

in the cost scheme: if an exemplar that covers a five-formula meaning achieves a cost 

lower than 0.2, than the agent will never choose to combine more than two exemplars 

to express that meaning, because the cost will necessarily be at least 0.2. 

 

5.3  Meaning Complexity Effects 

The types of meanings discussed by the agents in this model, their frequency and dis-

tribution, has quite a large effect on the behaviours of the communication systems that 

eventually emerge.  It seems plausible that the use of more complex meanings in a 

population would lead to the negotiation of strategies for communicating those mean-

ings unambiguously, but the results of my simulations support the conclusion that 

having more different ways of expressing things leads to more accurate communica-

tion.  That is, the introduction of synonymy into the model actually helps it achieve 

higher communication accuracy, and a more compositional system.  This is at odds 

with the results of work done by K. Smith (2002), and is something that will need to 

be resolved in the future. 

 

5.4  Recursion 

Structural recursion is achieved in the model through the computationally recursive 

process of combining existing exemplars to create new ones to cover novel meanings 

and strings (it should be noted that the structural recursion that arises in Batali's 2002 

model is strictly in reference to recursive relations like "the dog chased the cat the bit 

the monkey" which is different than the structural recursion that arises in Kirby's 

2002b model, which is in reference to recursively-embedded predicates such as "John 

knows that Susie loves Mike").  Chomsky (1980) describes the structurally recursive 

nature of many natural language constructs, describing their construction in terms of 

recursive rules in which phrases of one type can contain constituents of the same type.  

In this model a similar concept of "constituent type" does not exist, but operations 

used in exemplar construction do result in a kind of type separation due to the argu-

ments used by a given phrase.  Since phrases can only be used to replace sub-phrases 

in a tree if the replacing phrase covers the same variables as the sub-phrase being re-



- 50 - 

placed, the model does seem to distinguish between "1-phrases", "2-phrases", and 

"1+2-phrases", and a phrase of any given type might be made up of sub-phrases of 

any other given type, which can be replaced without changing the type of the phrase 

as a whole.  Though this is much looser than Chomsky's rules of construction, it can 

also result in systems that have many of the same structural properties. 

 Hauser, Chomsky and Fitch (2002, Hauser 2001) posit computational recur-

sion as a uniquely human language-specific adaptation, perhaps the only component 

of what they term the faculty of language in the narrow sense, or FLN.  Since this 

model only deals with a language-specific domain, it has nothing to say about whether 

or not computational recursion is a language-specific adaptation, but the composi-

tional behaviour of the model is wholly dependent on the computationally recursive 

process of replacing sub-phrases with other phrases.  If this model and others like it 

are psychologically realistic depictions of how humans make generalisations through 

learning, then some kind of computational recursion is necessarily available in the 

human brain. 

 

6  Future Work 
The research done for this dissertation has opened the door toward exciting future re-

search.  I would like to continue improving my implementation of the model in order 

to be able to loosen some of the restrictions I made in the current implementation due 

to issues of time and computational resources.  Some aspects of the model that I 

would like to look at in more detail in future work are geographical distribution, hori-

zontal vs. vertical transmission, meaning frequency effects, population effects, other 

bottleneck effects, an introduction of an overt anti-synonymy bias, what conditions 

result in ambiguous versus unambiguous exemplars for expression and interpretation, 

and a possible extension to the model to allow negotiation of syntactic/semantic cate-

gories along with lexical mappings.  There are many other ideas I'd like to explore in 

using this model's framework, too many to list here, but these are some of the most 

interesting. 

 

6.1  Geographical Distribution 

In the original model, agents are chosen at random to communicate with each other as 

speakers and hearers, or teachers and learners.  I would like to expand the model to 

look at the effects of geographical distribution, where the probability of two agents 
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being selected for a communication round depends on where they reside in some kind 

of geographical space. 

 

6.2  Horizontal vs. Vertical Transmission 

Batali's model uses strictly horizontal transmission between agents in a fixed popula-

tion.  I would like to expand the model to study the effects of changing to a vertical 

transmission system on the model, and also to allow "tuning" between different levels 

of vertical and horizontal transmission. 

 

6.3  Meaning Frequency Effects 

The effects of the frequency of complex meanings on the outcomes of simulations us-

ing this model are discussed above, except for differences between the runs described 

in this dissertation and a run whose meaning types and frequencies match more 

closely to those describe by Batali, which I would like discuss in future work.  I 

would also like to look into the effects of making specific meanings more or less fre-

quent in the model than others, especially when it comes to issues of regularity and 

irregularity in the emergent communication systems.  Hopefully, the results of such a 

study could be compared with those found by Kirby (2001). 

 

6.4  Population Effects 

It was observed, though not yet explored in detail, that this model might demonstrate 

a population memory effect.  That is, having more agents around might qualitatively 

affect the behaviour of the simulations by allowing more exemplars to be stored in the 

environment of the simulation through distribution of exemplars between the agents.  

I would like to look at this in more detail and see if such a population effect can be 

found, and if so, conditions are necessary for it to arise. 

 

6.5  Other Bottleneck Effects 

In this dissertation I look at the effect of discouraging and pruning of exemplars as a 

bottleneck effect on learning and production in the model.  One thing that I would like 

to explore in the future is how the model would behave if exemplar encouragement 

and discouragement were not there to help determine which exemplars are pruned 

during any given round.  That is, give exemplars a constant cost, with associated costs 

for creating and re-combining exemplars during learning, expression and interpreta-
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tion, and prune exemplars based solely on their usage in the system.  Though this 

would remove a direct bias against homonymy from the system, and reduce the pres-

sure toward compositionality, it still seems that the costs associated with invention 

and the different kinds of recombination (it would still be cheaper by 0.5, for example, 

to combine two exemplars with costs of 1.0 to express a two-predicate meaning than 

to create a new exemplar with two formulas and a two-character string, and two-

character strings are the shortest that can be randomly "invented" in this model) could 

still drive the agents toward a compositional system of communication. 

 

6.6  Anti-Synonymy Bias 

K. Smith (2002) describes the need for biases against homonymy and also against 

synonymy in agents of a population in order for it to be viable as a population of con-

structors.  The model described in this dissertation has an overt bias against ho-

monymy which is implemented by the discouragement of exemplars who would in-

terpret a string used in a learning round differently than as the meaning that it is pro-

vided in the learning input, but it has no overt bias against synonymy; in fact, the in-

troduction of synonymy into the system seems to aid in the construction of a success-

ful system of communication.  I would like to add a component to the learning algo-

rithm that similarly penalises exemplars that would express the meaning used in a 

learning round using a different string than the one provided in the learning input, and 

see if this allows the agents to negotiate a robust system without resorting to synon-

ymy, and would also like to work at resolving my findings with those of K. Smith. 

 

6.7  Conditions for Different Behaviour 

As discussed in the results section, the difference between conditions under which 

agents negotiate exemplars that can be used to unambiguously express and interpret a 

meaning and conditions under which agents fail to negotiate such a set of exemplars, 

is not yet well understood.  I would like to pinpoint these conditions at some point in 

the future, as that will be a key to understanding why the model behaves as it does. 

 

6.8  Negotiation of Syntactic/Semantic Categories 

I have been thinking of ways to extend the semantic representation of the existing 

model in order to allow more richly defined information to be stored, and to allow 

agents some leeway in negotiating categories and/or semantic types for the different 
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meanings to be expressed, based on how they are used.  It is not well thought-out as 

of yet, but is definitely exciting work for the future. 
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