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Abstract

Theories of language evolution typically attribute its unique structure to pressures act-

ing on the genetic transmission of a language faculty and on the cultural transmission of

language itself. In strongly biological accounts, natural selection acting on the genetic

transmission of the language faculty is seen as the key determinant of linguistic struc-

ture, with culture relegated to a relatively minor role. Strongly cultural accounts place

greater emphasis on the role of learning in shaping language, with little or no biological

adaptation.

Formal modelling of the transmission of language, using mathematical or computational

techniques, allows rigorous study of the impact of these two modes of transmission on

the structure of language. In this thesis, computational models are used to investigate the

evolution of symbolic vocabulary and compositional structure. To what extent can these

aspects of language be explained in terms of purely biological or cultural evolution?

Should we expect to see a fruitful interaction between these two adaptive processes in a

dual transmission model?

As a first step towards addressing these questions, models which focus on the cultural

transmission of language are developed. These models suggest that the conventionalised

symbolic vocabulary and compositional structure of language can emerge through the

adaptation of language itself in response to pressure to be learnable. This pressure arises

during cultural transmission as a result of 1) the inductive bias of learners and 2) the

poverty of the stimulus available to learners. Language-like systems emerge only when

learners acquire their linguistic competence on the basis of sparse input and do so using

learning procedures which are biased in favour of one-to-one mappings between mean-

ings and signals. Children acquire language under precisely such circumstances.

As the second stage of inquiry, dual transmission models are developed to ascertain

whether this cultural evolution of language interacts with the biological evolution of the
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language faculty. In these models an individual’s learning bias is assumed to be geneti-

cally determined. Surprisingly, natural selection during the genetic transmission of this

innate endowment does not reliably result in the development of learning biases which

lead, through cultural processes, to language-like communication – there is no synergis-

tic interaction between biological and cultural evolution. The evolution of language may

therefore best be explained in terms of cultural evolution on a domain-general or exapted

innate substrate.
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CHAPTER 1

Introduction

Right now, waves of electromagnetic radiation in the 10kHz to 100GHz range are blasting

out into space at the speed of light, carrying news of a revolutionary innovation. This

radiation is emitting from Earth and has already reached over 1000 nearby stars. Encoded

in the frequency and amplitude of these waves of radiation is evidence of an epoch-

making new mode of communication which has developed relatively recently on this

planet. This innovation has changed the face of our world and signalled our presence

to the wider universe. The innovation is language, and the electromagnetic signal is

generated by the more recent and comparatively inconsequential inventions called radio

and television.

Only a tiny minority of the 6 billion-strong human population of Earth has more than a

basic level of understanding of radio technology, and fewer still have a good grasp of the

physics of electromagnetic radiation. Yet virtually all of humanity has an unconscious,

profound and subtle knowledge of a language. Knowledge of language is universal.

Humans acquire their knowledge of language apparently effortlessly, in all manner of

circumstances, with only the most severely deprived individuals remaining language-less

into adult life.

Sophisticated communication systems abound on Earth. Most species have a system

of signals which enable them to communicate with other members of their species, or

with members of other species. Bees communicate the distance and direction of pollen

sources to other bees using an elaborate dance (von Frisch 1974). Numerous species

of bird use song for marking out territory and for attracting mates (Hauser 1996). Bot-

tlenose dolphins have personalised “signature whistles”, and can rapidly learn to produce

the signature whistles of other dolphins (Tyack 1986; Janik & Slater 1997). It has been

1



suggested that dolphins may use these whistles for addressing each other, either aggres-

sively or affiliatively (Janik 2000).

Moving to species more closely related to humans, most primate species use systems of

facial expressions and vocalisations to perform social functions such as issuing threats

(see Hauser (1996) for review). Vervet monkeys have a system of alarm calls whereby

different calls are given for different predator species, and vervets respond to these calls

in a manner appropriate for best evading the associated predator (Cheney & Seyfarth

1990). Gibbons produce structured calling bouts, with calls of males in particular ex-

hibiting structured combination of individual notes into “phrases”, with phrases being

repeated during a calling bout (Raemaekers et al.1984). In addition to facial expression,

chimpanzees use systems of gestural communication (Tomasello 1990; Tomasello 1996;

Tomasello et al.1997) for performing various social functions.

These communication systems appear to echo some aspects of language. What, then,

makes language special? How did human language come to exhibit these unique fea-

tures? The aim of this thesis is to answer this “how” question, with the aid of a set of

computational models. This investigation forms the bulk of the thesis, from Chapter 2

onwards. However, before addressing the question of how language came to be as it is, it

is necessary to tackle the first question above — what feature or combination of features

makes language unique? This review, in Section 1.1, serves to highlight the features of

language which then have to be explained later in a theory of language evolution. Section

1.2 outlines two competing theories of how humans come to acquire a language. These

theories, in combination with the potential sources of relevant evidence outlined briefly

in Section 1.3, form the basis of a number of broad theories of language evolution. These

theories are discussed in Section 1.4. Finally, in Section 1.5, I highlight the need for

theories of language evolution to be based on formal models. This forms the motivation

for the remainder of this thesis, which is primarily concerned with insights gained from

formal modelling approaches.

1.1 The uniqueness of language

Two steps are then necessary to clarify the difference between language and other naturally-

occurring communication systems1. Firstly, we must identify the features of language
1For the purposes of this chapter it is sufficient to rely on the rather naive notion of communication as

a process by which individuals transmit information to other individuals. There is a great deal of debate
about the proper definition of communication. Many definitions (e.g. those of Krebs & Dawkins (1984),
Millikan (1984) and Hauser (1996)) appeal to the notion of functionality and design by natural selection.
However, such notions are somewhat controversial with respect to language, as we shall see in Section
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which require explanation. This is done in Section 1.1.1, based on a cross-section of

introductory linguistics textbooks. Secondly, we must identify which of these features

are present in other communication systems, in particular the communication systems

of non-human animals. This analysis is carried out in Section 1.1.2. Based on these

analyses, taxonomies of communication systems with respect to distinctive features can

be developed. A taxonomy developed in Oliphant (2002) is reviewed in Section 1.1.3.

This taxonomy is refined in Section 1.1.4. An explanation of the uniqueness of human

language amounts to an explanation of the features which are present in language but not

in non-human communication.

1.1.1 Design features of language

Most introductory linguistics textbooks include a list of design featuresof language (a

term introduced by Hockett, e.g. Hockett (1960a), Hockett (1960b)) which the authors

regard as important properties of language. Collating these proposed design features

from a selection of five introductory texts (Burling 1992; Fromkin & Rodman 1988;

Hudson 2000; O’Grady et al.1996; Trask 1995), removing those which are proposed in

a single text, yields the following list of seven design features of language:

OPEN-ENDEDNESS: The set of sentences that could be produced or understood by a user

of a language is infinite. (Burling, Fromkin & Rodman, Hudson, O’Grady et al.,

Trask)

CULTURAL TRANSMISSION: Language is learned (in some sense to some degree — see

Section 1.2) by language users from other language users, as opposed to being

genetically transmitted. (Burling, Fromkin & Rodman, Hudson, O’Grady et al.,

Trask2)

ARBITRARINESS: Typically, the form of a signal is arbitrarily related to its meaning.

(Fromkin & Rodman, Hudson, O’Grady et al., Trask)

DUALITY OF PATTERNING: Small numbers of meaningless elements (phonemes in

spoken languages) are combined to form large numbers of meaningful elements

(words). (Burling, Hudson, O’Grady et al., Trask)

DISPLACEMENT: Language can be used to communicate about things in places, times

or even possible worlds removed from the actual communicative act. (Burling,

Hudson, O’Grady et al., Trask)

1.4 — it has been argued that language is not designed for communication. I will provide a definition of
communication which is sufficient for my purposes in Chapter 2, and consider some alternative definitions
in Chapter 4.

2Trask in fact doesn’t include cultural transmission in his introductory chapter, where he introduces the
other design features of language. However, he does introduce it later in the book.
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STIMULUS FREEDOM: Language users can potentially produce any signal they want

at any time, and are not bound to producing a signal only when the appropriate

stimulus is present. (Fromkin & Rodman, O’Grady et al., Trask)

DISCRETE: The units of a language are distinguished from each other categorically, as

opposed to grading into one another. (Burling, O’Grady et al.)

The design feature of open-endedness can be further decomposed into two features:

COMPOSITIONALITY: The meaning of an expression (excluding idioms and irregulars)

is a function of the meaning of its parts and the way in which they are combined

(Cann 1993; Krifka 2001).

RECURSIVENESS: An expression of a particular type can be a subpart of a larger expres-

sion of that type (see e.g. Burling (1992), Haegeman (1994), Hudson (2000)).

Recursiveness allows the creation of an infinite number of utterances. Compositionality

makes the interpretation of previously-unencountered utterances possible — in a recur-

sive compositional system, if you know the meaning of the basic elements and the effects

associated with combining elements, you can deduce the meaning of any utterance in the

system.

1.1.2 Design features of animal communication

In the process of identifying these design features of language, Burling (1992), Fromkin

& Rodman (1988), Hudson (2000), O’Grady et al. (1996) and Trask (1995) explic-

itly contrast them with apparent design features of non-human communication systems.

Some design features are identified as occurring in the communication systems of non-

human animals, whereas other design features are identified as being unique to language.

OPEN-ENDEDNESS: All agree that this is unique to language.

CULTURAL TRANSMISSION: All agree that, in addition to language, song is cultur-

ally transmitted in some species of bird. In addition, Hudson suggests that the

vervet alarm call system is culturally transmitted (apparently wrongly, as we will

see below). With the exception of bird song, all other non-human communication

systems are taken to be genetically transmitted. This is supported by a large cross-

species review, which concludes that “although call structure [in non-human pri-

mates, our closest extant relatives] changes ontogenetically, no study has provided

convincing evidence that acoustic experience is causally related to such changes”

(Hauser 1996:315).
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ARBITRARINESS: There is some disagreement on arbitrariness. Trask suggests that it

is common, Hudson and O’Grady et al.suggest that it is only observed, outside of

humans, in vervets. In fact, alarm calling systems seem to be fairly common, both

in primates (for example, Diana monkeys (Zuberbuhler et al. 1997), Campbell’s

monkeys (Zuberbuhler 2001) and ringtailed lemurs (Pereira & Macedonia 1991))

and birds (various species of passerine birds (Marler 1957) and domestic chickens

(Evans et al.1993)).

DUALITY OF PATTERNING: All agree that this is unique to language.

DISPLACEMENT: All agree that bee dance is the only non-human communication sys-

tem that allows displacement, and even then only with respect to the domain of

foraging.

STIMULUS FREEDOM: Fromkin & Rodman, O’Grady et al. and Trask claim that all

non-human communication systems are stimulus-bound, although Trask does ad-

mit to some anecdotal evidence of stimulus-free communication in animals.

DISCRETE: Burling claims that all non-human communication consists of graded sig-

nals. However, O’Grady et al. give the obvious counter-examples of bee dance

(most species use one dance for food sources close to the hive and a completely dif-

ferent dance for distant food sources) and primate call systems (such as the vervet

alarm call system).

How might non-human communication systems be classified according to our two addi-

tional features of recursiveness and compositionality? Bird song and gibbon calls consist

of the repetition of notes and structured groupings of notes and therefore might be viewed

as recursive, although only in a weak, conjunctive sense. However, these structured calls

are typically interpreted as being used for territory maintenance, pair bonding or sex-

ual advertisement (Raemaekers et al.1984; Hauser 1996) and are therefore probably not

compositional — no subpart of the signal stands for a subpart of the meaning, where the

meaning could be interpreted as “this is my/our territory”, “we are a couple” or “I would

make a good mate”. Furthermore, there is evidence that the gibbon calls may be largely

genetically determined, although this has been contested (see Janik & Slater (1997) for a

brief review). This characterisation of bird and gibbon song as structured, perhaps even

weakly recursive, yet non-compositional may have to be revised if a better characterisa-

tion of what these animals are communicating about reveals that, in fact, certain aspects

of their signals reflect certain components of the message they are trying to convey.

In contrast, bee dance could not be interpreted as recursive, but it seems somewhat com-

positional. The meaning of the dance (the direction and distance to the food source) is

dependent on the angle of the straight portion of the dance (which gives direction relative
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Figure 1.1: Oliphant’s taxonomy of communication systems. The outer square, C , represents
the space of all extant communication systems. Within this, there are some communication sys-
tems which are symbolic (the area labelled as Csymbolic), and some which are learned (Clearned).
According to Oliphant, only (human) language is a member of Csymbolic and Clearned.

to the sun) and the length of the straight portion of the dance (which gives distance). It is

not clear that the meaning of the dance is dependent on the way these two parts are put

together, as they are essentially part of the same action. There is also no evidence that

the bee dance is culturally transmitted.

1.1.3 Oliphant’s taxonomy of communication systems

Oliphant (2002) provides a taxonomy of communication systems based on two charac-

teristics, symbolicism (related to arbitrariness) and learnedness (related to cultural trans-

mission). Oliphant defines a symbol as “a sign that refers to the object that it denotes in

a way that is arbitrary with respect to the process of conventionalization that established

it” (Oliphant 2002:313). Non-symbolic systems can either be characterised as iconic

(reference is by resemblance) or indexical (reference is by causal relation). Learned sys-

tems are acquired experientially (this typically involves cultural transmission, but may

involve other processes, as discussed below with reference to chimpanzee gestures),

whereas non-learned systems are specified genetically (and therefore genetically trans-

mitted). Oliphant’s taxonomy is illustrated in Figure 1.1. Oliphant’s main conclusion is

that language is the only communication system which is both learned and symbolic.

There are several features to note in Oliphant’s taxonomy. Firstly, chimpanzee gestural

communication is classified as learned but non-symbolic. Such gestural communication

systems are formed by what Tomasello (1996) calls ontogenetic ritualization, whereby
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actions which are initially part of a process become ritualised shortcuts which stand for

the whole process. Tomasello (1990) gives the example of an infant chimpanzee which

moves its mother’s arm in order to reach a nipple to feed. Over time, the action of the

chimpanzee touching its mother’s arm becomes a ritualised shortcut for this process,

signalling to the mother that the infant needs to feed. The meaning and the signal are

associated indexically, by being part of a causal chain, and are not arbitrarily associated.

Furthermore, Tomasello et al.(1997) provide evidence that such ritualised signals are not

culturally transmitted in chimpanzee populations once they become established.

Similar arguments based on indexicality apply to the evolution of innate non-symbolic

systems such as primate facial expressions, threat displays and the bee dance, where the

signal has presumably evolved from what was initially a preparatory stage for the full

action of attacking, taking off or whatever.

Oliphant claims that alarm call systems, such as that of the vervet monkey, are innate and

symbolic. As mentioned above, Hudson (2000) claims that the vervet system is cultur-

ally transmitted and therefore learned, so a clarification here is worthwhile. Seyfarth &

Cheney (1986) and Hauser (unpublished data, cited in Hauser 1996, p306) report that the

acoustic morphology of calls in vervets is essentially independent of age, “suggesting that

experience plays a relatively insignificant role in shaping acoustic morphology” (Hauser

1996:306). However, vervets do become more specific with the use of their alarm calls

as they mature. Infant vervets are as likely to give the eagle alarm call for a martial eagle

as for non-predatory birds. Infant vervets have even been seen to give the eagle call on

seeing falling leaves (Cheney & Seyfarth 1990). However, adult vervets give the eagle

call in the appropriate circumstance (seeing a martial eagle) much more frequently than

in inappropriate circumstances. Immature vervets must therefore learn when to apply

their innately-given alarm calls. It is interesting to note that this categorisation process

also appears to be partially innately coded — the eagle alarm call in immature vervets is

only given to objects in the air, usually birds. Oliphant therefore argues that the mapping

between objects in the air and the eagle call is innately specified and not learned, while

learning somewhat refines the ‘meaning’ portion of the mapping.

Oliphant’s classification of such alarm call systems as symbolic is interesting. Bee dance

is classified as non-symbolic because it is hypothesised to have evolved from phylo-

genetic ritualization of preparatory movements for takeoff — the signal is causally re-

lated to the meaning. Oliphant presumably envisages an evolutionary scenario where

the vervet call signals evolved from a situation where individuals, on sighting a preda-

tor, gave some involuntary vocalisation then took appropriate evasive action. Over time
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these vocalisations became phylogenetically ritualised into the call system. The only dif-

ference between this scenario and that proposed for the evolution of bee dance is that

the hypothesised involuntary proto-alarm call is not causally related to the evasive ac-

tion, and therefore arbitrary with respect to that action, which becomes the meaning of

evolved call. However, we can imagine a scenario under which the vocalisation in the

proto-alarm call system was part of the causal chain involved in performing the action of

evading the predator — for example, anatomical constraints might require vervets to clear

the air from their lungs before they can stand up. This would make the alarm call non-

symbolic in Oliphant’s classification. His classification appears to depend on knowing

the evolutionary history of a signalling system, which we cannot do with any certainty.

There are two notable omissions from Oliphant’s taxonomy — bird song and dolphin

signature whistles. Certain types of bird song are at least partially learned, and may be

interpretable as arbitrarily related to their meaning and therefore symbolic. Dolphins

learn the signature whistle of other dolphins. If a dolphin’s signature whistle reflects

aspects of its physical characteristics then we might classify such learned whistles as

iconic, given that there is a resemblance between a dolphin’s whistle and its physical

characteristics. However, if a dolphin’s whistle is arbitrary then there is only an arbitrary

relationship between the learned whistle and its meaning (the dolphin that produces that

whistle) and therefore dolphin whistles would fall into the learned, symbolic portion of

Oliphant’s analysis alongside human language and, possibly, bird song. I would not

like to commit to such an analysis, but merely raise it as an example of the problems

which potentially arise when we attempt to distinguish language from non-language on

categorial assessments in a limited number of dimensions.

1.1.4 Refining the taxonomy

Figure 1.2 gives a taxonomy of communication based on Oliphant’s taxonomy, integrat-

ing the terms of three of the “design features” outlined above — cultural transmission,

arbitrariness (for which I adopt Oliphant’s definition of a symbol) and compositionality.

Cultural transmission is preferred to Oliphant’s “learnedness” classification. Composi-

tionality is included without recursiveness.

According to this taxonomy, language is the only naturally-occurring communication

system which is culturally transmitted and symbolic andcompositional. The following

chapters of this thesis will attempt to explain the evolution of communication systems

which exhibit these properties.
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Figure 1.2: A new taxonomy of communication systems. Language is unique in occurring at the
intersection of Cculturally transmitted, Csymbolic and Ccompositional — only language is culturally
transmitted, symbolic and compositional.

1.2 Theories of Language

We have established that language is unique. More specifically, language is unique in

being culturally transmitted, symbolic and compositional. The concern of much of cog-

nitive science, and linguistics in particular, has been to characterise what it means to have

knowledge of a language with these features — how is language represented in the mind

and how is this representation of language acquired?

Theories of language can be crudely divided into two paradigms — the Nativist paradigm,

discussed in Section 1.2.1, and the Empiricist paradigm, discussed in Section 1.2.2,

which encompasses various anti-Nativist positions

1.2.1 The Nativist paradigm

The dominant paradigm in linguistics, formed and directed by Noam Chomsky (e.g.

Chomsky (1965), Chomsky (1972), Chomsky (1986), Chomsky (1995)), views language

from the standpoint of individual psychology. Under this view, the domain of inquiry

is the state of the mind of a person who knows a language – Internalised Language, or

I-Language. Externalized Language, or E-Language, is then the epiphenomenal set of

actual or possible behaviours produced by application of this internalised knowledge to

a set of contingent situations in the external world.
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In conjunction with this focus on I-language, Chomsky and others have advanced the

notion of Universal Grammar (UG). “UG may be regarded as a characterisation of the

genetically determined language faculty . . . an innate component of the human mind that

yields a particular [I-]language through interaction with presented experience . . . UG is

a theory of the ‘initial state’ of the language faculty, prior to any linguistic experience”

(Chomsky 1986:3-4). Under a more refined analysis, UG may be decomposed into two

parts — a “specification of permitted types of rules and permissible interactions among

them” (Chomsky 1986:52) or “a system of principles associated with certain parameters

of variation” (Chomsky 1986:221) (the hypothesis space for possible I-languages) and

a Language Acquisition Device (Chomsky 1965) which specifies how presented experi-

ence determines the selection of a particular I-language from the range of possibilities

admitted by the specification of permitted hypotheses. In addition to being innately spec-

ified, UG is viewed as being language-specific — “a system of grammatical relations and

a system of morphological agreement . . . are totally useless to any other [non-linguistic]

cognitive capacity; they are exquisitely specialized” (Jackendoff 2002:264).

This theory of UG was advanced to account for the seemingly insoluble problem of lan-

guage acquisition. Fundamental to theories of UG is the observation that children must

learn language from “meager and unspecific evidence” (Chomsky 1986:149). Pullum

& Scholz (2002) provide a fairly rigorous survey of the ways in which the evidence

presented to the child has been claimed to be meager and unspecific. These can be sum-

marised as:

1. Children are not specifically or directly rewarded for their advances in language

learning.

2. Children’s data-exposure histories are finite, but they acquire an ability to produce

or understand an infinite number of sentences.

3. Children’s data-exposure histories are highly diverse, yet language acquisition is

universal.

4. Children’s data-exposure histories are incomplete in that there are many sentences

they never hear, yet can produce and understand.

5. Children’s data-exposure histories are solely positive — they are never given details

of what is ungrammatical.

6. Children’s data exposure histories include numerous errors, such as slips of the

tongue and false starts.

Such arguments are known as arguments from the poverty of the stimulus. Given that the

evidence presented to language learners is so impoverished, the only possible explanation
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for universal language acquisition is that some of the knowledge of language must be

prespecified in UG — UG constrains and guides the language acquisition process in such

a way that, even given the paucity of evidence available to children, language is reliably

acquired. As Chomsky puts it, language acquisition is interpreted as the “growth of

cognitive structures [linguistic competence] along an internally directed course under the

triggering and partially shaping effect of the environment” (Chomsky 1980:34). To put

it in Jackendoff’s terms, in order to explain the fact of language acquisition “we need a

way for children to be . . . hampered by preconceptions — in fact hampered by the very

same preconceptions as every other child. It is just that children’s preconceptions happen

to give them the right solutions” (Jackendoff 2002:84).

1.2.2 The Empiricist paradigm

The Nativist position on language acquisition can be summarised as the application of

domain-specific, innate acquisition procedures to an impoverished set of evidence which

leads to selection of a hypothesis from a domain-specific, innately prespecified space

of hypotheses. The alternative approach, which I will call the Empiricist approach, can

be characterised as follows: application of domain-general acquisition procedures to a

(possibly rich) set of evidence leads to the selection of a hypothesis from a domain-

general space of hypotheses.

This position in its most extreme form is expounded by Geoffrey Sampson (Sampson

1997), who argues that “biological constraints on language are limited to matters which

are ‘trivial’ because they follow from properties of our speech and sense organs which

are known to be genetically fixed” (Sampson 1997:25). For Sampson there is no innate

LAD and no prespecified space of possible hypotheses, nor even an innate propensity to

want to learn a language. Less extreme forms of the anti-nativist view are expressed by

Popper, who suggests that “[t]he capacity to learn a language — and even a strong need

to learn a language — is, it appears, part of the genetic make-up of man. By contrast,

the actual learning of a particular language, though influenced by unconscious inborn

needs and motives, is not a gene-regulated process and therefore not a natural process,

but a cultural process” (Popper (1977:48), cited in Sampson (1997)). A similar position

is adopted by some cognitive scientists working in the connectionist paradigm such as

Bates & Elman (1996) who argue that domain-general learning techniques may explain

more of language than was previously thought, while allowing that “[e]ven if we assume

that a brain (real or artificial) contains no innate knowledge at all, we have to make crucial

assumptions about the structure of the learning device, its rate and style of learning, and

the kinds of input that it ‘prefers’ to receive” (Bates & Elman 1996:1850).
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Proponents of this anti-Nativist position are often called upon to refute perhaps the

strongest argument in favour of UG — the argument from the poverty of the stimu-

lus. Pullum & Scholz (2002) investigate the evidence behind the fourth aspect of the

poverty of the stimulus (given above), that children never encounter certain sentence

constructions which would be required to acquire an I-language by a learning proce-

dure unconstrained by UG. One example is the structure-dependent generalisation about

subject-auxiliary inversion in question formation in English, introduced as an example of

the poverty of the stimulus in Chomsky (1971).

(1.1) The dog in the corner is hungry

(1.2) Is the dog in the corner hungry?

(1.3) The dog that is in the corner is hungry

(1.4) Is the dog that is in the corner hungry?

(1.5) *Is the dog that in the corner is hungry?

The interrogative in 1.2 could be derived from the declarative in 1.1 by two possible

strategies. Under the (correct) structure-dependent hypothesis, the auxiliary in the main

clause in the declarative is fronted. Under the (incorrect) structure-independent hypothe-

sis, the first auxiliary in the declarative is fronted. These two competing hypotheses are

indiscriminable on the basis of exposure to sentences 1.1 and 1.2. The interrogative in

1.4, derived from the declarative in 1.3, shows that the structure-dependent hypothesis is

correct, as the structure-independent movement hypothesis would generate the (ungram-

matical) 1.5. Chomsky claims that “you can go over a vast amount of data of experience

without ever finding such a case [as 1.4]”. Pullum & Scholz (2002) in fact found ex-

amples of the discriminating case in every corpus they examined, including newspaper

text, a play, a poem, a transcription of a television program and, notably, a corpus of

child-directed speech.

The assault on the empirical bases of the poverty of the stimulus argument is a relatively

recent endeavour. Consequently, it is not clear to what extent the other aspects of the

argument will survive closer inspection. One aspect of the argument does seem to be on

fairly solid ground, however — given that the set of possible sentences of a language is

infinite, we can be sure that no child will hear them all during the process of language

acquisition. Does this problem of acquiring a system of infinite productivity from a finite

set of data therefore force us to accept the strong Nativist concepts of UG and the LAD?

Not necessarily. Experiments such as that outlined in Elman (1993) show that, given a

particular maturation schedule, domain-general statistical learning techniques can extract
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grammatical regularities from finite exposure to word strings. These regularities could

potentially allow children to produce and understand an infinite range of utterances.

1.3 Evidence for language evolution

What sources of evidence are available to guide and constrain theories of the evolution of

language? Potentially there are two main types of evidence. Archaeology could provide

us with evidence which directly shows the course of the evolution of language or the

language faculty. However, as discussed in the next Section, such evidence proves to be

of limited utility. A second possible source is in present day phenomena — the way we

acquire and use language today might suggest its evolutionary origin.

1.3.1 Archaeological evidence

The main problem with archaeological evidence is that language does not fossilize. The

earliest direct evidence we have for the existence of language comes from the Sumerian

writing systems, the earliest examples of which occur around 3000BC (Kramer 1963).

However, it is unlikely that this date reflects the origin of language — writing is essen-

tially a technical innovation, and a significant proportion of the world’s population today

remains illiterate while having an intimate and subtle knowledge of a language.

Given the absence of direct evidence of the origins of language, the archaeological record

has been searched for indirect evidence of language. This search can be broadly cate-

gorised into two strands: the search for evidence of the origins of biological correlates

of language, and the search for cultural correlates of language. The biological correlates

of language are typically taken to be in the brain and the vocal tract. These both consist

of soft tissue so, somewhat ironically, neither of these fossilize either. We can, however,

draw some indirect conclusions on the evolution of these indirect markers of language.

Brain size, as estimated by cranial volume, has increased down the hominid line. This

trend of increasing brain size is summarised in Table 1.1, which gives the estimated brain

sizes for the main recognised species of hominids. The various species of australop-

ithecines, which were among the earliest hominids (appearing approximately 5 million

years ago), had brain sizes estimated to be between 400 and 550ml, comparable with

extant apes of a similar stature. Early modern Homo sapienshave brain volumes of

1200–1700ml, comparable with anatomically modern Homo sapiens.

Brain size is not the only measure we have of the evolution of brains in the hominid

line — see, for example, the evidence on sulcal patterning discussed in the summary of
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Species Date of appearance Estimated brain size
australopithecine (various) 5m BP 400–500ml

Homo habilis 2.4m BP 500–800ml
Homo erectus 1.8m BP 750–1250ml

Homo sapiens(archaic) 400,000 BP 1100–1400ml
Homo sapiens(early modern) 130,000 yrs BP 1200–1700ml

Table 1.1: The trend in brain size. Approximate date of appearance in the fossil record (in years
before present) and estimated brain size for ancestors of modern humans. Data on australop-
ithecines from Wood (1992). Data on Homofrom Stringer (1992).

Wilkins & Wakefield’s (1995) paper below. However, this kind of evidence is extremely

controversial. The general trend of increasing brain size is less controversial, but proba-

bly less useful. We do not know the minimum brain size required to support a language.

It is common to equate an increase in brain size with an increase in general intelligence,

and for those working in the Empiricist paradigm, where language is seen primarily as

a consequence of general intelligence, this suggests that the capacity for language may

have emerged further down the hominid line. However, this still does not tell us when, or

whether the increase in brain size was driven by selection for language abilities or selec-

tion for general intelligence. The picture of increasing intelligence is even less relevant if

we follow the Nativist paradigm, where language is seen as a consequence of a specific

mental organ.

The evolution of the vocal tract has also been the subject of lively debate. The soft tis-

sue of the vocal tract does not fossilize, but the shape of the vocal tract, the height of

the larynx, and the degree of respiratory and articulator control have all been estimated

based on markers which do fossilize — for example, the flexion of the base of the skull,

the morphology of the hyoid bone, the width of the hypoglossal canal and the width

of the thoracic vertebrate canal (see Fitch (2000) for review). However, much of this

evidence is controversial — as Fitch concludes, “despite an extensive and disputatious

literature, most potential fossil cues to phonetic abilities appear inconclusive, suggesting

that it will be difficult to reconstruct the vocal behavior of our extinct ancestors with any

certainty” (Fitch 2000:263). Even if we could reconstruct the vocal behaviour of our

extinct ancestors, it would perhaps not provide any direct answers as to the evolution of

language. The evolution of the vocal apparatus required for speech has little relevance

for those who argue that language was initially based on a gestural system (Hewes 1973;

Corballis 2002). Even if we accepted that speech was the initial modality used for lan-

guage, and were able to pin down a definite date when the capacity for speech began to

evolve, this would still be compatible with several competing theories: speech could have
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been a preadaptation for language, or could have co-evolved with language (as suggested

by Lieberman, discussed below), or could have evolved as a consequence of selection

pressures for efficient signal production arising from the presence of fully-fledged lan-

guage.

The study of the evolution of some of the supposed biological correlates of language

is therefore not terribly illuminating — not only is the archaeological evidence often

debatable, but the correspondence between these physical characteristics and language is

not well-established. This has led some researchers to focus on the appearance of cultural

artifacts in the archaeological record. Writing is one such cultural artifact. The account

of Wilkins & Wakefield (1995) appeals to the relevance of tools, another cultural artifact.

The fact that the inventory of tools (or at least tools which remain in the fossil record)

remained fairly constant until the late Paleolithic period, when it underwent explosive

diversification, might suggest that there was some biological change which lead to a

cultural revolution which impacted upon the range of tools individuals were capable of

learning to manufacture. However, this is not necessarily the case. It could be that the

capacity for a complex tool kit was present long before such a tool kit was in place

— cultural innovations do not necessarily coincide with biological ones. Secondly, and

of more relevance from our point of view, there is no obvious link between tools and

language. While language may be involved in the cultural transmission of tool-making

skills, we cannot conclude the presence of language from the presence of tools. We

certainly cannot conclude the absence of language from the absence of tools.

Others have appealed to the origins of “symbolic culture” (ochre staining or cave art) as

evidence of the origins of language (e.g. Knight (1991), Knight et al. (1995)). While

we might agree that the presence of art indicates the presence of language, we are not

forced to do so — it just seems unlikely that people who were so much like ourselves

as to indulge in cave paintings did not have language. Most manifestations of “symbolic

culture” are so recent as to make this position fairly uncontroversial anyway. And we still

cannot conclude that the absence of art reliably indicates the absence of language — art

may be a fairly recent cultural innovation.

To summarise, the evidence from the archaeological record on the evolution of language

is fairly sparse and of limited use. This is either due to the debatable nature of the

archaeological data, or the lack of clarity as to what that data tells us about language.
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1.3.2 Current-day evidence

Far better sources of evidence are available in living species in the world today. While

current-day evidence cannot directly show us the time-course of the evolution of lan-

guage, it can give us a valuable insight into the kinds of processes — biological or cul-

tural — which might have been involved in the origins and evolution of language. There

are 7 sources of present-day evidence which can potentially shed some light on such

questions:

1. Language uniqueness

2. Language universals

3. Genetic deficits

4. Cross-species comparison

5. Language acquisition

6. Language change

7. Creolization

Explanations of the uniqueness of language and the limited range of cross-linguistic

variability evidenced in the languages of the world follow naturally from the notion of

genetically-encoded UG. Only humans have language because only humans have UG,

without which language cannot be acquired. Language universals (see e.g. Greenberg

(1966)) exist because UG constrains the range of possible I-languages to vary in limited

ways. Properties which all languages share are therefore presumed to be direct reflec-

tions of the constraints imposed by UG. Uniqueness and universals can then be seen as a

consequence of the biological evolution of the language faculty in our species.

Non-biological accounts of language and language evolution also have to account for the

presence of linguistic universals. Typically, such universals are attributed to universal

aspects of the useof language, rather than universal constraints on the possible forms of

language — see Newmeyer (1998) for review (Chapter 3 in particular). The uniqueness

of language to humans has variously been attributed to consequences of the uniquely high

degree of encephalization in humans (e.g. Bickerton (2000), Christiansen & Conway

(2002)), humans’ uniquely sophisticated understanding of others as intentional agents

(Tomasello 1999) or the unusually long developmental period in humans (Elman 1993).

Myrna Gopnik (Gopnik & Crago 1991; Gopnik 1994) presents evidence from the study of

a family, known as the KE family, where approximately half of the members of the family

suffer from a heritable language impairment. According to Gopnik, this impairment is

specific to inflectional marking of tense and number, and other than these problems the
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subjects are of normal IQ, and have “no reduction in the range of movement or the tone

of the mouth and tongue musculature” (Gopnik 1994:113). Furthermore, the heritable

impairment seems to be a consequence of a point mutation in a single gene (Lai et al.

2001). This appears to indicate the presence of a “language gene” — a gene which, if

mutated, has specific and deleterious consequences for a subset of the tasks involved in

language acquisition and processing.

The presence of a language gene would seem to suggest that language evolution must

have involved the emergence of some language-specific biological capacity in our species.

However, Gopnik’s data and conclusions have been attacked. Gopnik claims that mem-

bers of the family who carry the mutated gene are of normal intelligence. Vargha-

Khadem et al. (1995) conclude that “the affected family members have both verbal and

performance intelligence quotient (IQ) scores that are on average 18–19 points below

those of the unaffected members” (Vargha-Khadem et al. 1995:930). Furthermore, em-

pirical studies suggest that “the affected members’ disorder transcends the generation of

morphosyntactic rules to include impaired processing and expression of other areas of

grammar, grossly defective articulation of speech sounds, and, further, a severe extralin-

guistic orofacial dyspraxia” (Vargha-Khadem et al.1995:930). This serves to cast doubt

on the picture of the KE family mutation as a mutation in one of the genes encoding

UG — the impairment may be a consequence of genes encoding for several functions,

including language, or may be a consequence of a more general cognitive and physical

impairment.

We can also examine how language is acquired by humans, and how languages change

in human populations. I will make reference to this type of data later in the thesis, in

particular in the closing sections of Chapters 3 and 5. We can also make cross-species

comparisons of neural or physiological devices which have been implicated in language,

and consequently hypothesise about whether such devices are evolutionary recent or not.

Hauser et al. (2002) provide an excellent survey of this comparative approach. I will

make reference to this type of evidence later in the thesis, in particular with respect to

vocabulary acquisition experiments in apes.

Finally, the Nativist account of language offers a fairly straightforward account of cre-

olization. The classic creolization scenario involves a group of individuals with no com-

mon language being brought together, typically being forced to live or work together.

In such populations, a pidgin typically emerges — an ad-hoc system of communication,

which borrows vocabulary from the various languages represented in the group (known

as the substrate languages), and from the language of the ruling body (the superstrate
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language). Pidgins are typically highly simplified grammatically, and are tolerant of ex-

treme ranges of grammatical variation. Creolization occurs when children begin to learn

pidgins as their first language. Creoles are typically more expressive than pidgins, more

elaborate grammatically and exhibit less variation across and within individuals.

Derek Bickerton (Bickerton 1981; Bickerton 1984) further claims that superficially un-

related (and geographically dispersed) creoles exhibit certain common features, and con-

cludes that “creole similarities stem from a single substantive grammar consisting of a

very restricted set of categories and processes, which will be claimed to constitute part,

or all, of the human species-specific capacity for syntax” (Bickerton 1984:178). The

common elements of creole languages (for example, fronting of focussed elements, cer-

tain arrangements in the determiner system, handling of tense, modality and aspect by

preverbal free morphemes occurring in a certain fixed order), according to Bickerton,

are a consequence of a highly specific innate prespecification of language — “The LBH

[Language Bioprogram Hypothesis] claims that the innovative aspects of creole gram-

mar are inventions on the part of the first generation of children who have a pidgin as

their linguistic input, rather than features transmitted from preexisting languages . . . the

LBH claims that the most cogent explanation of this similarity is that it derives from

the structure of a species-specific program for language, [which is] genetically coded”

(Bickerton 1984:173). In other words, the degenerate nature of the linguistic input avail-

able to children in pidgin-speaking communities forces them to fall back on the default

grammar encoded in their genes. The fact that these genes are shared by all members

of the species means that all creoles share certain features. This suggests that language

evolution is primarily a biological process.

Bickerton’s account of creolization and creole universals as reflexes of the default set-

tings of UG is incompatible with the Empiricist position on language, and is also largely

incompatible with accounts of language evolution which appeal to a significant role for

cultural processes. There are two main strands of argument against it. Firstly, it has been

argued (see e.g. Singler (1990)) that there are numerous exceptions to Bickerton’s puta-

tive creole universals. Secondly, it has been argued that most of the correspondences be-

tween creoles can be attributed to the influence of common substrate (e.g. Holm (1988))

or superstrate (Haspelmath (1989)) languages.

In addition to these disputes over the source of “creole universals”, other studies of cre-

olization suggest that cultural, rather than genetic, processes may play an important role

in language genesis. Nicaraguan Sign Language (Kegl & Iwata 1989; Kegl et al. 1999)

gives us an insight into the birth of a language with a reduction in the confounding fac-

tors of substrate and superstrate influence and power asymmetries typically associated
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with creolization situations. Nicaraguan Sign Language emerged when previously iso-

lated deaf individuals throughout Nicaragua were brought together in schools for the

deaf. Prior to arriving at the school, the isolated deaf individuals communicated using

idiosyncratic homesign systems. While such systems may exhibit some degree of struc-

ture (Goldin-Meadow & Mylander 1990) they are characterised as “idiosyncratic, vari-

able even within the individual, and lacking most characteristics, particularly syntactic,

of what we would recognize as a full-fledged human language” (Kegl et al. 1999:179).

Shortly after arriving at the school these homesigners had developed a shared system of

signs and grammatical devices. This shared system developed into a fully-fledged sign

language after several years and several influxes of new, typically young, deaf individu-

als. The use of grammatical devices by deaf individuals shows significant effects for both

age of entry into the school and year of entry into the school, with younger individuals

entering the school in later years producing the most sophisticated signing.

Based on the emergence of Nicaraguan Sign Language and the failure of groups of deaf

individuals to develop full-blown language under different social circumstances, Ragir

(2002) argues that “the emergence of new languages, both signed and spoken, depends

on: (1) a critical massof individuals generating shared patterns of linguistic practices;

(2) historical continuity maintained by a continuous influx of new participants into the

language pool; and (3) an exchange of information about diverse cooperative activities”.

This suggests that the Language Bioprogram Hypothesis, as simply stated above, can-

not be right — if degenerate linguistic input automatically triggered the default, innate

grammar then isolated individuals would effectively self-creolize, and we would expect

isolated deaf individuals to use sign systems which had the structure of early creoles.

The fact that creolization is dependent on a critical mass of individuals and a degree of

historical continuity suggests that there must be some factor other than innate knowledge

at play in creolization events, and possibly in linguistic evolution in general.

1.4 Theories of language evolution

The (somewhat limited) evidence outlined above, in conjunction with the two major ex-

planatory paradigms for language (Nativist and Empiricist) form the basis for a number

of theories of the evolution of language. These can broadly be separated into two groups

— adaptationistand non-adaptationisttheories. Adaptation is the process by which an

organism changes to fit its environment. Adaptationist accounts emphasise the role of

natural selection and what we will (for the moment) call cultural selection in the process

of adaptation — pressures acting on genetic and cultural transmission favour organisms
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which fit, or are adapted for, their environment, such that over time a population of such

organisms comes to fit its environment rather well. In the most extreme adaptationist

position, every aspect of an organism’s behaviour is seen as an adaptation to fit some part

of the organism’s environment.

Non-adaptationists deemphasise the role of adaptation in explaining characteristics of

an organism, preferring to focus on the role of chance events, architectural constraints

and exaptation in evolutionary processes. Architectural constraints limit and shape the

ways in which organisms develop, due to laws of growth and form (Thompson 1961)

or environmental influences on development. These architectural constraints can lead

to spandrels(a term adapted from architecture by Gould & Lewontin (1979)), where

architectural constraints lead to structures which appear to be designed for some purpose,

but are in fact not. Exaptation (a term introduced in Gould & Vrba (1982), sometimes

replaced with the somewhat more transparent term of “evolutionary reappropriation”) is

the process by which some aspect of an organism, either a spandrel or an adapted trait, is

put to a new use by that organism.

Theories of the evolution of the linguistic capacity and language have appealed to all

three of these aspects of evolutionary processes — adaptation, architectural accidents and

exaptation. Non-adaptationist accounts, viewing the capacity for language as a spandrel

or an exapted trait, will be reviewed first, in Section 1.4.1, in part because such accounts

have found favour with influential figures in linguistics. Adaptationist accounts, which

appeal to both biological adaptation of the language capacity and cultural adaptation of

language, will be reviewed in Section 1.4.2.

1.4.1 Non-adaptationist accounts

The non-adaptationist accounts reviewed here cover a fairly wide spectrum. Chomsky

and Piattelli-Palmarini view the language capacity as a spandrel. Bickerton views it as

a trait arising either through chance events, such as a saltationary mutation or a fluke of

ontogeny, or, in his later account, as an exaptation. Lieberman and Wilkins & Wakefield

view the capacity for language (as distinct from the capacity for speech) as an exaptation

of neural machinery for motor control, whereas Tomasello sees language as a conse-

quence of a more general capacity for cultural transmission.

Chomsky Noam Chomsky, the founder of the theory of innate UG, has been notoriously

reluctant to offer an account of the origins of this innate and language-specific organ of

the human mind. According to Chomsky, “it is safe to attribute this development [of UG]

to ‘natural selection’, so long as we realize that there is no substance to this assertion, that
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it amounts to nothing more than a belief that there is some naturalistic explanation for

these phenomena” (Chomsky 1972:97). Chomsky’s preferred explanation for the origins

of UG is dependent on as-yet-unknown laws of growth and form:

“The answers may well lie not so much in the theory of natural selection

as in molecular biology, in the study of what kinds of physical systems can

develop under the conditions of life on earth” (Chomsky 1988:167)

“We know very little about what happens when 1010 neurons are crammed

into something the size of a basketball, with further conditions imposed by

the specific manner in which this system developed over time. It would be

a serious error to suppose that all properties, or the interesting properties of

the structures that evolved, can be ‘explained’ in terms of natural selection.”

(Chomsky 1975:59)

“Language is off the chart. That is the basic conclusion that follows from his

[Hauser’s 1996] comprehensive review of comparative communication. That

doesn’t mean that language is not the result of biological evolution, of course

we all assume it is. But what kind of result of biological evolution? . . . It

is simply not understood how the physical channel constrains and controls

the process of selection, beyond simple cases . . . there is no way to find the

answer, not just for language but for cognition altogether. Others feel that

they can do something. But telling stories is not very instructive. You can

tell stories about insect wings, but it remains to discover how they evolved.”

(Chomsky 2002:Chapter 4)

While these points have some merit, taking them fully to heart essentially rules out any

attempt to explain the evolution of the language faculty. Indeed, Chomsky’s position

has been been criticised as “a retreat to mysticism” (Jackendoff 2002:234). Recently

(Hauser et al. 2002) Chomsky’s position has softened somewhat and he acknowledges

the potential role of cross-species comparison as a test on, and possible source of insight

into, theories of language evolution.

Piattelli-Palmarini Piattelli-Palmarini (1989) is somewhat ambivalent between span-

drel and exaptation accounts of the capacity for language — “innate, very specific, and

highly abstract structures governing language and cognition may be seen as ‘spandrels’,

that is, biological traits that have becomecentral to our whole existence, but which may

well have arisen for some purely architectural or structural reason . . . or as a by-product
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of evolutionary pressures driven by other functions” (Piattelli-Palmarini 1989:19). He

supports this position with an argument based on the fact that language could be other

than it is, and still be adaptive:

“Even if a trait is useful and actually enhances the life expectancy of indi-

viduals who possess it, this fact does not grant the inference that the trait

is there becauseit is useful . . . Adaptive constraints are typically insufficient

to discriminate between real cases and an infinity of alternative, incompat-

ible mechanisms and traits which, although abstractly compatible with the

survival of a given species, are demonstrably absent. This applies, and with

bells on, to perfectly adaptive linguistic structures that could ideally have

been present, but which are, as a matter of fact, wrong for us . . . linguistic

principles are all, obviously, compatible with our survival, but they are not

uniquely (nor, for that, even approximately) ‘determinable’ under the adap-

tationist constraint alone” (Piattelli-Palmarini 1989:18–19).

Pinker & Bloom (1990) identify two possible responses to Piattelli-Palmarini’s point that

other forms of language might be equally functional. Firstly, they argue that all adapta-

tions are compromises between a variety of constraints, therefore the purpose of an adap-

tation may not be obvious when considered from the perspective of a single constraint.

Secondly, and perhaps more tellingly, they point out that “many ‘arbitrary’ constraints

may have been selected simply because they defined parts of a standardized communica-

tive code in the brains of some critical mass of speakers” (Pinker & Bloom 1990:718).

Certain “perfectly adaptive linguistic structures” might not be present simply due to his-

torical contingencies, reinforced by the need for something approximating consensus

among language users.

We might take a weakened version of Piattelli-Palmarini’s position on board, and concede

that some aspects of the design of the language faculty are constrained by considerations

such as architecture, costs and so on. Indeed, not to do so would be somewhat ridiculous

— as Maynard Smith has pointed out “[i]f there were no constraints on what is possible,

the best phenotype would live for ever, would be impregnable to predators, would lay

eggs at an infinite rate, and so on” (Maynard Smith 1978:32). Piattelli-Palmarini’s point

is therefore not as forceful as he obviously feels. It is weakened still further by an ob-

vious confusion in his argument. In the very same paragraph he claims that “Only those

who espouse an instructivist[transfer of structure from the environment to the organism,

i.e. learning] paradigm are in need of direct adaptive constraints. If, on the contrary, one

adheres to the thesis of strong innatism, adaptive constraints become ipso factoweak,
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trivial and theoretically irrelevant” (Piattelli-Palmarini 1989:19). This appears to be a

non-sequitur “with bells on”. Previously we were dealing with the evolutionary his-

tory of UG, either a history of exaptation or adaptation. In a strongly innatist position

these can either be exapted or adapted — there is nothing that rules out adaptation of the

LAD in the strongly innatist position, although Piattelli-Palmarini would prefer that we

did. Piattelli-Palmarini then switches to dealing with adaptive constraints on language

acquisition. Adaptive constraints on learningin the strongly innatist position are, by def-

inition, irrelevant, as in the scenario Piattelli-Palmarini envisages there is no such thing

as learning — “we would gain in clarity if the scientificuse of the term were simply dis-

continued” (Piattelli-Palmarini 1989:2). However, there is no need for adaptationists to

appeal to adaptive constraints on learning — some do, but others might favour Piattelli-

Palmarini’s discontinuation of the term altogether yet still feel that the innate UG arose

through adaptation.

One more criticism of Piattelli-Palmarini’s position should be noted. Piattelli-Palmarini

is a strong innatist, meaning, among other things, that he views the language capacity as

language-specific. However, he prefers an exaptationist account of this language capac-

ity to an adaptationist account. Exaptation, by definition, cannot apply to an apparatus

which can serve only one purpose, therefore Piattelli-Palmarini should abandon either his

exaptationist account or his language-specificity constraint. Similarly, it is not clear that

a spandrel could be said to be specific to one function, since spandrels are, by definition,

not “for” any function at all.

Bickerton Bickerton provides an account of the evolution of the language faculty which

is, at one level, an adaptationist account. However, Bickerton’s early formulation of the

account appeals to a single macro-mutation delivering much of the language faculty,

while his later accounts become more exaptationist in flavour.

Bickerton’s original account (Bickerton 1990) proposes that there was, prior to language,

an agrammatical protolanguage3, the capacity for which possibly evolved due to selection

pressures arising from group foraging activities (Bickerton 2002). Mutation of a single

gene then delivered, from the base of protolanguage, the capacity for full-blown modern

language, including the capacity for syntax and the modern human vocal tract. This gene

was then fixed in the population by means of natural selection.
3Bickerton claims that we see evidence of this protolanguage in children under two, pidgin speakers

and signing apes. However, the content of protolanguage and the various pros and cons of the proposal are
not, for our purposes, of great relevance to the remainder of Bickerton’s account.
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The early formulation of Bickerton’s proposal is somewhat naive. As Hauser (1996)

notes, relatively simple physical attributes are encoded in multiple genes. The odds seem

to be against a single gene which encodes a fairly sophisticated language faculty and,

entirely coincidentally, the appropriate vocal apparatus to make efficient use of this neural

architecture. Depending on one’s interpretation of the evidence on “language genes”

provided by the studies of the KE family, this either proves that the language faculty is

coded in multiple genes, or that a single “language gene” would at least require that other

general intelligence or speech genes be set up appropriately.

Bickerton (1998) abandons the macro-mutation account for the transition from protolan-

guage to language, but his account remains saltationary. Bickerton proposes that some of

the necessary neural apparatus for language — mental apparatus dealing with theta anal-

ysis4 and motor control of the (not fully modern) vocal tract — were present in the brains

of protolanguage users, but unconnected. Through ontogenetic chance (formation of

connections between the two areas) these areas became connected in the brains of certain

individuals, resulting in the possibility of conceptual structure being imposed on the pro-

duction of protolanguage, giving us the capacity for language. Bickerton proposes that

“the linkage of theta analysis with other elements involved in protolanguage would not

merely have put in place the basic structure of syntax, but would also have led directly

to a cascade of consequences that would, in one rapid and continuous sequence, have

transformed protolanguage into language substantially as we know it today” (Bickerton

1998:353). Bickerton suggests some of these consequences might include the evolution

of the modern human vocal tract and development of further neurological apparatus for

language processing and storage. Bickerton therefore views the emergence of the lan-

guage capacity as a process of exaptation followed by adaptation. However, the burden

of the account still falls on the initial exaptation of resources used in protolanguage,

facilitated by unspecified phylogenetic or ontogenetic factors which allowed the theta

analysis component of the brain to connect to the vocal motor control areas. Bickerton

offers no detailed explanation for this initial exaptation, although Wilkins & Wakefield

(1995), discussed below, offer a possible account compatible with Bickerton’s.

Bickerton (2000) retreats from this analysis. He reasons that protolanguage would be

used for discussing past events, therefore we should expect it to have had access to the-

matic roles via memory. Secondly, he claims that all brain regions are linked to one

another, therefore the tightly modularised separation of the theta analysis component and

vocal motor component would not exist. Bickerton therefore suggests that these areas
4Which can be characterised for the purposes of Bickerton’s argument as “who did what to who with

what”.
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of the brain were linked in the protolanguage-capable brain, but could not communicate

with one another due to a lack of “signal coherence” resulting from the small number of

neurons in the pre-human brain. Bickerton proposes that increases in brain size overcame

this signal coherence, allowing the regions of the brain responsible for theta analysis to

impose structure on motor output. The syntactic brain was born, followed by the famil-

iar avalanche of consequences, which Bickerton now proposes include canalization of

learned behaviours via the Baldwin effect. Once again, this is essentially an exaptationist

account (exaptation of resources resulting from increased brain size), with subsequent

adaptive change.

Hurford (2002b) criticises Bickerton’s 1998 and 2000 efforts, not on the vagueness of

the mechanisms appealed to (although this does merit comment in passing) but on the

assumption that theta analysis areas, when wired up to vocal motor areas, gives rise

straightforwardly to clausal structure, and the rest of syntactic structure follows triv-

ially. Hurford identifies several features of language (for example, duality of patterning,

the morphology-syntax distinction, case marking, anaphor-antecedent relationships, and

passivization) which play no role in pre-linguistic representation but could reasonably be

argued to play a role in communication over a noisy serial channel. Hurford’s point is

that syntax, and linguistic structure more generally, is not just theta analysis with a flour-

ish, but a system which exhibits the appearance of design for communicating complex

structures over a serial channel. While Bickerton could reply that he allows time for such

aspects of language to emerge during the “cascade of consequences”, if there is much

more to language than theta analysis then Bickerton’s account has simply covered the

simplest aspect of its emergence and paid lip-service to subsequent processes.

Lieberman Classifying the work of Philip Lieberman as adaptationist or exaptationist

is a somewhat fraught exercise, partly due to the difference in focus of Lieberman’s work

from the other theories outlined here. While the other non-adaptationists are primarily

concerned with the (non)evolution of UG as it pertains to syntax, Lieberman’s main focus

is on speech, which is a peripheral matter in the Chomskyan paradigm. Lieberman takes

a classically adaptationist position on the evolution of the physiological and neurological

bases of speech — “all primates are furthermore adapted for phonation at the expense of

respiratory efficiency. Anatomically-modern Homo sapienscontinues this trend toward

more efficient vocal communication” (Lieberman 1984:324–325).

However, Lieberman views the capacity of the human brain for language, meaning es-

sentially syntax, as an exapted trait: “the rules of syntax derive from a generalization of
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neural mechanisms that gradually evolved in the motor cortex to facilitate the automati-

zation of motor activity [for tool use in (Lieberman 1984), bipedal locomotion and tool

use in (Lieberman 2000)]. Human syntactic ability, in this view, is a product of the Dar-

winian mechanism of preadaptation” (Lieberman 1984:67). In this respect, taking the

Chomskyan grammar-centric view of language, Lieberman is a non-adaptationist. Lan-

guage only arises through the combination of the adapted speech mechanism and the

exapted trait: “The synergetic effect of rapid data transmission through the medium of

encoded speech and the cognitive power of the large hominid brain probably yielded the

full human linguistic system” (Lieberman 1984:329)

Unlike Chomsky and Piattelli-Palmarini, but in common with Bickerton, Lieberman al-

lows for some post-exaptation adaptation of the syntactic capacity:

“As the central cognitive mechanism, the brain, gradually increased its power,

the selective advantage of peripheral input-output mechanisms like human

speech also would have increased . . . The presence of a fully encoded speech

system in recent hominids may also have more directly contributed to the de-

velopment of complex syntactic organization in human languages.” (Lieber-

man 1984:325)

Lieberman’s treatment of the evolution of the human vocal apparatus is very thorough,

and supported by a degree of evidence not seen in the other accounts of the evolution

of language. However, his treatment of syntax is somewhat threadbare. Lieberman’s

statement that syntax is simply a generalisation of motor control falls foul of Hurford’s

(2002b) criticism of Bickerton — if language is not simply slightly elaborate theta anal-

ysis, nor is it a generalisation of movement. Lieberman could mount a similar defence

to Bickerton, that the aspects of language which Hurford discusses arose during the pe-

riod of adaptation following the exaptation event. However, Lieberman also fails to offer

more than a hand-waving explanation of how the “synergetic effect” of a large brain

and apparatus capable of rapid data transmission would lead to even the rudiments of

language.

Tomasello Michael Tomasello’s theories on the cultural evolution of language will be

expounded in more detail in Chapter 2. Tomasello’s full account of the evolution of

language is exaptationist, with a heavy focus on cultural processes resulting from the

proposed exaptation. Tomasello suggests that the key adaptation:
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“arose at some particular point in human evolution, perhaps fairly recently,

presumably because of some genetic and natural selection events. This adap-

tation consists [of] the ability and tendency of individuals to identify with

conspecifics in ways that enable them to understand those conspecifics as in-

tentional agents like the self, possessing their own desires and beliefs. This

new mode of understanding other persons radically changed the nature of all

types of social interactions, including social learning, so that a unique form

of cultural evolution began to take place over historical time, as multiple

generations of developing children learned various things from their fore-

bears and then modified them in a way that led to an accumulation of these

modifications” (Tomasello 1999:202)

This exaptationist account is somewhat different from the accounts propounded by Piattelli-

Palmarini and Bickerton. For Piattelli-Palmarini the mental capacity for language is a

spandrel, but is language specific. Cultural processes play no role in his model. For

Bickerton, in his later accounts at least, the language capacity is exapted from the pro-

tolanguage capacity (possibly with additional exaptation of resources resulting from an

increase in brain size), is language-specific and results in consequential evolution, some

of which might involve (minimally) cultural processes. For Tomasello, the capacity to

view others as intentional agents is a general cognitive ability, rather than being language-

specific, and results in consequences which are driven by purely cultural processes.

Wilkins & Wakefield The final non-adaptationist account of the origins of the human

capacity for language differs somewhat in perspective from the others. Wilkins & Wake-

field (1995) deal with the processes which lead up to a cognitive capacity which could be

reappropriated by language, rather than assuming such an apparatus and dealing with the

post-exaptation scenario.

Wilkins & Wakefield present an account under which Broca’s area and the parieto-

occipito-temporal junction (POT), which includes Wernicke’s area, are necessary ele-

ments of a brain supporting language. Auditory, visual and somatosensory inputs are

initially processed in unimodal association areas of the cortex. These unimodal represen-

tations then converge to form multi-modal representations of sensory input. Finally, these

multi-modal representations converge at the POT — “[t]he POT is, in essence, an area

of integration for the three neocortical sensory association areas . . . the ‘association area

of association areas’ ” (Wilkins & Wakefield 1995:163). Wilkins and Wakefield argue,

following an idea originally suggested by Geschwind (1964), that this capacity to form

amodal representations is crucial to the capacity to acquire lexical items.
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Following Tallal & Schwartz (1980) and Greenfield (1991), Wilkins & Wakefield suggest

that Broca’s area is responsible for temporal sequencing and hierarchical organisation of

information. In the human brain, the POT and Broca’s area are connected by a large,

myelinated fibre tract, allowing information to pass between them rapidly. In their ac-

count, Broca’s area hierarchically structures the amodal representation of the outside

world, resulting in the development of a featural, amodal, hierarchical representation

— an abstract, structured semantic representation. A similar process allows auditory

or visual input to become associated with these amodal concepts — arbitrary symbolic

reference becomes possible.

Wilkins & Wakefield make a case that this organisation of the human brain arose, not

through selection pressures related to communication, but through pressure for improved

motor skills required to fashion and use tools such as throwing stones, which have obvi-

ous uses in hunting. Skilled motor control requires larger amounts of motor cortex and

somatosensory cortex devoted to controlling the hand. The necessary feedback between

somatosensory cortex and motor cortex resulted, in Wilkins & Wakefield’s account, in

selection pressure for rapid transfer between these two physically distant regions of the

brain, which in turn led to the formation of the bidirectional, myelinated fibre bundle

connecting sensory to motor cortex (including Broca’s area). There is some neurophysio-

logical evidence to support this association between the evolution of motor cortex and so-

matosensory cortex — “each architectonic subdivision of the sensory association cortex

is directly and reciprocally connected to the subdivision of motor association cortex with

which it shares an equivalent state of evolutionary differentiation” (Wilkins & Wakefield

1995:174). Concurrent expansion of the visual cortex and the temporal lobe resulted,

due to the close proximity of the three posterior lobes, in an overlap of the information

flowing through each lobe, and the POT junction formed. Evidence for this account is

provided in the archaeological record, which shows that stone tools began appearing at a

time coincident with the appearance of Homo habilis(Harris 1983), while sulcal pattern-

ing on fossil endocasts suggests that habilis possessed the POT and a modern Broca’s

area. However, the interpretation of endocasts is controversial, as Wilkins & Wakefield

acknowledge. Ralph Holloway notes in his commentary on Wilkins & Wakefield’s arti-

cle that “there is not one single well-documented instance of paleoneurological evidence

that unambiguously demonstrates a relative expansion of the parietal-ocipital-temporal

junction in early Homo” (Holloway 1995:191).

Wilkins & Wakefield therefore present a scenario under which selectional pressures for

tool use lead to the appropriate neural and cognitive apparatus for language. Their ac-

count of how language exapted these facilities is speculative, although they offer:
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“As is well known, primates are noisy animals . . . It is not unreasonable to

assume that H. habilis too were noisy animals, with a systematic repertoire

of calls. It also seems reasonable to think that a habiline child might have

recruited from this call repertoire to create a linguistic sign . . . These acoustic

signals, simply part of the primate call system for the adult vocaliser, might

have taken the form of linguistic signs in the mind of the child” (Wilkins &

Wakefield 1995:179).

1.4.2 Adaptationist accounts

In contrast to these non-adaptationist explanations of the evolutionary origins of the fac-

ulty for language in humans, several adaptationist accounts have been advanced. These

accounts appeal to the biological adaptation of the human species in response to the pres-

sure to communicate, or the cultural adaptation of languages to pressures to be expressive

or learnable.

Pinker & Bloom Pinker & Bloom (1990) present the classic adaptationist account of

language. Working within the Chomskyan framework of UG, Pinker & Bloom suggest

that “the ability to use a natural language belongs more to the study of human biology

than human culture: it is a topic like echolocation in bats” (Pinker & Bloom 1990:707).

Their position is that language exhibits the appearance of design and is supported by an

innate UG, therefore the origins of UG must explicable in terms of natural selection.

What is language designed for? According to Pinker & Bloom, language is adapted for

the communication of propositional structures (in the internal representational “language

of thought”) over a serial channel. Pinker & Bloom identify a dozen features of language

which they argue exhibit the appearance of design for this function. For example, they

argue that major lexical categories are used to distinguish basic ontological categories,

phrase structure and overt case marking provide surface cues to the structure of the un-

derlying propositional representations, and verb affixes signal temporal aspects of events.

Pinker & Bloom go on to identify scenarios where language exhibiting these design fea-

tures might offer a selective advantage. They propose that the hunter-gatherer lifestyle

hypothesised to characterise our recent evolutionary predecessors would favour an ability

to communicate information about toolmaking, ecology and the behaviour of plants and

animals. “Devices for communicating precise information about time, space, predicate-

argument relations, restrictive modification, and modality are not wasted in such efforts”

(Pinker & Bloom 1990:724). Secondly, they emphasise the value of language in sup-

porting social interactions, which put “a premium on the ability to convey such socially
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relevant abstract information as time, possession, beliefs, desires, tendencies, obligations,

truth, probability, hypotheticals, and counterfactuals . . . Furthermore, in a group of com-

municators competing for attention there is a premium on the ability to engage, interest

and persuade listeners. This in turn encourages the development of discourse and rhetor-

ical skills and the pragmatically relevant grammatical devices that support them” (Pinker

& Bloom 1990:725). According to Pinker & Bloom, UG evolved as a direct consequence

of the payoff it provided in relation to these communicative functions.

Jackendoff Jackendoff (2002) offers what is essentially an elaboration of the position of

Pinker & Bloom (1990) that the language faculty arose through natural selection. Jack-

endoff focuses on possible stages in the evolution of the language faculty, following

Pinker & Bloom in assuming that any increase in expressive power or precision will

offer selective advantages. Jackendoff is not concerned with the ecological context in

which such adaptations might have arisen, or how innovations would spread through

populations, although he “agree[s] with practically everyone that the ‘Baldwin effect’

had something to do with it” (Jackendoff 2002:237).

Jackendoff’s schedule for the evolution of language is depicted in Figure 1.3 (based on

Jackendoff (2002), Fig 8.1, p238). There are several points worth noting. Firstly, Jack-

endoff views the human language faculty as having evolved out of preexisting primate

conceptual structure andprimate call systems — his first step on the path to language is

the step from stimulus-bound to stimulus-free signalling. Secondly, cultural transmission

is implied in Jackendoff’s second step, to use of an open vocabulary. Thirdly, Jackend-

off’s account is clearly influenced by Bickerton’s notion of a protolanguage intermediate

between primate communication and modern language, but differs from it in the respect

that, for Jackendoff, protolanguage exhibits the very beginnings of syntax. The transition

to using symbol position to convey basic semantic relationships occurs prior to the pro-

tolanguage stage, whereas for Bickerton at the protolanguage stage words are “randomly

concatenated” (Bickerton 1998:349).

Dor & Jablonka Dor & Jablonka (2000) provide a version of the adaptationist argu-

ment which differs from that offered by Pinker & Bloom (1990) and Jackendoff (2002)

in the degree of focus on cultural processes. For Pinker & Bloom and Jackendoff the

evolution of language is basically due to the evolution of the language faculty via biolog-

ical evolution, possibly with the Baldwin effect playing some poorly specified role. Dor

& Jablonka bring the role of cultural innovation followed by genetic assimilation to the

fore, in what they call “the evolutionary spiral”.
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Use of open, unlimited inventory
of symbols

Use of symbol position to convey
basic semantic relationsDevelopment of combinatorial

phonological system

Symbols that explicitly encode
abstract semantic relations

System of inflections to convey
semantic relations

System of grammatical functions to
convey semantic relations

Pre−existing primate conceptual structure

Use of symbols in a stimulus−free fashion

Protolanguage

Hierarchical phrase structure

Modern language

Grammatical categories

Concatenation of symbols

Figure 1.3: Jackendoff’s schedule for the evolution of language. Necessary preadaptations ap-
pear on top of subsequent adaptations. Adaptations which are logically independent appear side
by side.

Dor & Jablonka suggest a scenario where a hominid community uses some culturally-

transmitted communication system which is subserved by a genetically-encoded propen-

sity to acquire such a system. Note that Dor & Jablonka consider culturally-transmitted

communication systems to be common in mammals, despite the view expressed by Hauser

(Hauser (1996), discussed in Section 1.1.2) that this is not the case. In this popula-

tion, linguistic innovations such as “new lexical items for specific referential meanings

. . . some more abstract markers for existing and novel conceptual distinctions . . . new

pragmatic conventions for linguistic communication” (Dor & Jablonka 2000:49) came

about, through teleological processes, as a result of pressure to improve communication.

Such useful innovations then spread through the population. “Crucially . . . the establish-

ment of the innovation also raised the demands for social learning imposed on individuals

in the community . . . the linguistic innovations which established themselves in the com-

munity changed the social niche, and the inhabitants of this new niche had to adapt to

it” (Dor & Jablonka 2000:50). According to Dor & Jablonka this adaptation occurred

through genetic assimilation, with a genetic endowment which permitted easier language

acquisition spreading through the population. The process then repeats with further in-

novations and so on.
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This scenario is opposed to that proposed by Deacon, whose account I present below. Dor

& Jablonka also put a strong emphasis on the role of conscious, functionally-motivated

innovation in shaping language, an issue which I will return to in Chapter 2 in connection

with Tomasello’s account of cultural evolution.

Deacon Deacon (1997) presents an adaptationist account which differs from the ac-

counts of Pinker & Bloom and Jackendoff in placing relatively little emphasis on the

biological evolution of the language faculty and more emphasis on cultural processes.

His account is therefore superficially somewhat similar to that of Dor & Jablonka, but

makes entirely different predictions.

Deacon identifies the enlarged prefrontal cortex of the human brain as the key biological

component of language — “[t]he contributions of prefrontal areas [of the cortex] to learn-

ing all involve, in one way or another, the analysis of higher-order associative relation-

ships . . . These are the most critical learning problems faced during symbol5 acquisition”

(Deacon 1997:264). Deacon regards this aspect of brain morphology as a consequence

of language, rather than an exapted trait:

“The remarkable expansion of the brain that took place in human evolution,

and indirectly produced prefrontal expansion, was not the cause of symbolic

language but a consequence of it. As experiments with chimpanzees demon-

strate, under optimal training conditions they are capable of learning to use

a simple symbol system. So, it is not inconceivable that the first step across

the symbolic threshold was made by an australopithecine with roughly the

cognitive capabilities of a modern chimpanzee, and that this initiated a com-

plicated history of back-and-forth escalations in which symbol use selected

for greater prefrontalization, more efficient articulatory and auditory capac-

ities, and probably a suite of other ancillary capacities and predispositions

which eased the acquisition of this new tool of communication and thought.

Each assimilated change enabled even more complex symbol systems to be

acquired and used, and in turn selected for greater prefrontalization, and so

on.” (Deacon 1997:340)

Deacon suggests that the fitness advantage of symbolic communication is due to the type

of social and communicative benefits outlined in Pinker & Bloom (1990). So far, then,

this is a fairly minor modification to the theory proposed by Pinker & Bloom. Deacon,
5Deacon’s definition is somewhat different from the definition I have adopted.
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however, places heavy emphasis on the cultural evolution of language itself, resulting

from the pressure on language during cultural transmission:

“The structure of a language is under intense selection because in its repro-

duction from generation to generation, it must pass through a narrow bottle-

neck: children’s minds . . . Language operations that can be learned quickly

and easily by children will tend to get passed on to the next generation more

effectively and intact than those that are difficult to learn. So, languages

should change through history in ways that tend to conform to children’s

expectations.” (Deacon 1997:110)

Under this view, the apparent innate endowment of humans to acquire language in the

face of the poverty of the stimulus is merely an illusion, induced by the focus on lan-

guage as a facet of individual psychology, rather than a culturally-transmitted adaptive

system: “Human children appear preadapted to guess the rules of syntax correctly, pre-

cisely because languages evolve so as to embody in their syntax the most frequently

guessed patterns. The brain has co-evolved with respect to language, but languages have

done most of the adapting” (Deacon 1997:122).

This last sentence highlights the difference between the positions of Deacon and Dor &

Jablonka — for Dor & Jablonka, the genetic makeup of a population changes to match

the population’s language, whereas for Deacon the onus is on a population’s language to

change to match the population’s acquisition abilities. Deacon’s position is also counter

to that of Jackendoff, who states that “the limited number of possible choices to which

children are constrained had better be the right ones, otherwise they won’t learn” (Jack-

endoff 2002:84). One consequence of Deacon’s view of language itself as an adaptive

entity is that the choices children are constrained to are guaranteedto be the right ones,

because language adapts to fit them.

1.5 Formal models

The brief review of theories of language evolution outlined above reveals several prob-

lems. Firstly, as indicated by the rough classification of theories as either non-adaptationist

or adaptationist, there is a fairly fundamental disagreement as to whether the evolution

of language can be explained in terms of properties of language itself, as the adapta-

tionists have it, or in terms of some other properties of humans or processes of human

evolution, as the non-adaptationists have it. Secondly, there tends to be a disagreement

about what the evidence actually means — for example, Lieberman and Deacon both
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allow chimpanzees some modest language-like capacity, but while Lieberman presents

this as evidence of his exaptationist account of a capacity for syntax, Deacon presents it

as a gateway into an adaptationist account of language evolution. Similarly, dependent

on one’s interpretation of the KE family “language gene” evidence, it can be taken as

indicating the presence of a genetically-encoded language faculty or the dependence of

language on other, more general, cognitive abilities.

These two problems are not unique to the field of language evolution. Biologists have had

a similar debate about the limits of adaptationism and the role of exaptation with respect

to the evolution of traits in general, and the evidence in most fields of scientific enquiry

is somewhat susceptible to interpretation. There is, however, a third problem exemplified

in this review which I intend to address in this thesis.

All the theories outlined above are purely verbal — the authors of each theory present

the evidence which they feel supports their theory and develop their theories in ways

which seem most consistent, both internally and with the evidence. Problems arise when

competing theories rely on approximately the same premise, but make rather different

predictions. For example, Bickerton and Jackendoff both present theories which include

a protolanguage phase. For Bickerton, once semantic relationships begin to impinge

on the ordering of surface forms language emerges in a fairly straightforward, and for

Bickerton fairly non-interesting, process. For Jackendoff, the ordering of constituents in

protolanguage is already influenced by semantic considerations, but there is still a great

deal to be explained. As another example, Dor & Jablonka and Deacon agree that cultural

and genetic processes play a part in the evolution of language. However, Dor & Jablonka

predict that genes will adjust to accommodate language, whereas Deacon predicts that

language will accommodate the learning biases encoded in the genes. There is no way to

tell which theory is more plausible, given that both are based on purely verbal reasoning

and both appear to be internally consistent. The problem is that our intuitions about how

complex dynamical processes, such as the gene-culture transmission of language, will

unfold are notoriously poor.

Formal models can be a powerful tool for conducting this kind of “opaque thought exper-

iment” (Di Paolo et al.2000). Firstly, constructing a formal model can reveal whether the

consequences of a proposed interaction are as predicted. Secondly, formal models help

to identify which parts of the behaviour of a system rest on which assumptions — to give

a hypothetical example, a formal model might reveal that Deacon is correct (and Dor &

Jablonka are wrong) that cultures adapt to genes, given the assumption that the process of

cultural evolution is ten or more times faster than genetic evolution. The extent to which

these assumptions match up with the theoretical background and empirical evidence then
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gives a measure of the value of the theory underlying the formal model — to continue the

example above, if there were good theoretical and empirical reasons for assuming that

cultural evolution is always at least 50 times faster than biological evolution, the formal

model would tend to support Deacon’s position against that of Dor & Jablonka. Formal

models allow a degree of rigour to be brought to the study of the evolution of language.

1.6 Guide to the thesis

The rest of this thesis is devoted to the discussion and development of formal models

of language evolution, and the extrapolation from these models to theories of language

evolution. I will focus in particular on the evolution of symbolic vocabulary and compo-

sitional structure. Much of this thesis will attempt to explain these aspects of language in

terms of the cultural adaptation of language itself to pressures acting during the cultural

transmission of linguistic form — symbolicism and compositionality are a consequence

of cultural transmission. I will also investigate how biological evolution of learning ap-

paratus can impact on this cultural evolution. In this respect, much of this thesis is an

elaboration of Deacon’s position that “[h]uman children appear preadapted to guess the

rules of syntax correctly, precisely because languages evolve so as to embody in their

syntax the most frequently guessed patterns. The brain has co-evolved with respect to

language, but languages have done most of the adapting” (Deacon 1997:122).

In Chapter 2 I will review general and language-specific models of cultural transmission.

This will form the basis for Chapter 3, in which I describe computational models which

shed light on the learning biases necessary to support a culturally-transmitted symbolic

vocabulary. In Chapter 4 I then investigate how these learning biases might have evolved.

In Chapter 5 I turn to the cultural evolution of compositional structure, and identify two

pressures which lead to the emergence of compositionality. These pressures arise from

the poverty of the stimulus problem and a particular bias in learners. In Chapter 6 I

model the evolution of this learning bias. Finally, in Chapter 7 I draw conclusions from

the research outlined in this thesis, and highlight potential areas in which my general

approach could be expanded.
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CHAPTER 2

Models of cultural transmission

In this chapter I will review formal models of cultural transmission. These models fall

into two groups — models which have been developed to account for cultural trans-

mission in general, and models which have been developed to account for the cultural

transmission of language in particular. The general model of cultural transmission given

here is based heavily on the work of Robert Boyd and Peter Richerson, in particular Boyd

& Richerson (1985) (henceforth B&R). B&R use mathematical techniques adapted from

theoretical biology. The models of the cultural transmission of language have been devel-

oped by a fairly diverse group of researchers, typically (though not exclusively) working

with computational models.

In Section 2.1 I review, in broad terms, two models of cultural transmission. In Sec-

tion 2.2 I review in slightly more detail the mechanisms of cultural transmission acting

in these models. Finally, in Section 2.3 we will see how different pressures acting on

cultural transmission can drive cultural evolution and cultural adaptation, with particular

reference to the cultural evolution of language.

There are two goals for this chapter. The first is to review the range of formal models

which have been used to study cultural evolution in general, and the cultural evolution of

language in particular. This review covers relevant techniques which have been used to

address this question, and suggests areas which are worthy of further formal modelling.

Secondly, some of the fundamental results of B&R’s simple models will prove useful in

interpreting the results of the more complex models introduced in later chapters.
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2.1 General and linguistic models

2.1.1 A general model

A general and simple model of cultural transmission must account for three processes:

1. The cultural transmission of behaviour from a mature population to an immature

population. The target of learning for the immature population is the behaviour of

the mature population.

2. Individual learning by the immature population. The target of learning is deter-

mined by the environment, rather than the mature population.

3. Removal (possibly in a selective fashion) of individuals from the population.

The simplest scenario proceeds as follows. There is some set of immature individuals

and some set of mature individuals. The immature individuals observe and learn from

the mature individuals. The newly enculturated immature individuals then interact with

the environment and adjust their behaviour according to processes of individual learning.

Finally, the environment takes its toll on the population, removing some individuals and

sparing others to produce a new, mature population. The process then repeats with a new

immature population.

Following B&R, the simplifying assumption is made that cultural transmission, individ-

ual learning and selection can be separated out into these discrete stages. In a more

realistic model these processes would be continuously modifying the population.

The distribution of phenotypes in a population at time t can be given by Ft, which speci-

fies the proportion of each phenotype in the population. How does Ft change over time?

We will assume that Ft gives the initial phenotype distribution, prior to any social trans-

mission, individual learning or environmental impacts. F 0
t gives the distribution of phe-

notypes in the population after cultural transmission. This depends on three factors: 1)

Ft, the distribution of phenotypes in the population prior to cultural transmission; 2) F 000
t�1,

the distribution of mature phenotypes in the previous generation participating in cultural

transmission; 3) the mechanism of cultural transmission.

F 000
t gives the distribution of phenotypes in the population once the interaction of indi-

viduals with the environment have been taken into account. These interactions can be

separated into two parts: individual learning, which yields a phenotype distribution F 00
t ,

and differential retention, which yields the final phenotype distribution F 000
t .
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Figure 2.1: A general model of cultural transmission. Ft is the original distribution of pheno-
types at time t (determined by factors other than culture). F 0t is the distribution of phenotypes
after cultural transmission. F 00

t is the distribution of phenotypes after individual interaction with
the environment (specifically, learning). F 000

t is the distribution of phenotypes after individual
interaction with the environment (specifically, death).

F 00
t gives the distribution of phenotypes in the population once individual learning has

been taken into account. This depends on two factors: 1) F 0
t , the distribution of pheno-

types prior to individual learning; 2) the process of individual learning, by which indi-

viduals change their phenotype in response to the environment.

F 000
t gives the distribution of phenotypes in the population after removal of individuals

through death has been taken into account. This depends on: 1) F 00
t , the distribution

of phenotypes prior to death; 2) the process of differential retention, by which some

individuals survive and some individuals are removed due to environmental factors.

The general model of cultural transmission is illustrated in Figure 2.1.

2.1.2 Linguistic models

As discussed in Chapter 1, in the dominant Nativist paradigm language is viewed as an

aspect of individual psychology. Language acquisition is seen as the “growth of cog-

nitive structures [linguistic competence] along an internally directed course under the

triggering and partially shaping effect of the environment” (Chomsky 1980:34). The en-

vironmental triggers which guide the growth of a particular linguistic competence come

from the Primary Linguistic Data (PLD), the language the child observes others using.

Those working within the Nativist paradigm typically emphasises the degenerate nature

of the PLD, in part to offer support for the hypothesised innate UG. However, the fact

that the PLD plays some role in the formation of linguistic competence suggests that lan-

guage is, to some extent, culturally transmitted — an individual’s linguistic competence,
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Grammar 1

Output 1

Grammar 2

Output 2

Figure 2.2: The transmission of language from generation to generation. The output of one
grammar forms the PLD on which other grammars are based. Andersen (1973) points out that
any attempt to make direct connections between grammar and grammar, or output and output, are
spurious.

mediated by performance considerations, leads to linguistic behaviour, which forms the

(degenerate) PLD for the formation of linguistic competence in other individuals.

Chomsky himself tends not to pursue this line of reasoning very far, being “concerned pri-

marily with an ideal speaker-listener, in a completely homogeneous speech-community”

(Chomsky 1965:3). However, the cultural transmission of language is of more interest

to those concerned with language change, which necessarily involves a consideration of

actual speaker-listeners in more or less heterogeneous speech communities.

Andersen (1973) presents an influential early account of phonological change. Andersen

begins with the assertion that “[w]hat is needed is a model of phonological change which

recognizes, on the one hand, that the verbal output of any speaker is determined by the

grammar he has internalized, and on the other, that any speaker’s internalized grammar is

determined by the verbal output from which it has been inferred” (Andersen 1973:767).

This scenario is sketched in Figure 2.2, adapted from Andersen’s (1973) Figure 1.

Andersen applies this cultural approach to an account of phonological change in two di-

alects of Czech. Prior to 1300, Old Czech made a phonemic distinction between plain

and palatalised (“sharped”, in Andersen’s terminology) dental and labial consonants.

From 1300 to the end of the 1400s, most Czech dialects lost this phonemic opposi-

tion, palatalised dentals being replaced with plain dentals and palatalised labials being

replaced with plain labials or plain labials plus /j/. However, in a group of dialects

which Andersen terms the Teták dialects1, palatalised labials became dentals before /i/,

/e/ and /r/. The Teták dialects later lost the dental pronunciation and acquired the more
1This name derives from the pronunciation of the Czech word for “five” by speakers of such dialects.

In more standard Czech five is /pjet/, whereas in Teták dialects it was pronounced /tet/. This difference
is a consequence of the phonological change Andersen is concerned with.
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standard labial pronunciation, perhaps due to the stigma associated with the Teták pro-

nunciation — Andersen reports several standard manners for ridiculing Teták speakers,

including /ti:te ti:vo Sak je s tenou/ (meaning “Drink your beer, never mind the head”),

which would be pronounced /pi:te pi:vo Sak je s penou/ in non-Teták dialects. While

Andersen provides an account of this later remedial change, we will focus here on his

account of the first change which lead to the distinctive Teták pronunciation.

According to Andersen, the loss of a distinction between palatalised and plain labials

and dentals in non-Teták dialects occurred due to errors by learners of those dialects in

their analysis of the tonality of consonants. In Old Czech, the relevant consonants were

either of high tonality (the dentals) or low tonality (the labials). Palatalisation further

heightened the tonality of palatalised dentals or labials. This system is depicted as Stage

1 in Table 2.1a (based on Andersen’s Table 2). Heightened high tonality was reinter-

preted as non-heightened high tonality by learners of the non-Teták dialects, leading to

the loss of the palatalised versus non-palatalised contrast for dentals (Stage 2 in Table

2.1a). Subsequently, heightened low tonality was reinterpreted as non-heightened low

tonality, yielding the final non-Teták system (Stage 3), with no phonemic distinction

based on palatalisation.

The first two stages of the change in Teták dialects proceeded in the same way, as il-

lustrated in Table 2.1b (from Andersen’s Table 3) — the palatalisation distinction was

lost for dentals. However, the third stage of the change proceeded differently in the

Teták dialects. The acoustic manifestation of heightened low tonality is ambiguous. In

the non-Teták dialects this ambiguous tonality was interpreted by learners as represent-

ing underlying non-heightened low tonality. However, in the Teták case learners inter-

preted heightened low tonality as a realisation of underlying non-heightened high tonal-

ity. Adults produced linguistic behaviour which contain realisations of an underlying

phoneme /pj/. This behaviour constituted the PLD for learners. However, the acoustic

ambiguity of the PLD led learners to interpret the consonant of interest as a manifestation

of the underlying phoneme /t/.

Andersen gives examples of similar changes, induced by the ambiguity of the PLD, in the

consonant system of early Latin and the vowel system of Old English. The account of the

different paths taken by non-Teták and Teták dialects as sketched here is of course incom-

plete — it remains to be explained why learners of Teták dialects consistently reduced

the phonemic distinction along different lines from learners of other dialects of Czech.

This could be due to chance, or the phonological or phonetic properties of other parts of

the Teták dialects. Andersen also proposes a system of adaptive rules, by which learners

repair some of their misacquisition of the consonant system by realising certain instances
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(a)
Stage 1 Stage 2 Stage 3

Heightened high tonality /tj/
Non-heightened high tonality /t/

/t/ /t/ High tonality

Heightened low tonality /pj/ /pj/
Non-heightened low tonality /p/ /p/

/p/ Low tonality

(b)
Stage 1 Stage 2 Stage 3

Heightened high tonality /tj/
Non-heightened high tonality /t/

/t/

Heightened low tonality /pj/ /pj/

/t/ High tonality

Non-heightened low tonality /p/ /p/ /p/ Low tonality

Table 2.1: The loss of phonemic distinctions in Czech. (a) sketches the situation in non-Teták di-
alects. At Stage 1 there is a distinction between palatalised and plain /t/ and /p/. The distinction
between the palatalised and plain dental stops is lost at Stage 2. At Stage 3 the distinction is lost
for the labial stop. This results in a reduction from four distinct levels of tonality at Stage 1 to two
levels of tonality at Stage 3. (b) shows the situation in the Teták dialects. Stage 2 proceeds as in
(a). However, at Stage 3 the distinction is lost in a different manner, with heightened low tonality
being reinterpreted as plain high tonality.

of underlying /t/ as /pj/, in line with their adult models. This additional detail is not

important for our purposes — the crucial point of Andersen’s work is his conclusion that

misinterpretation of the PLD by language learners can lead to language change.

Lightfoot (1979) attempts to provide a fairly general account of syntactic change. Light-

foot’s approach is similar to Andersen’s (1973) in taking note of the cultural dimension

of linguistic transmission. Under Lightfoot’s account, languages gradually accumulate

opacity in the derivation of surface forms from underlying syntactic structures. Once

this opacity exceeds some threshold tolerance level, a therapeutic alteration to the un-

derlying grammar is made by language learners, in order to improve the transparency of

derivation. The details of Lightfoot’s notions of transparency of derivation are not impor-

tant here — the key point is that Lightfoot, working within the Chomskyan framework,

addresses the cultural nature of language transmission:

“An individual may be exposed to PLD which is different from the par-

ents PLD . . . One individual may set some parameter differently from older

people in her community; then it is likely that, because of the grammatical

change, she will produce different utterances from other people in her com-

munity. These new expressions, in turn, affect the linguistic environment,

and she will now be an agent of further change, by virtue of the fact that her

younger siblings will have different PLD as a result of what she produces
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with her new grammar. As the younger siblings also set the relevant param-

eter in the manner of the older sister, so other people’s PLD will differ. Thus

a chain reaction is created” (Lightfoot 1999:101)

One of Lightfoot’s central concerns is to emphasise the importance of a theory of gram-

mar in understanding language change. For Lightfoot, the main constraint on language

change derives from the restrictions placed on possible grammars by UG:

“Each generation has to construct a grammar anew, starting from scratch.

Speakers of a given grammar construct a grammar on the basis of the primary

data available [the PLD] . . . A subsequent generation constructs a grammar

in the same way, but if the primary data is now slightly different the grammar

hypothesized will also be different, and there is no reason why it should bear

any closer formal relation to that of the parent generation beyond the defining

requirements of a theory of grammar; after all, small differences in output

may result in large differences in the grammar, and vice versa” (Lightfoot

1979:147)

Lightfoot is particularly keen to rule out grammar-independent principles of change,

which would predict how languages would change and do so in terms abstracted away

from a particular theory of grammar. He criticises Traugott’s (1965) position that “[t]he

objectives of diachronic linguistics have always been to reconstruct the particular steps by

which a language changes, and also to hypothesize about processes of language change

in general”, countering “[t]he neogrammarian legacy of a search for independent princi-

ples of change must be abandoned . . . the distinction outlined here between theories of

grammar and change requires a change of focus, such that these predictions are derived

mostly from a theory of grammar” (Lightfoot 1979:153).

Lightfoot’s position is interesting for several reasons. Firstly, it shows that the Chom-

skyan position can amenably be applied to a study of language change, in which cultural

transmission, via the PLD, plays some role. Lightfoot’s objection to independent prin-

ciples of change will be returned to below in connection with Hurford’s conception of

the Arena of Use, and also in Section 2.3.6 and Chapter 5, where research suggesting a

principle of change (from less to more generalisable grammars) is presented.

Hurford (1987) presents a further elaboration of Andersen’s (1973) conception of lan-

guage change. Hurford closes the loop between the PLD and grammatical competence

via the substrate in which communication takes place, which Hurford dubs the Arena of

Use. An individual’s grammatical competence is expressed in the Arena of Use, which
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itself imposes further communicative pressures and social and cognitive constraints. This

behaviour in the Arena of Use provides the PLD upon which grammatical competence

is acquired. The closing of the loop between grammatical competence and PLD via the

Arena of Use is illustrated in Figure 2.3. According to Hurford, the consequences result-

ing from the filter imposed by the Arena between competence and linguistic output are

potentially non-trivial:

“a speaker learns the most successful ways of expressing his meanings, and

the statistical shape of his output is thus influenced by his experience. It is

of course conceivable that the LAD is so rich that it makes full allowance for

the effect of the arena of use on linguistic output. That is, the LAD might be

able to compensate fully for the ‘distorting’ factors affecting output and be

able to retrieve a more or less perfect replica of the competence(s) involved

in producing the output. But this strikes me as very implausible” (Hurford

1987:22)

In other words, the pressures acting on language as it passes through the Arena of Use

may skew the PLD to learners so as to effect language change. The acoustic ambiguities

which Andersen hypothesises lead to the change in the phoneme inventory of Czech are

one possible consequence of the passage of language through the Arena of Use. Hurford

proposes another, hypothetical, case, where presuppositions about the world associated

with a particular culture lead to inanimate objects rarely being referred to by grammatical

subjects. This consequence of the Arena of Use might lead, Hurford suggests, to children

internalising a grammatical rule prohibiting the appearance of inanimate noun phrases in

subject positions — the way of seeing the world, determined by non-linguistic culture,

impacts via the Arena of Use on the grammar. To the extent that the consequences of

the Arena are predictable, they may result in, contra Lightfoot, independent principles of

change.

To summarise the positions of Andersen (1973), Lightfoot (1979) and Hurford (1987), an

individual’s grammatical competence is now not solely a matter of individual psychol-

ogy, but how that individual psychology applies to data provided by other individuals.

Linguistic behaviour, or E-language2, begets linguistic competence, I-languages, which

beget, via the Arena of Use and the LAD, E-languages. This cultural process, which has

been dubbed the Expression/Induction (E/I) cycle (Hurford 2002a) is sketched in Figure

2.4.
2By E-language I mean the external linguistic behaviour of individuals. The same term has sometimes

been taken to refer to language as an object external to human minds. This is not the interpretation which
makes most sense in this context.
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Figure 2.4: The Expression/Induction cycle. I-Language leads, via expression, to E-language.
E-language leads, via induction (or acquisition, in more neutral terms) to I-language.

The E/I model constitutes a fairly general model of the cultural transmission of language.

Its main shortcoming, as revealed by a comparison with B&R’s general model of cultural

transmission outlined in Section 2.1.1, is a lack of a formal specification of the pressures

acting on language during its cultural transmission. This issue has been addressed re-

cently with the advent of formal models of linguistic evolution, which adopt the E/I cycle

as their starting point. These models can broadly be classified as either Negotiation Mod-

els (NMs) or Iterated Learning Models(ILMs). The primary methodological difference

between the NM and ILM approaches is in their treatment of the verticality of cultural

transmission.

B&R’s general model given above is framed purely in terms of what is known as ver-

tical transmission — a population is considered to consist of discrete, non-overlapping
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generations, with cultural transmission only taking place between generations. Intra-

generational transmission is referred to as horizontaltransmission, and is ignored in the

model sketched above. However, the mathematical analyses which B&R use to investi-

gate cultural evolution in the general model are essentially agnostic about the vertical-

horizontal distinction — much of the analysis remains the same if we view a “generation”

in the general model as snapshot of a monogenerational population interacting with itself.

Similarly, the E/I model is essentially agnostic regarding the vertical-horizontal distinc-

tion. In contrast, the distinction between vertical and horizontal transmission has become

something of a defining characteristic in implementations of models of the cultural trans-

mission of language. In the NM transmission is exclusively horizontal, whereas in the

ILM vertical transmission is paramount. The transmission of language in the real world

presumably lies somewhere between these two extremes.

2.1.2.1 The Negotiation Model

Populations in the NM consist of collections of individuals, who acquire their linguistic

competence based on observations of the behaviour of other individuals. A population

consists of a monogenerational collection of individuals. At each time-step members of

the population produce observable linguistic behaviour, which is observed and learned

from by other members of the population. This process is illustrated in Figure 2.5. There

is no population turnover in the NM — new individuals do not enter the population and no

individual leaves. Transmission is therefore exclusively horizontal. The NM framework

is used by, for example, Hutchins & Hazelhurst (1995), Steels (1997), Batali (1998),

Hazelhurst & Hutchins (1998), Steels (1998), Smith (2001a) and Batali (2002).

2.1.2.2 The Iterated Learning Model

In the ILM, as in the NM, populations consist of collections of individuals, who acquire

their linguistic competence based on observations of the behaviour of other individuals.

Unlike in the NM, there is population turnover in the ILM. This turnover can either be

generational (see Figure 2.6 a), where the entire population is replaced at each time-step,

or gradual (see Figure 2.6 b), where a single individual is replaced at each time-step.

In the generational ILM individuals at generation n + 1 acquire their competence based

on observations of the behaviour of the generation n population. In the gradual turnover

ILM, each new individual acquires its competence based on observations of the behaviour

of the population they enter. In either case, transmission is exclusively vertical, from fully

enculturated individuals to naive individuals. The ILM framework is used in, for exam-

ple, Hare & Elman (1995), Oliphant & Batali (1997), Kirby (1999), Livingstone & Fyfe
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Figure 2.5: The Negotiation Model. The population consists of a collection of individuals,
represented by circles. Individuals produce observable (linguistic) behaviour, which is learned
from by other members of the population. There is no population turnover. Cultural transmission
is therefore purely horizontal, acting within the monogenerational population.

(1999), Nowak et al. (1999), Oliphant (1999), Brighton (2000), Hurford (2000), Kirby

(2001), Nowak et al. (2001), Kirby (2002), Smith (2002), Smith et al.(forthcoming) and

Smith et al. (submitted).

2.2 Transmission and Cultural Traits

Given these two frameworks for studying cultural transmission (B&R’s general model,

and the E/I framework), several issues remain to be resolved. Firstly, how do we char-

acterise the range of possible cultural variants? Secondly, how are these cultural traits

transmitted? Section 2.2.1 describes B&R’s two models of cultural traits and the trans-

mission of such traits. Section 2.2.2 outlines the nature of cultural traits in the E/I model

and the somewhat contentious issue of what information is available to learners during

the transmission of linguistic structure.

2.2.1 Cultural traits and transmission in the general model

B&R provide two basic and very abstract treatments of possible cultural traits. In the

dichotomous traitmodel there are two possible cultural traits, with individuals having

one or the other trait. In the slightly more complex continuous traitmodel there are

an unlimited number of possible cultural traits, each of which is assigned a numerical

value. Each individual’s cultural character is given by the numerical value of the trait

they possess.
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Figure 2.6: The Iterated Learning Model. In the generational version of the ILM (a), the observ-
able behaviour produced by generation n individuals is observed and learned from by generation
n + 1 individuals. In the gradual turnover version (b), a single individual is removed from the
population at each time-step, to be replaced by a single individual. The new individual learns
from the observable behaviour produced by the rest of the population. In both versions of the
ILM cultural transmission is therefore purely vertical, with transmission proceeding from fully
enculturated individuals to naive individuals.
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B&R are not primarily concerned by how an individual’s cultural trait manifests itself

in that individual’s behaviour. They assume that naive individuals can estimate the cul-

tural trait possessed by mature individuals, possibly with some small error. B&R are

more concerned with how the transmission of such traits can affect the cultural make-up

of the population. In part, B&R can avoid being specific about how cultural traits are

stored in the brain, manifested in behaviour and estimated by naive individuals because

their model is very general. Firstly, their somewhat simplistic treatment of cultural traits

is unlikely to specifically offend any particular specialism, or indeed offend all groups

equally. Secondly, their model of cultural traits shouldbe poorly specified, given their

general aims of investigating how cultural transmission can result in cultural evolution,

abstracted away from any particular putative cultural trait.

As shown in Section A.1.1 of Appendix A, B&R show that cultural transmission alone, of

either dichotomous or continuous traits, does not result in cultural evolution — assuming

that naive individuals acquire their cultural traits on the basis of a random sample of

enculturated individuals, and individuals are unbiased with respect to which cultural trait

they acquire, the distribution of cultural variants in the population will remain unchanged.

Cultural evolution therefore does not automatically follow from cultural transmission —

some pressure other than unbiased transmission is required for cultural evolution.

2.2.2 Cultural traits and transmission in linguistic models

B&R’s simple characterisation of cultural variants and their assumption that the particu-

lar cultural variant an individual possesses is easily determinable from that individual’s

behaviour prove somewhat limiting when applied to the modelling of the transmission

of language. There are three key difficulties in applying B&R’s approach to models of

linguistic transmission, outlined in the following three sections.

2.2.2.1 The simplicity of B&R’s cultural traits

Firstly, B&R’s characterisation of cultural traits (dichotomous or continuous) is too sim-

ple to capture most aspects of linguistic behaviour. Variations of their model have proved

useful in certain cases. For example, Kirby (1999) (Chapter 2) considers the cultural evo-

lution of grammars which exhibit either verb-object or object-verb order, and are either

prepositional or postpositional. Kirby therefore treats grammars as pairs of dichotomous

traits, and models how the distribution of the two traits impact on each other. Briscoe

(2000a) characterises grammars as either head-initial or head-final, equivalent to a single
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dichotomous trait. Finally, Nowak et al. (2001) model the cultural evolution of multi-

ple competing grammars. In B&R’s terms, each grammar could be treated as a distinct

integer, with grammatical competence then corresponding to a continuous trait. These

models are described in more detail in Section 2.3.

However, B&R’s model of cultural traits is insufficient to deal with more detailed ques-

tions of linguistic structure. Firstly, in a dichotomous or continuous trait model there is

no notion of the structure within a particular trait. It would be possible to interpret such

a model in this way, and say, for example, that trait t represents a language with aggluti-

nating morphology and head-initial syntax. This is essentially the approach adopted by

Kirby (1999) and Briscoe (2000a). There are two main problems with this approach:

1. There is no way to model how the internal structure of a morphological or syntactic

system changes over time due to cultural transmission — a cultural trait is either

present or absent in B&R’s system, and the only possible change in a cultural trait

is a change from presence in a particular individual to absence, or vice versa.

2. There is no way to investigate how the internal structure of a grammatical system

impacts on its fecundity or fidelity during cultural transmission, short of explicitly

imposing such factors. For example, Kirby (1999) defines a constant which deter-

mines to what extent verb-object order is favoured in the presence of prepositions,

then sets this constant to some (theoretically well-motivated) value.

In addition to these problems relating to a lack of structure within a particular traits,

there is an associated problem of a lack of structure betweentraits. In the dichotomous

model there is no structural relationship between traits, other than one of dichotomy.

In the continuous trait model, cultural traits are organised in a linear fashion, with the

only structural relationship being one of numerical distance. Nowak et al. (2001) fall

foul of this problem in modelling the degree of similarity between grammars, which they

effectively treat as numerical values. Given the lack of structure within grammars in

their model, it is meaningless to say to what extent users of two distinct grammars share

grammatical structures, or to quantify the probability of a learner acquiring a particular

grammar on exposure to expressions generated by another grammar. Nowak et al. cir-

cumvent this problem by assigning arbitrary (constant or random) degrees of similarity

between grammars, a rather unsatisfactory solution.

Most implementations of E/I models therefore develop a more complex treatment of

cultural traits. The nature of the model depends on the linguistic behaviour of interest.

Broadly, models can be classified as investigating the cultural transmission of vocabulary

systems, or syntacticsystems.
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In vocabulary models, an individual’s competence typically consists of a mapping be-

tween a set of unstructured meanings and a set of unstructured signals. Such models are

typically concerned with the impact of the population’s vocabulary on communication

within the population. These models therefore typically include some evaluative phase,

where individuals attempt to communicate meanings to one another using their acquired

mappings from meanings to signals. The communicative accuracy between two individ-

uals is calculated according to a formula with the canonical form:

communicative accuracy (S;H) =
X
i

X
j

p (sjjmi) � r (mijsj)

where S and H are speaker and hearer, p (sjjmi) gives the probability of the speaker S

producing signal sj to communicate mi and r (mijsj) gives the probability of the hearer

H interpreting signal sj as communicating meaning mi. It should be noted that 1) the

evaluation of communicative accuracy is typically distinct from the cultural transmission

phase and 2) communicative accuracy typically plays no role in shaping the communi-

cation system of the population and 3) implicit in this measure is the assumption that

meanings are functionally distinct — for example, if two meanings mi and mj result in

the same behaviour on the part of the receiver and r (p (mi)) = mj then the communica-

tion would be measured as a failure but could, at the behavioural level, be considered a

success.

The definition of communicative accuracy above implies a definition of communication

which is similar to that of Johnson-Laird (1990), who states that “the communicator

[must] construct an internal representation of the external world, and then . . . carry out

some symbolic [not necessarily in the strict sense I have used in Chapter 1] behaviour that

conveys the content of that representation. The recipient must first perceive the symbolic

behaviour, i.e. construct its internal representation, and then from it recover a further

internal representation of the state that it signifies” (Johnson-Laird 1990:2–4). Commu-

nication systems are therefore defined as systems for mapping between meanings and

signals. Communication is a success where the internal representations of communicator

and recipient are the same.

In syntactic models, an individual’s competence typically consists of some system, pos-

sibly principled, for mapping between structured meanings and structured signals (for

example, a context free grammar with semantic operations associated with rewrite rules).

Syntactic models tend to be less concerned with how cultural evolution impacts on com-

munication within a population, and more concerned with how the system for mapping
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from meanings to signals changes over time. A key question tends to be the extent to

which the structure of meanings and signals is exploited during the meaning-signal map-

ping process — do compositional mappings emerge?

Examples of these models will be described in more detail later in this Chapter. The

key point here is that a much more complicated model of cultural traits is used. This

has several benefits. Firstly, interesting linguistic behaviour can be modelled in a less

abstract way. An explicit model of a meaning-signal mapping, be it a vocabulary-type

mapping or a syntactic mapping, allows measures of structure within and between dif-

ferent individual’s acquired cultural traits to be fairly naturally defined. However, this

enriched treatment does have drawbacks. Firstly, the notion of cultural traits becomes

somewhat fuzzy. For example, in a vocabulary system, is a cultural trait an individual’s

whole system of mapping from meanings to signals, or could an individual’s cultural

character be considered as consisting of several traits, with each trait specifying a sin-

gle meaning-signal association? Secondly, the more complex models make the type of

mathematical analysis used by B&R difficult, if not impossible. There is a tradeoff be-

tween the richness of the treatment of cultural traits and the transparency of the model’s

results. One of the goals of this Chapter is to relate B&R’s simple models to the more

complex, linguistically-flavoured models, allowing the rich results generated by the latter

to be interpreted in the simple, clear terms of the former.

2.2.2.2 Is the cultural transmission of language possible?

A second major problem with applying B&R’s approach to linguistic evolution is identi-

fying what cultural traits correspond to in linguistic theory. In terms of the E/I framework,

there are two possibilities — a cultural trait could characterise an individual’s linguistic

competence, their I-language, or their linguistic behaviour, their E-language. Our pref-

erence, implicit in the discussion above, should perhaps be towards interpreting an indi-

vidual’s cultural trait as corresponding to their I-language. E-language is derived from

I-language, and is contingent on the set of situations which require this internal compe-

tence to be pressed into service to produce linguistic behaviour. With this interpretation,

the range of possible cultural variants is circumscribed by the limitations imposed by

the representation of I-language. An individual’s externally visible manifestation of their

cultural trait is the E-language they produce, which is determined by factors related to

considerations imposed by the Arena of Use.

However, this interpretation throws up another problem. I-language, as is apparent from

Figures 2.2, 2.3 and 2.4, is not directly transmitted, but is acquired via the PLD, which in
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turn comes from E-language. B&R assume that an individual’s cultural trait can be de-

termined from their behaviour either straightforwardly (in the dichotomous trait model)

or with some normally-distributed error (in the continuous trait model). This is too sim-

plistic an approach to dealing with the transmission of I-language. To take an extreme

view, it could be argued that the filtering through E-language makes it difficult, or in-

accurate, to speak of I-language being transmitted at all. This would be the position

favoured by Chomsky (“it seems that a child must have the ability to ‘invent’ a genera-

tive grammar” (Chomsky 1965:201)) and Lightfoot (“[e]ach generation has to construct

a grammar anew, starting from scratch” (Lightfoot 1979:147)). This argument could be

applied to the cultural transmission of any trait. For example, how can a naive individual

guess at the internal state of its cultural parent that determines political persuasion, based

on behaviour?

Two points should be made to at least cast doubt on this very strong negative position.

There is a large body of evidence suggesting that cultural transmission is a fact for non-

linguistic traits — B&R cite 57 articles in a brief review of evidence pointing towards the

reality of cultural transmission (Boyd & Richerson 1985:47–55). It is therefore possible

that cultural transmission also applies to language. With particular reference to language,

the fact that speakers within a speech community tend to agree on what constitute valid

grammatical sentences and so on should make us doubt that they all have radically dif-

ferent I-languages. The most parsimonious explanation for this is that I-language is, to

some extent, culturally transmitted.

If we reject the strong negative view, we are left with a wide range of possible degrees

of cultural transmission. The strongest positive view would be that the filter through E-

language is completely irrelevant. This too seems unreasonable. Firstly, there may be

several (or indeed infinitely many) possible grammars which are consistent with a par-

ticular PLD. A learner bound to be consistent with the observed PLD might therefore

converge on a different grammar from the grammar which produced that PLD. Whether

or not learners are bound to be consistent with their PLD is another issue. Both Ander-

sen (1973) and Lightfoot (1979) assume that they are. However, radical restructuring

events such as creolization suggest that this constraint may be fairly weak. A second

point against the strongly positive view of cultural transmission of I-language would be

Hurford’s (1987) comments about the possible skewing effects introduced by the Arena

of Use.

Where does this leave us? B&R’s assumption of unproblematic cultural transmission is

too simple when it comes to language — the filtering of I-language through E-language

is unlikely to be so trivial as be ignorable. However, I-language probably is transmitted to
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some extent — we should reject Chomsky’s and Lightfoot’s position that children invent

their I-language anew each generation.

2.2.2.3 The nature of the PLD

A subsidiary question is: what actually constitutes the PLD? The only aspect of linguis-

tic behaviour which is uncontroversially determinable is the acoustic (or visual) sequence

produced by an individual when that individual speaks (or signs). However, most imple-

mentations of the E/I model (NMs and ILMs) assume that this observable signal is paired

with the communicative intention of the individual producing the signal — the PLD con-

sists of meaning-signal pairs. This is not an uncontroversial assumption, nor is it an

assumption which is always made.

In most implementations of the E/I model there is no explicit modelling of an environ-

ment outwith the individuals that make up the population — meanings and signals in the

model are arbitrary agent-internal representations. It is typically assumed that there is

some shared, stable mapping between external situations and internal representations of

those events — indeed, cultural transmission of linguistic structure would be impossible

without an external manifestation of internal representations of signals. However, this

mapping is not typically the focus of E/I models, which concentrate instead on the map-

ping between internal representations of meanings and signals. An account of language

as a mapping from aspects of the environment to other aspects of the environment must

account for two additional mappings (see Figure 2.7):

� the mapping between states of the environment representing situations to be com-

municated and internal representations of those states (meanings).

� the mapping between communicative alterations of the environment and internal

representations of those alterations (signals).

The nature of the mapping between environment and meaning forms a key part of the

symbol grounding problem (Harnad 1990) — the meaning of internal representations

must, at some point, be related to the objects or situations in the world which they refer

to. The mapping between environment and signal corresponds to a mapping between

strings of phonemes and articulatory movements. Most E/I models simply assume that

these two mappings from internal representations to the environment are shared by all

simulated individuals.
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Environment
Signals

Meanings

Figure 2.7: Language as a mapping between three spaces (represented as ellipses). Typically,
E/I models focus on the mapping between two spaces — the internal representational spaces of
meanings and signals. This mapping is given in solid lines. A complete model must account
for two additional mappings — the mappings between the environment space and the internal
representational spaces (dashed lines).

Given the absence of an explicit model of the environment, the assumption that learners

observe meaning-signal pairs is unavoidable. In a fuller model, the more reasonable as-

sumption could be made that learners are exposed to an environment which includes a

state being communicated about and a set of articulatory gestures intended as a commu-

nicative alteration to the environment. The learner then has the task of identifying the

communicatively relevant state and the communicative alteration, representing both in-

ternally and then learning the mappings between the internal representations and possibly

the mappings between the internal representations and the environment.

There is a body of evidence which suggests that children have various strategies for map-

ping from the environment to internal representations of relevant parts of the environ-

ment. Much of this points to the importance of joint attention and intentional inference.

Studies by Baldwin (Baldwin 1991; Baldwin 1993a; Baldwin 1993b) show that infants

cannot learn words for toys simply by hearing the word for the toy while attending to the

toy. The child must witness an intentional agent direct their attention to the toy while

naming it. Under these circumstances the infant will learn the word for the toy, even if

there is a delay between witnessing the intentional agent directing their attention at the

toy and being able to attend to the toy directly themselves.

While most E/I models ignore the issue of the environment-internal representation map-

pings, some computational modelling work within the E/I framework has sought to tackle

this problem. Neural network models show that genetic evolution can lead to the for-

mation of internal representations which correspond to a categorisation of the environ-

ment (Cangelosi & Parisi 1998). These internal representations may form the basis of
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a (partially) culturally-transmitted communication system (Cangelosi 1999). Hazelhurst

& Hutchins (1998) show that the negotiation of ritualised shifts of joint attention sub-

serves the emergence of a learned communication system. Symbolic computational mod-

els demonstrate that shared mappings from the environment to internal representations

of meanings can emerge through individual learning, both with explicit feedback (e.g.

Steels (1997), Steels (1998)) and without (Smith 2001a). Finally, it has been demon-

strated that repeated expression and induction of strings of words can lead to the emer-

gence of meaning, where meaning is defined in terms of the relationship between words

and other words — the emergent mesh of word-word associations constrains and guides

the interpretation of signals (Hashimoto 1998). These models and the data from real lan-

guage acquisition outlined above give some hope that an integrated model, of the type

depicted in Figure 2.7, will be achievable. However, for the purposes of this thesis I will

assume that the PLD available to learners consists of meaning-signal pairs.

2.3 Forces acting on cultural transmission

The general model of cultural transmission provided by B&R and the more language-

specific E/I models raise several interesting issues on the nature of cultural traits and the

manner in which these traits are transmitted. However, these questions are typically not

the central concern of such models, nor are they of great importance for the purposes

of this thesis. Of more interest is how the processes involved in cultural transmission

outlined in Section 2.1.1 (transmission itself, individual learning by enculturated indi-

viduals, and selective removal of enculturated individuals) impact on the distribution of

cultural traits in the population. Do any of these processes lead to significant cultural

evolution?

The models of B&R are used to frame much of this discussion. They provide mathemat-

ical accounts of how three pressure acting on transmission can result in cultural change

and cultural evolution. These are:

1. Natural selection of cultural variants, resulting from selective removal of encultur-

ated individuals.

2. Guided variation, resulting from individual learning by enculturated individuals.

3. Biased transmission, resulting from the strategy of learners during cultural trans-

mission. The forces of biased transmission can be further subdivided into three

forms:

(a) Directly biased transmission, resulting from a preference for learners to ac-

quire one cultural variant over another.
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(b) Indirectly biased transmission, resulting from a preference for learners to ac-

quire cultural traits which are associated with other cultural traits.

(c) Frequency-dependent transmission, resulting from a disproportionate prefer-

ence for learners to acquire the most (or least) frequent cultural trait in the

population.

In Sections 2.3.1 to 2.3.5 B&R’s models for these pressures are reviewed. In the in-

terests of clarity, a separate section is devoted to each of the three subtypes of biased

transmission. Mathematical details are given in Appendix A.

The main goal of this part of the thesis is to relate B&R’s simple models to the more com-

plex, linguistically-flavoured models. This allows the linguistically-interesting, some-

what complex results generated by the linguistic models to be interpreted in the simple,

clear terms of B&R’s models. To this end, each section describing one of B&R’s pres-

sures on cultural transmission is followed by one or more sections which introduce details

of a linguistic (usually E/I) model, and discusses how that model can be interpreted in

terms of B&R’s model.

Finally, in Section 2.3.6, a new driving force for cultural evolution is introduced. This

pressure, which arises from transmission through a bottleneck, does not feature in B&R’s

taxonomy, but is extremely relevant to the cultural transmission of linguistic structure.

As the structure of this Chapter is somewhat intricate, a full preview is perhaps in order.

Section 2.3.1 : Natural selection of cultural variants

Section 2.3.1.1 : B&R’s model

Section 2.3.1.2 : Linguistic case study: the evolution of vocabulary under natural

selection.

Section 2.3.1.3 : Linguistic case study: the evolution of grammar under natural

selection.

Section 2.3.2 : Guided variation

Section 2.3.2.1 : B&R’s model

Section 2.3.2.2 : Linguistic case study: Tomasello’s cultural ratchet

Section 2.3.3 : Directly biased transmission

Section 2.3.3.1 : B&R’s model

Section 2.3.3.2 : Linguistic case study: the evolution of consistent head ordering

under direct bias

Section 2.3.3.3 : Linguistic case study: the evolution of vocabulary under direct

bias
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Section 2.3.3.4 : Linguistic case study: the evolution of morphological structure

under direct bias

Section 2.3.4 : Indirectly biased transmission

Section 2.3.4.1 : B&R’s model

Section 2.3.4.2 : Linguistic case study: Croft’s utterance-based theory

Section 2.3.5 : Frequency-dependent transmission

Section 2.3.5.1 : B&R’s model

Section 2.3.5.2 : Linguistic case study: the evolution of head ordering under

frequency-dependent bias

Section 2.3.6 : Transmission through a bottleneck

Section 2.3.6.1 : Linguistic case study: the evolution of recursive compositional-

ity in the ILM

Section 2.3.6.2 : Linguistic case study: the evolution of recursive compositional-

ity in the NM

2.3.1 Natural selection of cultural variants

Natural selection was originally conceived of by Darwin as a mechanism for explaining

the appearance of design in biological organisms.

“Owing to this struggle for life, variations, however slight and from whatever

cause proceeding, if they be in any degree profitable to the individuals of a

species, in their infinitely complex relations to other organic beings and to

their physical conditions of life, will tend to the preservation of such indi-

viduals, and will generally be inherited by the offspring. The offspring, also,

will thus have a better chance of surviving, for, of the many individuals of

any species which are periodically born, but a small number can survive. I

have called this principle, by which each slight variation, if useful, is pre-

served, by the term Natural Selection.” (Darwin 1859/1964:61)

Modern definitions appeal to three factors mentioned in Darwin’s original formulation

— variation, inheritance and selective survival or propagation. While there is some on-

going debate about the precise formulation of a definition of natural selection, Futuyma

(1998) concludes that “[m]ost authors agree that the definition must include the follow-

ing concepts: some attribute or trait must vary among biological entities, and there must

be a consistent relationship, within a defined context, between the trait and one or more

components of reproductive [implying heredity] success, where ‘reproductive success’
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includes both survival (a prerequisite for reproduction) and the reproductive processes

themselves.” (Futuyma 1998:349).

This definition is actually rather general, excepting the single reference to “biological

entities”. Donald Campbell (Campbell 1965; Campbell 1975) presents an extension of

the principle of natural selection to account for cultural evolution. Campbell’s main con-

tribution is to present an argument that the three central factors (variation, inheritance

and selective retention or reproduction) required for natural selection occur in cultural

systems. If cultural systems exhibit variation within or between populations, if cultural

systems are in some sense heritable, and if there is selection either in the survival of

cultural systems or selection in the elevation to roles allowing influence in the encultur-

ation of others, then we should expect to see cultural evolution under natural selection.

Campbell is optimistic that culture exhibits variation and selection, but acknowledges

that “retention and duplication [inheritance], is also more problematic for social evolu-

tion than for biological evolution. What are required are mechanisms for loyally repro-

ducing the selected variations.” Campbell concludes that such inheritance systems are

possibly present in culture — “through social mechanisms of child socialization, reward

and punishment, socially restricted learning opportunities, identification, imitation, em-

ulation, indoctrination into tribal ideologies, language and linguistic meaning systems,

conformity pressures, social authority systems, and the like, it seems reasonable to me

that sufficient retention machinery exists for a social evolution of adaptive social belief

systems and organizational principles to have taken place” (Campbell 1975:1107).

2.3.1.1 B&R’s model

B&R model the natural selection of cultural variants by assuming that there are a set of

distinct social roles (e.g. mother, father, uncle, priest, teacher). Each naive individual

acquires their cultural characteristic based on observation of a subset of these roles. In

order to model natural selection we must assume that the probability that an individual

attains a particular social role depends on the cultural variant that that individual pos-

sesses. As shown in Section A.1.2.1 of Appendix A, if a particular cultural variant c

offers a selective advantage when averaged over social roles (i.e. individuals with variant

c are, on average, more likely to attain a social role than individuals with some other

cultural variant) then it will increase in frequency in the population. In other words, if

possessing variant c makes an individual more likely to occupy a role which allows them

to enculturate others and transmit that variant, then c will increase in frequency in the
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population. The rate of increase of the favoured variant is dependent on cultural varia-

tion in the population — in the extreme case, where the population exhibits no variation,

natural selection of cultural variants has no impact.

2.3.1.2 Linguistic case study 1: the evolution of vocabulary under natural selection

Martin Nowak and colleagues have applied techniques from theoretical biology to the

study of language evolution. With the exception of one published work (Nowak et al.

(2000), discussed in Chapter 6), the work of Nowak et al. falls within what B&R describe

as natural selection models of cultural evolution. Nowak et al. make the assumption, fol-

lowing the lead of Pinker & Bloom (1990), that “[i]t pays to talk. Cooperation in hunt-

ing, making plans, coordinating activities, task sharing, social bonding, manipulation and

deception all benefit from an increase in expressive power. Natural selection . . . can cer-

tainly see the consequences of communication” (Nowak & Komarova 2001:288). Based

on this assumption, Nowak et al. use essentially the same model to study the evolution

of symbolic vocabulary (described here) and universal grammar (as described in Section

2.3.1.3).

In Nowak et al.(1999), individuals are required to communicate about n objects using m

signals. Each individual is characterised by an association matrix, A, which is an n�m

matrix where entry aij gives the number of times during learning that that individual has

observed its cultural parents communicating about object i using signal j. From this A

matrix P and R matrices can be derived3. An individual’s P matrix is an n�m matrix,

where entry pij gives the probability of that individual producing signal j to communicate

about object i. An individual’s R matrix is an m � n matrix, where entry rij gives the

probability of that individual associating signal i with object j when acting as a receiver.

P and R are derived from A by normalising over rows and columns respectively:

pij =
aijPm
l=1 ail

rji =
aijPn
l=1 alj

The communicative payoff for two individuals I1 and I2, where individual Ik is charac-

terised by A matrix Ak, is:
3Nowak et al. refer to the R matrix as the Q matrix. However, R is used here to avoid confusion with

the Q matrix introduced in Nowak et al. (2001), which serves a completely different purpose.
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F (I1; I2) =
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(2)
ij r
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ji

�

where p(k)ij is an entry in the P matrix derived from Ak and r(k)ij is an entry in the R matrix

derived from Ak. This equation states that the payoff for communication between I1 and

I2 is the average of I1’s ability to communicate about objects to I2 and I2’s ability to

communicate about objects to I1, averaged over all objects. The communicative payoff

for an individual II with respect to a population of N individuals I1 to IN is:

FI =
X
J

F (II ; IJ)

where J = 1; : : : ; N but J 6= I .

An individual arrives at their A matrix by sampling the production behaviour of K cul-

tural parents. For each cultural parent, the individual observes them produce a signal

for every object k times, according to the parent’s P matrix. For each observation of

a cultural parent producing signal j in association with object i the learning individual

increments the value of aij with probability 1� � and increments the value of aik 6=j with

probability �. � therefore gives the probability of errors during learning.

Nowak et al. consider two models of cultural transmission. In the first case, individuals

select K cultural parents at random from the preceding generation of the population. In

this case there is no natural selection on cultural transmission — an individual’s com-

municative accuracy, a consequence of their culturally-acquired communication system,

does not influence the probability of that individual acting as a cultural parent. Nowak

et al. report two results for this case:

1. when � = 0 (learning is error free) the populations converge on sub-optimal com-

munication systems. The population converges on a shared random binary (all

entries are either 0 or 1) A matrix. Typically, these random matrixes will result in

some intermediate level of communicative payoff. Fairly minor effects were found

for different values of k (number of exposures to object-signal pairs) and K (num-

ber of cultural parents). For k = 1 or K = 1 convergence is rapid. For k > 1 or

K > 1 convergence is somewhat slower, but the populations converge to similar

levels of communicative payoff.
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2. when � > 0 communicative payoff decreases, with shared communication systems

failing to emerge when � � 0:01.

In their second model of transmission, each individual selects K cultural parents from

the preceding generation, with the probability of any individual I being selected as a

cultural parent being FI=
P

J FJ . This amounts to natural selection during cultural trans-

mission, with systems which result in higher communicative payoff being more likely to

be transmitted. Nowak et al. report three results for this case:

1. when K = 1 (individuals have a single cultural parent) and 0 < � < 0:01 the

populations converge on a range of communication systems, some of which offer

maximal payoff and some of which are sub-optimal. The overall level of pay-

off is higher than for the no-selection case. k = 1 (a single exposure to each

meaning-signal pair) results in the fastest convergence, but the eventual level of

communicative payoff is independent of k.

2. when K > 1 (individuals have multiple cultural parents) and � = 0 (learning is

error-free) the populations converge on a range of communication systems, some

of which are suboptimal. Convergence is slower than in the K = 1 case, but the

average payoff of the final systems is higher.

3. whenK > 1 and � > 0 (learning is subject to errors) the average payoff of the pop-

ulations depends on �. When 0 < � < 0:01 the populations behave approximately

as they did when � = 0, with some populations converging to optimal systems

and some converging to suboptimal systems. When � > 0:01 the populations fail

to converge on any shared communication system. However, when � = 0:01 all

populations converge on an optimal system. Nowak et al. do not explore further,

to identify the width of this “sweet spot” for �.

These results essentially meet the predictions of B&R’s dichotomous trait model. In the

absence of selection, the distribution of cultural variants remains unchanged except for

changes introduced by random factors, which B&R do not consider. For the selection

case, cultural variants which maximise some fitness function become more frequent, al-

though this increase in frequency is dependent on variance in the population. BothK > 1

(multiple cultural parents) and � > 0 (errors during learning) introduce variance in the

population, although there appears to be a sweet spot for �. Nowak et al.only experiment

with a relatively limited range of values of K however, so it is not possible to tell if there

is a sweet spot for K.
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The model does offer several advances on the very simple model provided by B&R,

however. There is a far wider range of possible cultural variants (there are a poten-

tially infinitely many A matrices, although the set of culturally-stable A matrices is much

smaller, being restricted to the mn possible binary matrixes which have a single signal

associated with each meaning). Secondly, the cultural fitness function depends on the

structure of the cultural variants involved, rather than being arbitrarily assigned.

2.3.1.3 Linguistic case study 2: The evolution of universal grammar

Nowak et al. (2001) use a similar technique to study the evolution of universal grammar.

In their model, a universal grammar U consists of a set of n grammars, numbered 1 to

n. Each grammar Gi could be described as a rule system that defines a mapping between

syntactic representations and semantic representations. �1 is the finite syntactic alphabet

and �2 is the finite semantic alphabet. ��1 is the countably infinite set of all possible strings

of characters drawn from �1, representing the set of all possible syntactic representations.

Similarly, ��2 is the countably infinite set of all possible meanings, where meanings are

strings of characters drawn from �2. A grammar Gi specifies a (potentially infinite)

subset of ��1 � ��2 , a mapping between semantic and syntactic representations. However,

Nowak et al.do not exploit this notion of a grammar, as we will see — the behaviour of

grammars with respect to communication and learning is essentially arbitrary.

As in Nowak et al. (1999), a measure of similarity among different communication sys-

tems is required. For the case of the grammar model, this is given by the probability

that a meaning-signal pair present in Gi is present in grammar Gj . This probability is

denoted4 by cij, and it is assumed that cii = 1. This measure of overlap between two

grammars allows for a straightforward definition of the communicative payoff between

two grammars, F (Gi; Gj):

F (Gi; Gj) =
1

2
(cij + cji)

Notice the similarity to the communicative payoff equation given in the previous section

— the form is identical, but the summation and production-reception calculations are par-

celled up into the measure cij . The fitness of a grammar Gi with respect to a population

is given by
4Nowak et al. (2001) use aij to denote the probability that meaning-signal pairs generated by G i are

acceptable to Gj . However, the notation cij is used to avoid confusion with the A matrix notation in Nowak
et al. (1999).
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fi =
X
j

xjF (Gi; Gj)

where xj is the frequency of grammar j in the population. This is exactly equivalent to

the equation used by Nowak et al. (1999) in their model of the evolution of vocabulary.

Finally, a model of learning is required. Nowak et al. assume that children attempt to

learn the grammar of their parents. Qij is the probability that a child whose parent uses

grammar Gi will acquire grammar Gj . The dynamics of the population are then specified

by:

_xi =
nX

j=1

xjfjQji � �xi

where � is the average fitness of the population, � =
P

i xifi. The change in frequency

of a grammar Gi therefore depends on the product of the frequency of some grammar

Gj, the fitness of that grammar relative to the average fitness of the population, and the

probability of learning grammar Gi based on exposure to grammar Gj, summed over all

grammars. This is clearly a model of natural selection acting on cultural transmission,

given that the change in frequency of a grammar depends on the fitness of that grammar.

However, the frequency of a grammar also depends on its learnability — a grammar with

below-average Qji will decrease in frequency due to its being difficult to learn, unless

it offers above-average communicative payoff. This model can therefore, depending on

the choice of values of Q, model directly-biased transmission (to be discussed in Section

2.3.3) in addition to natural selection. However, Nowak et al.do not pursue this avenue.

Nowak et al. report three results for this model.

1. For the case where learning is error-free (i.e. Qii = 1, Qij = 0 where j 6= i) there

are n stable equilibria where one grammar completely dominates the population

(xi = 1 and xj = 0 for all j 6= i).

2. For high error rates, the only stable solution is the case where each grammar occurs

in the population with approximately equal frequency (xi � 1=n).

3. For the special case where all grammars are equidistant (i.e. cii = 1 and cij = c

for all j 6= i, where 0 � c � 1, and Qii = q and Qij = (1� q) = (n� 1) for

j 6= i) there is one symmetric solution where all grammars occur with equal fre-

quency (xi = 1=n). There are also several possible asymmetric solutions where

one grammar Gi is dominant (although does not necessarily completely dominate
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the population) and all other grammars occur with equal frequency. These asym-

metric solutions will be stable provided that a coherence threshold, q1 is met —

if q > q1 (the probability of acquiring the same grammar as your parents exceeds

some value given by q1) then the asymmetric solutions will be stable. When q ex-

ceeds a second threshold q2 the symmetric solution becomes unstable and only the

asymmetric solutions are stable. The key point here is that q will tend to decrease

as n increases, given that more possible grammars leads to a greater probability of

selecting the wrong grammar during acquisition. Nowak et al.conclude that Uni-

versal Grammar must restrict the range of possible grammars such that q remains

above the threshold q1, therefore allowing the possibility of grammatical coherence

within a population.

Nowak et al. then consider how q changes for incremental and batch learners as the

number of sample sentences increases. They also consider how the population behaves

where all grammars are not equidistant from one another. For this case they assume that

the values of cij where j 6= i are randomly selected from a normal distribution in the

range 0 to 1. Given this assumption, the overall behaviour is broadly similar to the case

where all grammars are equidistant.

Their model allows Nowak et al. to discover a fairly fundamental result regarding the re-

lationship between the number of possible grammars, the number of sentences a learner is

exposed to, the probability of acquiring the correct grammar and the behaviour of popu-

lations of such learners. However, there are several undesirable aspects to the model. The

notion of a grammar is a fairly impoverished one — grammars specify allowable map-

pings between meanings and signals, which is a fairly standard assumption, but there is

no notion of structure in a grammar or of any interplay between the sentences a grammar

allows and the sentences it does not. The model of a grammar essentially boils down

to a model of a very large communication system of the type modelled in Nowak et al.

(1999). This is at odds with the commonly-held view that language is of a different type

to agrammatical vocabulary, rather than simply being an extremely large vocabulary.

The other undesirable feature of their model, partially due to their simple model of a

grammar, is that the utility and learnability of a grammar is entirely arbitrary. In their

earlier work on communication systems, the structure of the object-signal mapping im-

pacted on its functionality and, indirectly, on its learnability, with the most functional

and stable A matrix being a binary matrix with a distinct signal for each object. In their

paper on UG, values of q and c are arbitrarily assigned. While it would, in principle, be

possible to calculate values of q and c for grammars which specified a non-infinite set of
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sentences, this would be undesirable for two reasons. Firstly, in restricting the grammars

to only those which specified finite sets of sentences, the model of grammars would ob-

viously reduce to a model of a large communication system, which as outlined above is

undesirable. Secondly, the calculation would still depend on the sets of sentences allowed

by grammars, rather than any internal structure of the grammar that specified the set of

allowable sentences. The fact that grammars are modelled as essentially arbitrary sets

of sentences, rather than collections of rules generating sets with some logical internal

structure, makes any calculation of values of q and c essentially meaningless.

2.3.2 Guided variation

In B&R’s taxonomy of pressures on cultural transmission, guided variation “results from

the cultural transmission of the results of learning and acts to increase the frequency of

traits that best satisfy the learning criteria” (B&R p 174). Individuals acquire their initial

value for the phenotype through cultural transmission, then modify this value through

individual, adaptive learning. The population of fully-matured phenotypes then acts as

cultural parents for the next generation. If individual learning prefers one particular phe-

notype then that phenotype will be disproportionately represented in the distribution of

phenotypes observed by learners at the next generation.

2.3.2.1 B&R’s model

A model of guided variation requires a model of individual learning. B&R assume that

individual learning takes as its starting point a culturally-acquired trait, and then moves

this trait towards some optimal value specified by the external environment — individual

learning is a process of adaptation to the environment. After cultural transmission and

individual learning, an individual is considered mature, and can act as a cultural parent.

Cultural parents transmit their traits, which are determined both by cultural transmission

and individual learning, to naive individuals.

B&R show (see Section A.1.2.2 of Appendix A) that when individual learning is power-

ful (individuals are free to make large adjustments to their culturally-acquired trait during

individual learning) the population moves towards the value of the phenotype favoured by

the environment, due to the transmission of cultural traits favoured by individual learn-

ing. In contrast, when individual learning is weak (individual learning tends to conserve

their culturally-acquired trait) the mean value of the population’s cultural trait remains

unchanged by individual learning — no cultural evolution takes place.
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Figure 2.8: The cultural ratchet. A cultural artifact is passed from generation to generation by
cultural learning. Each generation makes modifications to the artifact, which are subsequently
transmitted.

2.3.2.2 Linguistic case study: Tomasello’s cultural ratchet

Tomasello (Tomasello 1993; Tomasello 1999) has proposed a fairly general model of

cultural transmission, which he terms “cumulative cultural evolution” or “the [cultural]

ratchet effect”. While this model might be equally at home in the section on general

cultural models, it is included here as Tomasello’s focus is primarily on the transmission

of the products of individual learning.

The cultural ratchet is depicted in Figure 2.8 and proceeds as follows. Some cultural

artifact is acquired, through cultural learning, by children. Those children then mature

and make modifications to the cultural artifact to improve its functionality. The modified

cultural artifact is then acquired, via cultural learning, by the next generation of children.

This cultural transmission must be of sufficiently high fidelity to prevent the loss of earlier

modifications — the ratchet must not slip backwards.

This model of the accumulation of modifications which are introduced by goal-directed

adjustment of culturally-transmitted artifacts is clearly similar to B&R’s model of guided

variation, where goal-directed individual learning modifies culturally-transmitted traits.

Tomasello’s cultural ratchet theory is not supported by a formal model but his asser-

tion that this process will result in well-adapted cultural artifacts is supported by B&R’s

model, which shows that a combination of social and individual learning can result in

characteristics which are suited to the requirements of the environment.

Tomasello views this cultural ratchet theory as an explanation for all complex artifacts,

such as tools, religious rituals, mathematics and governmental institutions. He makes

particular reference to language, which in his view is established through the same pro-

cesses as other cultural artifacts:
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“the way human beings have used objects as hammers has evolved signifi-

cantly over human history. This is evidenced in the artifactual record by var-

ious hammer-like tools that gradually widened their functional sphere . . . it is

presumably the case that some cultural conventions and rituals (e.g. human

languages and religious rituals) have become more complex over time as

well, as they were modified to meet novel communicative and social needs”

(Tomasello 1999:37)

Tomasello suggests that speakers introduce new words or constructions in order to meet

novel communicative needs, or grammaticalise loosely-structured, commonly-occurring

discourse structures into syntactic constructions, to improve the functionality of the lin-

guistic system.

The explicitly teleological source of modifications to cultural artifacts (where by “tele-

ological” I mean “designed with purpose in mind”) is relatively unproblematic when

applied to the cumulative modification of artifacts such as hammers and governmental in-

stitutions. However, the assumption that language changes through repeated, conscious,

goal-directed modification is somewhat controversial. Lass (1980) rules out the possi-

bility of purposeful modification — “[linguistic] change does not involve (conscious)

human purpose (which I think can be accepted without argument)” (Lass 1980:82).

In addition to appealing to the established orthodoxy in linguistics that teleology plays

little role in language change, a further criticism can be made of Tomasello’s view of

linguistic evolution. The burden of this type of teleological change must rest with the

speaker — a hearer cannot decide to understand innovatively, therefore new constructions

must be introduced by speakers. However, unless we assume speaker altruism this may

lead to innovations which are highly non-functional with respect to the hearer.

Teleology may reasonably be expected to play a role in the introduction of new words

into a new language — new technological innovations, for example, typically require

new words to name them. However, while teleology may account for the introduction

of such terms it perhaps cannot account for their subsequent diffusion. For example, we

might be tempted to explain the preference for the term “mobile phone” over “cell phone”

in English speakers in the British Isles in terms of conscious choice by language users

in favour of the more functional variant. However, English speakers in North American

typically favour “cell phone”. It is possible that “cell phone” is more functional than

“mobile phone” in the context of American English but not British English, in which

case the teleological explanation of diffusion of the new compound could still apply.

This would require a case-by-case analysis of the functionality of words which differed
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between varieties of English (e.g. “pavement” and “sidewalk” in addition to “mobile

phone” and “cell phone” between British and American English, “turnip” and “swede”

between Scottish English and non-Scottish English etc). However, it may be more par-

simonious to allow that teleological explanations play a fairly limited role in the cultural

evolution of language.

2.3.3 Directly biased transmission

Biased transmission arises when naive individuals are more likely to adopt one cultural

variant than another, or when mature individuals are more likely to produce one cultural

variant than another when acting as a model. In B&R’s model, biased transmission is

typically conceived of as “arising from the attempts of [individuals] to evaluate the adap-

tiveness (that is, their effects on genetic fitness) of the different cultural variants” (B&R,

p134). B&R identify three subclasses of bias on transmission: direct bias, indirect bias

and frequency-dependent bias. Directly-biased transmission will be discussed in this

section, with models of indirect bias and frequency-dependent bias being discussed in

Sections 2.3.4 and 2.3.5 respectively.

Direct bias occurs when one cultural variant is intrinsically more attractive than others.

This intrinsic attractiveness makes naive individuals more likely to acquire that cultural

variant. This attractiveness could derive from several sources. For example, individuals

could prefer to acquire variants which they believe will be most successful, in which case

the direct bias will be in favour of the cultural variants which offer the greatest fitness

payoff. Alternatively, individuals could preferentially acquire one variant over another

due to an arbitrary preference not necessarily related to functionality.

2.3.3.1 B&R’s model

Direct bias can be simply modelled by assuming that individuals are disproportionately

likely to acquire one cultural trait, to the detriment of other cultural traits. If individuals

are disproportionately likely to acquire a particular cultural trait at the expense of all other

cultural traits, then individuals are directly biased in favour of that trait. As shown in

Section A.1.2.3, directly biased transmission will increase the frequency of the favoured

variant in the population. The rate of increase depends on the strength of the bias — a

weak bias will result in slow convergence of the favoured variant, whereas a strong bias

will result in rapid convergence. The rate of increase also depends on the variance in the

population — in the most extreme case, in a population which is culturally homogeneous,

directly-biased transmission has no impact.
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2.3.3.2 Linguistic case study 1: evolution of consistent head ordering

Kirby (1999) (Chapter 2 in particular) uses a simple ILM to develop an explanatory ac-

count of word-order universals. Hawkins (e.g Hawkins (1990)) notes a statistical ten-

dency for languages of the world to be consistently head-initial or head-final across

phrasal categories. Hawkins suggests that this word-order universal can be accounted

for in terms of a preference for language users, when parsing utterances, to construct

trees as rapidly as possible. This principle is termed Early Immediate Constituent recog-

nition (EIC), and languages which exhibit consistent head ordering score more highly on

the EIC metric and are easier to parse. However, as noted by Kirby, this does not con-

stitute an explanation of the observed statistical universal — how does the preference of

individual language users for constructions which score well on the EIC metric translate

to a word-order universal?

Kirby constructs a generational ILM to attempt to answer this question. The linguis-

tic competence of individuals in Kirby’s model consists of a specification of a simple

grammar which states the preferred ordering of head and complement in verb phrases

(verb-initial, VO, or verb-final, OV) and adpositional phrases (prepositional, PreP, or

postpositional, PostP). There are therefore 4 possible grammars — VO and PreP, VO and

PostP, OV and PreP, OV and PostP. The first and last of these possibilities have consistent

head ordering and therefore score more highly on the EIC metric.

Individuals produce utterances consistent with their grammars, where an utterance is

not an actual sentence but a specification of the head-ordering in verb and adpositional

phrases. Utterances are essentially direct externalisations of an individual’s I-language.

The next generation of learners take a random sample of these utterances, and according

to the procedures outlined below, select their own grammar.

Selection of a grammar is based on the frequency of utterances exhibiting particular word

orders in the sample pool of utterances, but also on the parsability of those utterances.

The probability of an individual selecting a variant v for their grammar is given by p (v)

and the number of utterances exhibiting that variant in the sample pool is given by nv. wv

gives the degree to which variant v is preferred. A learner selects their grammar features

probabilistically according to the formulae:

p (PreP ) =
wPrePnPreP

wPrePnPreP + wPostPnPostP

p (PostP ) =
wPostPnPostP

wPrePnPreP + wPostPnPostP

70



p (V O) =
wV OnV O

wV OnV O + wOV nOV

p (OV ) =
wOV nOV

wV OnV O + wOV nOV

The degree to which a particular variant is preferred depends on the frequency of other

variants in the utterance pool and the EIC metric. For example, if, as mentioned above,

the EIC for VO-PreP is better than VO-PostP then wPreP > wPostP if VO order is com-

mon, and wPreP < wPostP if OV order is common. The preferences are calculated as

follows:

wPreP = �nV O + (1� �)nOV

wPostP = �nOV + (1� �)nV O

wV O = �nPreP + (1� �)nPostP

wOV = �nPostP + (1� �)nPreP

where � is a constant reflecting the EIC metric of the various combinations. Kirby reports

results for � = 0:6, which corresponds to the situation where consistent head ordering is

somewhat more parsable than inconsistent head ordering.

Kirby conducts multiple runs of the ILM and finds that there are two stable final states,

corresponding to the two consistent head-orderings, VO-PreP and OV-PostP, with the

simulation runs converging at random on one of these two states. The learner’s bias in

favour of consistent head ordering results in the emergence of word-order universals. In

terms of B&R’s scheme, this is a clear example of how directly biased transmission can

be applied in a linguistic context to generate clear and parsimonious accounts of linguistic

universals — a theoretically-well motivated bias of learners to preferentially acquire a

particular cultural variant leads to that cultural variant dominating the population. Kirby

also notes an S-shaped trajectory of change, as predicted by B&R’s model of directly

biased transmission.

2.3.3.3 Linguistic case study 2: the evolution of vocabulary

Hutchins & Hazelhurst (1995) present an early model of the negotiation of vocabulary

in a population. Their key concern is to show that conventionalised symbolic vocabulary

can arise through cultural processes. Hutchins & Hazelhurst model individuals using au-

toassociator neural networks. Autoassociator networks consist of an input layer of nodes,
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Input Layer (Meaning)

Hidden Layer (Signal)

Output Layer (Meaning?)

Figure 2.9: Hutchins & Hazelhurst’s autoassociator network. The flow of activation (indicated
by arrows) proceeds from the input layer via the hidden layer to the output layer. The goal of
learning in an autoassociator network is to reproduce the input pattern of activation at the output
layer. This necessitates forming a compressed representation of the input pattern at the hidden
layer. Hutchins & Hazelhurst interpret the input pattern of activation (and the output pattern of
activation) as a visual stimuli (meaning) and the pattern of activation at the hidden layer as an
observable signal.

a smaller hidden layer and an output layer of the same size as the input layer. Autoasso-

ciator networks are trained (using the backpropagation learning algorithm in Hutchins &

Hazelhurst’s model) to map from an input pattern of activation, via an internal represen-

tation at the hidden layer, back to a pattern of output activation which exactly matches

the input pattern — autoassociator networks essentially associate an input pattern of ac-

tivation with itself.

In Hutchins & Hazelhurst’s model there is a set of scenes which agents are required

to communicate to one another about using a set of signals. Hutchins & Hazelhurst

(1995) consider input/output patterns of activation to represent visual scenes, equivalent

to meanings in the canonical E/I vocabulary model, while patterns of activation over

the network’s hidden layer are considered to represent observable signals. The network

structure and interpretation of the various layers is illustrated in Figure 2.9.

At every time-step two individuals are selected at random from the population and one

scene is chosen from the set of scenes, again at random. One individual acts as speaker

and produces a signal given the selected scene. The second individual acts as a learner

and is trained to associate the input scene with an identical output pattern of activation

(i.e. perform the autoassociator learning task), while at the same time learning to as-

sociate the input scene with the signal produced by the speaker. The two individuals

are then returned to the population. A simulation run consists of several thousand such

pairwise interactions. Note that, as there is no turnover of population and therefore no

separation between learners and producers, Hutchins & Hazelhurst’s (1995) model is a
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classic implementation of the Negotiation Model. There is no explicit measurement of

communicative accuracy in this model.

Hutchins & Hazelhurst report that, initially, the individuals in the population do not have

distinct signals for each distinct scene and there is no consensus across the population

as to which signals should be associated with which scenes. This is due to the random

initialisation of the weights in each individual’s network. However, after several thousand

pairwise interactions, every individual in the population associates each distinct scene

with a distinct signal and there is consensus between individuals as to which signal should

be associated with which scene. The population converges on a communication system

which would be optimal in terms of communicative payoff, as defined in Section 2.2.2.1.

What drives the emergence of these optimal communication systems? We can rule out

natural selection of cultural variants, given the absence of any reward for successful com-

munication. Guided variation can also be discounted, given the absence of any individual

learning, as can indirect bias (to be discussed in Section 2.3.4). As will be discussed in

Chapter 3, the autoassociator model of individuals used by Hutchins & Hazelhurst is

strongly biased in favour of communication systems which are optimal in terms of com-

municative payoff — autoassociator agents are more likely to acquire such systems than

systems which happen to be suboptimal in terms of communicative function. As pre-

dicted by B&R, the application of a direct bias on cultural transmission results in the

increase in frequency of the cultural variant favoured by that bias. Hutchins & Hazel-

hurst observe the increase in frequency of scene-signal mappings which are optimal in

terms of the biases of their chosen model of individual learners. These mappings also

happen to be optimal in terms of communicative function.

The model outlined in Hutchins & Hazelhurst (1995) represents an interesting advance.

The predictions of B&R are shown to hold with a far less abstract model of cultural

variants and a bias which arises naturally from the chosen model of a learner. They also

illustrate that natural selection is not the only possible pressure on cultural transmission

that can lead to the emergence of communicatively optimal vocabulary systems — in their

model there is no direct pressure for communicative function, nor even any evaluation of

communicative accuracy, yet communicatively optimal systems still emerge. However,

it is unclear how general their results are. Will any model of a learner result in the

emergence of shared vocabulary when placed in the context of the Negotiation Model?

What properties must the learner have to ensure the emergence of shared vocabulary?

These questions will be returned to in depth in Chapter 3.
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2.3.3.4 Linguistic case study 3: the evolution of morphology

Batali (1998) presents a computational implementation of the Negotiation Model where

a small population of agents negotiate a vocabulary to communicate a set of (fairly mini-

mally) structured meanings. The structure of the meanings and the biases of the learners

results in the emergence of partially regular morphology.

In Batali’s simulation individuals are modelled using simple recurrent neural networks

capable of mapping a temporal sequence of input patterns to an output pattern of acti-

vation, with the eventual output pattern of activation depending on both the actual input

patterns presented and the sequence in which input patterns are presented. Input patterns

are representations of characters, with sequences of such input patterns being words. The

developed output pattern of activation is considered to be a meaning. Batali’s networks

therefore take as input a sequence of characters forming a word and arrive at a mean-

ing, their interpretation of that word. Meanings are analysed as consisting of a predicate

component and a referent component. There are 10 possible predicates, represented by

distinct but overlapping activation patterns over part of the output layer, and 10 possible

referents, once again represented by distinct but overlapping activation patterns over the

remainder of the output layer.

The simulation model follows the classic pattern of the Negotiation Model, with members

of the population in turn producing meaning-signal pairs and learning from the produced

meaning-signal pairs of other agents. Learning is carried out using the backpropagation

algorithm. During each exposure the learner is presented with a meaning and a char-

acter sequence constituting the observed signal and attempts, using the backpropagation

algorithm, to learn the association.

In addition to acting as learners, individuals act as producers (for communication and for

producing observable behaviour for other agents to learn from) and as receivers (for the

purpose of evaluating communicative accuracy). When acting as a receiver, the network

is presented with a character sequence and constructs a meaning. Production is some-

what more complex, given that recurrent neural networks are non-reversible and Batali’s

networks map from input signals to output meanings. To produce a signal for a given

meaning, an agent considers all possible characters and selects the character which pro-

duces the lowest output error in its own network with respect to the target meaning. That

character is sent to the learner as the first character of the word associated with the target

meaning. The producer continues producing characters until the error with respect to the

target meaning drops below some threshold value or the number of characters in the word

exceeds some arbitrary limit. This process of an individual using themselves as a model
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of the hearer and sending the signal which they themselves would interpret as the target

meaning is known as the obverterstrategy and is encountered elsewhere.

The accuracy of a communicative episode between two such individuals can be computed

by comparing the speaker’s given meaning vector with a hearer’s output meaning vector

after being exposed to the signal produced by the speaker. The communicative accuracy

of a single episode is the number of positions on the meaning vector for which speaker

and hearer agree on the value, within some tolerance. This corresponds to a variant of the

canonical measure of communicative accuracy, with a distance metric over meanings and

partial payoff for partially correct meanings. However, as with most Negotiation Models,

there is no actual payoff for being a successful communicator. Cultural evolution is not

driven by natural selection.

In the initial population of agents the accuracy of communicative episodes is at chance

levels and distinct meanings are not necessarily communicated using distinct signals. As

with the model of Hutchins & Hazelhurst (1995), this is due to the random starting values

in each agent’s initial network. Batali (1998) presents two results for this simulation

model:

1. After several thousand learning interactions between members of the population,

the population arrives at a near-optimal communication system. The accuracy of

communicative episodes is high, each distinct meaning is communicated using a

distinct signal and different individuals largely agree on the meaning associated

with each signal.

2. The population converges on a semi-regular morphological system, with the pred-

icate component of a meaning typically being associated with a root morpheme

portion of a signal, and the referent component of a meaning typically being asso-

ciated with a suffix component of the signal. For example, the pattern of activation

corresponding to the predicate happyis usually, but not always, communicated us-

ing the root sequence “ba-”, while the pattern of activation corresponding to the

first person plural referent weis typically communicated with a suffix “-d” or some

variant (e.g. “-dc” or “-ddc”).

As with the model described in Hutchins & Hazelhurst (1995), the convergence of the

population on a near-optimal communication system can be accounted for in terms of a

direct bias on cultural transmission resulting from the learner model. This arbitrary bias

of the learner results in the emergence of systems of meaning-signal mappings which

happen to be optimal in terms of communicative function. An in-depth discussion of the

bias is postponed till Chapter 3.
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The emergence of semi-regular morphology is an interesting and novel aspect of the

model. Batali also attributes this emergent structure to the biases of the agent archi-

tectures and the negotiation task. The negotiation task forces agents to arrive at shared

mappings from signals to meanings. Sharing such mappings makes it likely that agents

will share mappings from partially-presented signals (partial sequences of characters) to

output patterns of activation, given that any large divergence in output patterns of activa-

tion midway through processing will be difficult to remedy later in the string. Agents will

come to use fairly regular sequences to guide other agents (or themselves) into appropri-

ate regions of output vector space. This is reflected in the semi-regularity of the final

morphological system — there is a tendency to systematically use a particular sequence

when expressing a particular portion of meaning, but this tendency is not so strong as to

force a completely regular morphological system.

This model represents an interesting and significant development in the formal models of

the cultural evolution of linguistic structure. Moderately sophisticated linguistic structure

is investigated, using a methodology that has been applied to the cultural evolution of sim-

pler, unstructured communication systems. The first result, that communicatively-useful

communication systems can arise in the absence of natural selection, provides support

for Hutchins & Hazelhurst’s (1995) earlier conclusion. The use of a different model of a

learner shows that neither Batali’s nor Hutchins & Hazelhurst’s results are dependent on

a particular model of a learner. However, there is no exploration of the nature of the bias

that leads, via negotiation, to the emergence of optimal communication and no attempt to

relate the biases embodied in this model to those in earlier models. Furthermore, the ex-

planation of the emergence of semi-regular morphological structure is perhaps somewhat

underdeveloped, appealing to vague tendencies for agents to coordinate their movement

through output vector space.

2.3.4 Indirectly-biased transmission

In directly-biased transmission one cultural variant is preferred over alternatives due to

its own intrinsic properties. In indirectly biased transmission individuals must acquire

two cultural traits — an indicator trait and an indirectly biasedtrait. Certain variants

of the indicator trait are, as in the direct bias case, intrinsically preferable. No variant

of the indirectly biased trait is intrinsically more preferable than any other. However,

individuals prefer to acquire the indirectly biased trait of individuals who have an attrac-

tive indicator trait. For example, an indicator trait might be clothing styles (assuming an

intrinsically-preferable style) and an indirectly biased trait might be political persuasion.

Individuals will preferentially acquire the preferred clothing style (the indicator trait) and
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will preferentially acquire the political viewpoint of individuals who wear the preferred

style of clothes — people will prefer to dress like smart dressers, and tend to vote like

them too.

2.3.4.1 B&R’s model

B&R assume that each individual is characterised by two cultural traits — an indicator

trait and an indirectly-biased trait. They further assume that there is a direct bias in

favour of a particular variant of the indicator trait — individuals preferentially acquire

the preferred variant of the indicator trait. As discussed above, this will lead to the

population converging on that variant of the indicator trait. It is furthermore assumed that

individuals acquire the indirectly-biased trait of individuals who are have the preferred

variant of the indicator trait — if an individual has the preferred indicator trait, they are

disproportionately likely to transmit this, but also disproportionately likely to transmit

their other cultural trait.

As shown in Section A.1.2.4, this results in the convergence of the population on values

of the indirectly-biased trait which happen to be correlated with the preferred variant of

the indicator trait — “variants of the indirectly biased trait that are positively correlated

with the admired variants of the indicator trait will increase in frequency” (B&R p254).

The rate of increase of the correlated trait depends on the strength of the correlation

— indirectly-biased traits which are only weakly correlated with the preferred indicator

trait will increase in frequency slowly, whereas indirectly-biased traits which are strongly

correlated with the preferred indicator trait will rapidly come to dominate the population.

2.3.4.2 Linguistic case study: language evolution through acts of identity

Croft (2000) introduces an “utterance-based selectional theory” of linguistic evolution.

In Croft’s theory, differential replication of “linguemes” results in linguistic evolution,

where a lingueme is a linguistic structure embodied in an utterance. Croft proposes

that differential reproduction arises not through natural selection, where the functionality

of a cultural variant determines access to roles which yield opportunities to transmit

culturally, but through an evaluation of the social affordances of a particular lingueme

by language users — biased transmission.

There is an established tradition in the sociolinguistic literature in accounting for the lin-

guistic behaviour of individuals in terms of prestige(Labov 1966) and covert prestige

(Trudgill 1972). In these terms, the choice of a particular linguistic form in preference to

alternative forms constitutes an act of identity (LePage & Tabouret-Keller 1985) on the
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part of the speaker. A population consists of several, possibly overlapping, social groups

— for example, a population can be subdivided according to gender, religion, social class

or geographic region. Different social groups may use different linguistic systems. For

example, residents of Japan, by and large, use Japanese whereas residents of the Ko-

rean Republic typically use Korean. Middle-class residents of Edinburgh typically have

a different accent from working-class residents of Edinburgh. If an individual wishes

to identify themselves with a particular social group they will adjust their linguistic be-

haviour to conform more closely with the linguistic behaviour associated with that group.

In Croft’s model it is such acts of identification that determine the selective advantage of

one lingueme over another:

“the factor in language use granting selective advantage to an individual

speaker (and thus to the way she talks) is the desire of hearers who inter-

act with her to identify with the community to which she belongs. This se-

lective advantage ensures the differential perpetuation of the replicators she

produces, that is, the propagation of the linguistic variants associated with

the linguistic community to which she belongs” (Croft 2000:183).

To put it in the terminology Croft himself introduces, linguemes which are associated

with social groups which individuals wish to identify themselves with will have a selec-

tive advantage. The social groups with which individuals wish to associate themselves

are contingent on context and the notions of prestige and covert prestige. For example,

in situations where covert prestige (say “working-classness”) was important, linguemes

associated with groups which rate highly on the covert prestige scale (e.g. linguemes

associated with “working-classness”) would have a selective advantage.

This informal model is highly reminiscent of the indirectly-biased transmission model of

B&R, and Croft’s conclusions are equivalent to the predictions of B&R’s simple mathe-

matical model — “variants of the indirectly biased trait [=linguemes] that are positively

correlated with the admired variants of the indicator trait [= admired social groups] will

increase in frequency [= have a selective advantage]”. Croft’s model is of course more

complex, given that his notion of cultural traits is rather more complex and his equivalent

of the biasing function on indicator traits, groups with which individuals wish to iden-

tify themselves, changes from occasion to occasion. It is also somewhat debatable as to

whether an individual’s social group can truly be treated as a cultural trait. An acceptable

circumlocution might be to say that an individual’s social group is determined by a com-

plex of traits, many of which are culturally acquired. In this case, the comparison with

B&R’s model passes at least a cursory inspection.
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There is a further complication, however. In B&R’s model the correlation between an

indicator trait and an indirectly biased trait can be presupposed, or can arise through

cultural transmission of indicator and indirectly biased traits, assuming that errors dur-

ing cultural transmission increase the correlation between indicator and indirectly biased

traits. Croft has nothing to say on how this correlation between a particular social group

and a particular set of linguistic behaviours gets off the ground in his model. For groups

defined in terms of regional boundaries this might be unproblematic, given that spatial

separation leads over time to linguistic separation. However, it is less clear how social

groups defined in terms of religion or social class might come to be associated with

particular linguistic behaviours. It is perhaps sufficient to simply presuppose this, or to

assume it can be introduced by chance factors, or correlated errors between the cultural

transmission of measures of prestige and linguemes.

2.3.5 Frequency-dependent bias

Cultural transmission is of course frequency dependent in all of the models considered

so far — in the case of unbiased transmission, the probability of acquiring a particular

cultural trait depends linearly on the frequency of that trait in the population, whereas

in the direct and indirect bias cases, the relationship between the frequency of a trait

and the probability of acquiring it is non-linear, with the non-linearity being introduced

by the bias in favour of a particular trait. B&R reserve the term “frequency-dependent

bias” for the case where the probability of acquiring the most commoncultural variant

in the population, regardless of which variant it is, is greater than (in the case of con-

formist frequency-dependent bias) or less than (in the case of non-conformist frequency-

dependent bias) the probability of acquiring that variant in the unbiased transmission

scenario.

2.3.5.1 B&R’s model

B&R assume that individuals are disproportionately likely to acquire the majority cultural

variant in the population (conformistfrequency dependent bias). Assume that there are

two possible cultural variants, c and d. As shown in Section A.1.2.5 of Appendix A,

under conformist transmission, variant c will increase in frequency if the frequency of

c is greater than the frequency of variant d. Conversely, c will decrease in frequency if

its frequency is less than that of d. The rate of change of the most common variant is at

its lowest as its frequency approaches 1 (where the population is converged on the most

frequent variant) or 0.5 (the point where the population is perfectly split between the two
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variants). Conformist transmission results in the spread of the most common cultural

variant.

2.3.5.2 Linguistic case study: the spread of head order

Briscoe (2000a) considers a model, similar in some aspects to that of Kirby (1999) de-

scribed in Section 2.3.3.2, of the spread of a particular head ordering parameter within

a population. Briscoe’s (2000a) model is rather more complex than Kirby’s model —

learners acquire categorial grammars based on exposure to sets of triggers. However, the

details of this model are not particularly relevant for the purpose of this section. It will

suffice to say that learners acquire a grammar which is either head-initial (which we shall

call GI) or head-final (GF ). Triggers are specified as being of type I or F . Individuals

using head-initial grammars (GI) produces triggers of type I , and individuals using head-

final grammars (GF ) produces triggers of type F . Learners observe a set of n triggers,

and decide on whether to acquire GI or GF . Briscoe considers three possible learning

procedures:

� The learner acquires GI if the first of the n triggers it observes is of type I , and GF

if the first of the n triggers is of type F .

� The learner acquires GI if the last of the n triggers is of type I , and GF if the last

of the n triggers is of type F .

� The learner acquires GI if the majority of the n triggers are of type I , and GF is

the majority of the n triggers are of type F .

Learning procedures 1 and 2 are in fact equivalent and lead to a probability of acquiring

grammar Gx of approximately p (Gx), where p (Gx) is the proportion of grammar Gx

in the population. This is equivalent to the linear transmission rule for a dichotomous

character as discussed in Section A.1.1.1 of Appendix A, where there is a single cultural

parent. In the context of Briscoe’s simulation model, where populations are finite, this

leads to random fluctuation in the frequencies of GI and GF until one grammar reaches

fixation.

Learning procedure 3 has rather different behaviour. Assuming that n is odd (learners

observe an odd number of triggers), and that k is the first integer such that j > n=2 (i.e.

k is the lowest value such that k represents more than half the number of models n), the

probability that an agent will acquire grammar GI is:
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Prob (GI) =
nX

j=k

 
n

j

!
p (GI)

j p (GF )
n�j

In other words, the probability of acquiring grammar GI is equal to the probability of

picking a set of n models from a population characterised by p (GI) and p (GF ) such

that individuals of type GI are in the majority. The probability of acquiring GF can be

similarly defined.

These equations results in population dynamics equivalent to B&R’s equation describ-

ing the dynamics of a population acquiring a dichotomous character under frequency-

dependent bias, in the case of a strongly conformist bias function.

Briscoe’s results confirm those of B&R — the frequency of the initially most frequent

cultural variant increases, with the rate of change decreasing as the population approaches

saturation. In Briscoe’s simulations, where the population is finite, random sampling er-

rors can move the population away from the case where both variants are equally fre-

quent, which in B&R’s infinite population model would be an unstable fixed point.

2.3.6 Transmission through a bottleneck

The final pressure acting on cultural transmission to be discussed in this chapter is a novel

discovery, arising from computational models of the cultural transmission of language.

The character of this bias suggests that it may be a specific bias acting on the transmission

of infinite systems, such as language.

2.3.6.1 The transmission bottleneck in the Iterated Learning Model

Kirby (2002) presents a generational ILM which deals with the cultural evolution of

compositionality and recursiveness, two of the design features of language discussed in

Chapter 1. This model also reveals a new mechanism of cultural evolution, not covered

in B&R’s set of possible mechanisms.

In Kirby’s model an individual’s linguistic competence consists of a definite-clause gram-

mar with attached semantic arguments. These definite-clause grammars consist of a set

of rules, where the left hand side consists of a non-terminal category and the semantic

label for that category and the right hand side consists of zero or more non-terminal cat-

egories, with semantic labels, and zero or more strings of characters, which correspond
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to phonetically-realised components of a signal. Semantic representations are predicate-

argument structures, which may have hierarchical structure. Two example grammars

might be:

Grammar 1:

S/ sees0(mark0,loves0(lynne0,garry0)) ! markseeslynnelovesgarry

Grammar 2

S / p(x,y)! N/x V/p S/y

S / p(x,y)! N/x V/p N/y

V / sees0! sees

V / loves0 ! loves

N / mark0! mark

N / lynne0! lynne

N / garry0! garry

Atomic semantic elements are marked with primes, characters are represented in type-

writer font, upper case italics represent non-terminal categories and lower case ital-

ics represent variables over semantic elements.

Both grammars would produce the string markseeslynnelovesgarry meaning

sees0(mark0,loves0(lynne0,garry0)), but clearly do so in rather different ways — grammar

1 would do so in a holistic manner, whereas grammar 2 would do so in a compositional

(each subpart of the meaning corresponds to a subpart of the signal) and recursive (the

first Srule rewrites as a string of non-terminals including an S) manner.

Learners in Kirby’s model are presented with a set of utterances, where utterances consist

of meaning-signal pairs, and induce a grammar based on these utterances. Grammar

induction consists of two main processes — rule incorporation and rule subsumption. In

an incorporation event a learner is presented with a meaning-signal pair hm; si and forms

a rule: S/m! s. This amounts to simply memorising an observed utterance.

Subsumption involves two main sub-processes, chunking and merging. During chunking,

pairs of rules are examined in the search for meaningful chunks, which are then separated

out into new syntactic categories. For example, if a grammar contains two incorporated

rules:

S / loves0(lynne0,garry0) ! lynnelovesgarry

S / loves0(lynne0,beppe0) ! lynnelovesbeppe
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chunking would identify that there is a single difference in semantics between the two

rules (the second argument) and a single difference in signal (the string-final garry and

beppe). The two sentence level rules are then replaced with a single rule

S / loves0(lynne0,x) ! lynneloves N/x

and two new rules are added referring to the newly-introduced syntactic category:

N / garry0! garry

N / beppe0! beppe

Merging compares pairs of rules and attempts to reduce the number of distinct syntac-

tic categories in the grammar. For example, suppose that a learner with the grammar

just given makes a third observation of the meaning-signal pair hloves0(garry0, beppe0),

garrylovesbeppei. This will lead, via incorporation and chunking, to the grammar:

S / loves0(y,x) !M/y loves N/x

N / garry0! garry

N / beppe0! beppe

M /garry0! garry

M /lynne0! lynne

The merging operation will notice that the first example of category N and the first ex-

ample of category M are identical, and will therefore replace all mentions of M with N .

After removal of redundant rules, this leads to the grammar

S / loves0(y,x) ! N/yloves N/x

N / garry0! garry

N / beppe0! beppe

N /lynne0! lynne

Merging therefore leads to generalisation — the learner with this grammar can now parse

or produce utterances for nine meanings, based on three observations.

When called upon to produce an utterance for a meaning, Kirby’s agents attempt to find

a combination of rewrite rules which will cover the given meaning. If such a set of rules

exist then the producer will produce an utterance consisting of the meaning and the string

of terminals produced by the application of these rules. However, if such a set of rules

does not exist then the producer will be forced to apply an invention procedure. Invention

involves using existing rules as much as possible, with parts of the meaning which are not
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expressible using the grammar being expressed with random strings. During invention,

the inventor learns from its own invention via incorporation, subsumption and so on.

Using these models of production and learning, Kirby conducts a series of generational

ILM simulations, with a population size of 1 at each generation. At each generation in-

dividuals produce utterances for 50 randomly selected meanings involving no embedded

predicates (e.g. loves0(lynne0,garry0)), then 50 meanings involving a single embedded

predicate (e.g. sees0(mark0, loves0(lynne0,garry0))) then 50 meanings involving two em-

beddings (e.g. thinks0(beppe0, sees0(mark0, loves0(lynne0,garry0)))). These utterances then

constitute the learning data for the learner at the next generation. Given that there are

5 embedding predicates, 5 non-embedding predicates and 5 possible atomic arguments

each individual sees only a tiny fraction of the possible language of the previous gen-

eration — learners suffer from one aspect of the poverty of the stimulus problem. In

Section 1.2.1, one aspect of the poverty of the stimulus problem was identified as the fact

that children’s data-exposure histories are finite, yet they acquire the ability to produce

or understand an infinite number of sentences. Kirby’s learners are exposed to a small

number of utterances drawn from a system which is at least very large (covering all pos-

sible meanings involving two embeddings) and in principle infinite — embedding could

be continued to an arbitrary depth. Kirby terms this aspect of the poverty of the stimulus

the transmission bottleneck.

The language in the early stages of a simulation is almost entirely holistic, including rules

such as:

S/ thinks0(beppe0, sees0(mark0, loves0(lynne0,garry0))) ! im

Such grammars are obviously fairly large, as each distinct meaning is represented by a

single rule. However, after 1000 generations of the ILM the grammars reduce to max-

imally compressed, fully compositional grammars with a single non-recursive sentence

rule (for the non-embedded predicates) and a single recursive sentence rule (for the em-

bedded predicates), and three further non-terminals (one for arguments, one for non-

embedding predicates and one for embedding predicates). What drives this evolution of

recursive compositionality?

One might be tempted to attribute the emergence of compositionality to directly biased

transmission — learners compress their grammars wherever possible and are therefore

biased in favour of acquiring cultural variants corresponding to compressed grammars.

While this is almost certainly true to a degree, directly biased transmission is only part of

the story. Were each learner exposed to utterances for the full set of meanings, the learner
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bias in favour of compressed grammars would lead to a partially compressed grammar,

but not the radically compressed grammars that do emerge.

This radical compression is driven by the transmission bottleneck — utterances produced

using holistic rules must be observed to be reproduced, whereas utterances produced

using general rules can be reproduced even if they have not been seen, provided some

other utterances produced using those same general rules have been observed. More

general rules are more likely to be represented in the data presented to the learner, and

are therefore more likely to survive cultural transmission. The maximally stable grammar

is maximally general, and the bottleneck on transmission filters out non-stable grammars

until the maximally stable, maximally general grammar is found.

This therefore represents a new mechanism for cultural change, one which is particularly

relevant to the cultural transmission of language. Batali (2002) (discussed below) argues

that such a dynamic is also present in his model.

This mechanism by which languages change from less to more generalisable due to the

pressure introduced by the bottleneck might be seen as an independent principle of lan-

guage change. Recall Lightfoot’s assertion that the “search for independent principles of

change must be abandoned . . . predictions are derived mostly from a theory of grammar”

(Lightfoot 1979:153). This does not seem to be the case in Kirby’s model — the ini-

tial, idiosyncratic, holistic systems in Kirby’s simulations are as compatible with Kirby’s

theory of grammar (such as it is) as the final, systematic, compositional languages. Of

course the representational restrictions of the grammar and the inductive biases of the

learner, which could be seen as part of the theory of grammar, play a role in shaping

language emergence in Kirby’s simulations. But his results are not predictable solely

from these factors — the bottleneck on transmission imposes a key pressure. As such,

the change from holism to generalizability could be seen as an independent principle of

change.

While Kirby’s findings are obviously significant, one or two minor criticisms might be

made. Firstly, the transmission bottleneck is enforced in all of his simulation runs. Some

runs with no bottleneck on transmission would allow us to identify how much linguistic

evolution would take place in the absence of the bottleneck, which would in turn allow us

to identify the strength of the learning bias in his model and the strength of the dynamic

arising from the bottleneck. Secondly, it is not clear to what extent the incremental in-

crease in complexity of embedding during production (no embedding first, then degree-1

embedding, then degree-2 embedding) assists the emergence of recursive compositional-

ity — to what extent would these results still hold if the “starting small” (Elman 1993)
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procedure was not applied. Finally, how important is the assumption that producers learn

from their own invention? This may be a reasonably plausible assumption, but would we

still see the evolution of recursive compositionality if we weakened this assumption and

assumed that producers only occasionally learned from their inventions, or never did?

2.3.6.2 The transmission bottleneck in the Negotiation Model

Batali (2002) presents another computational implementation of the NM. Unlike in his

earlier implementation (Batali 1998), Batali takes a symbolic, rather than connectionist,

approach to modelling agents and the emergent communication systems in his model are

striking in their intricacy.

In his symbolic model Batali treats meanings as formula sets, equivalent to predicate

logic constructions. Formula sets consist of conjunctions of zero or more predicates,

each of which take one or two arguments, where the arguments are variables represented

numerically. For example, the feature set f(lizard 1) (likes 1 2))g is equivalent to the

logical formula 9x9y [lizard (x) ^ likes (x; y)]. Signals are simply strings of characters,

of unbounded length.

Linguistic structures are mappings between formula sets and signals. The simplest type

of linguistic structure simply has a formula set paired with a signal. Batali terms these ba-

sic structures “tokens”, and they are equivalent to lexical items. More complex structures

consist of combined sets of tokens. Tokens are combined in binary branching structures,

with the formula set for the whole structure being the union of the formula sets for its

constituent tokens and the signal for the whole structure being the concatenated signals

associated with each token. Argument maps rename variables during the unification of

the formula sets for two distinct tokens. Some example structures are given in Figure

2.10.

Agents learn by observing meaning-signal pairs produced by other members of the popu-

lation, in the classic Negotiation Model framework. Individuals acquire linguistic knowl-

edge by building up a set of exemplars, where each exemplar is a structure of the type

shown in Figure 2.10 with an associated cost. When presented with a meaning-signal

pair a learner has several choices.

� Store the observed meaning-signal pair in their memory as an unanalysed token.

� Search among existing exemplars and find an exemplar which can be modified so

that it matches the observed meaning and signal. Exemplars can be modified by

replacing one subpart of a complex exemplar with another exemplar, which may
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(a)
(snake 1)

eqeg

(sang 1)

ala

(lizard 1) (liked 1 2)

zapodo ip

(b)

(snake 1)

eqeg

(sang 1)

ala

(sang 1)(snake 1)

1:1 1:1

(lizard 1) (liked 1 2)

zapodo ip

(lizard 1) (liked 1 2)

1:1
2:2

(c)

(lizard 1) (liked 1 2)

zapodo ip

(lizard 1) (liked 1 2)

1:1
2:2

(snake 1)

eqeg

(sang 1)

ala

(sang 1)(snake 1)

1:1 1:1

(lizard 1) (liked 1 2) (snake 2) (sang 2)

1:2
1:1
2:2

Figure 2.10: Exemplars. The exemplars in (a) are tokens, corresponding to lexical items. The
formula set is enclosed in a box, while the string is given in sans serif font. The exemplars
in (b) are constructed by combining the tokens from (a), with argument maps (in square boxes)
specifying how to relabel variables from the tokens in the formula set for the complex exemplars.
The exemplar in (c) is constructed by combining the exemplars in (b). Note that one argument
map rewrites occurrences of 1 as 2.
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have to be created from scratch. The modified exemplar and any newly created

subparts are stored in memory.

� Combine two or more exemplars to form a new complex exemplar, which has the

same meaning and signal as the observed utterance. This may involve creating new

exemplars. The new, complex exemplar and any newly-created subparts are added

to the store of exemplars.

Every newly-created exemplar has a initial cost of 1. A learner searches for the cheapest

exemplar or combination of exemplars with the lowest total cost which matches the given

meaning and signal. Exemplars which are used during learning have their cost reduced.

During learning, agents also perform a search for inconsistent exemplars. If two ex-

emplars or combinations of exemplars have matching signals but non-matching formula

sets, they have their costs increased by a fixed amount. This amounts to a penalisation

of homonymy. Finally, exemplars which have not been used in the last 200 episodes of

production, reception or learning are removed from an agent’s memory.

Agents are called upon to produce a signal for a given meaning, either when producing

behaviour for another individual to observe or when taking part in a communicative in-

teraction (as described below). Production involves searching through an agent’s set of

exemplars for an exemplar or combination of exemplars which will have as its formula

set the meaning to be conveyed.

Agents have several options during production:

� Exemplars can be retrieved as a whole from the agent’s set of exemplars. Such

exemplars have an associated cost.

� Exemplars can be modified, by replacing one subpart with another exemplar. Such

exemplars have a cost equal to the sum of the costs of the two exemplars used, plus

a fixed modification cost.

� Exemplars can be combined, in which case the combined exemplar has a total cost

equal to the sum of the costs of the component exemplars plus a fixed combination

cost.

During any one of these processes, new unstructured token can be created. Such tokens

consist of a formula set and a random string, and have a cost proportional to the sum

of the length of the string and the number of predicates in the formula set. The pro-

ducer searches for the cheapest combination of exemplars. Reception (the search for an
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exemplar which matches a given signal) proceeds in the same fashion. Any new exem-

plars which are created during production or reception are not stored in an individual’s

memory — unlike in Kirby’s model, individuals do not learn from their own inventions.

90% of the interactions an individual participates in are of the learning type, with one

individual called upon to produce a signal for a randomly-selected formula set containing

between 2 and 7 predicates and 1 and 3 different variables, and the other individual

learning from the produced behaviour. 10% of an agent’s interactions are of a purely

communicative nature, with one individual producing a signal and the other individual

receiving the signal and arriving at a formula set. The success of such interactions are

evaluated according to the formula:

Communicative Accuracy =
1

2

�
c

s
+
c

r

�

where s is the number of formulae in the sender’s formula set, r is the number of formulae

in the receiver’s formula set and c is the number of formulae common to both sets. This is

similar to Batali’s (1998) communicative accuracy measure, again with partial payoff for

partial communicative success. Communicative accuracy varies between 0 and 1, with a

value of 1 representing perfect communication.

Batali reports several interesting results relating to the level of communicative accuracy

within the population and the structure of the emergent communication systems:

1. The population’s communicative accuracy increases from 0 to close to 1 over tens

of thousands of rounds of negotiation. Individuals settle on fairly stable sets of

exemplars, and typical exemplar cost is low. In the final stable system individuals

rarely need to produce new structures during learning. The majority of tokens

(unanalysed pairings between a signal and a formula set) contain a single formula

in the formula set. The emergent systems are compositional — the meanings of

complex exemplars depend of the meanings of their constituent exemplars, and the

way those constituents are combined.

2. In some emergent systems empty tokens (unanalysed pairings of a string and an

empty formula set) play an important role in the types of argument map applied

to a complex exemplar. Some examples are given in Figure 2.11, which involve

empty tokens which introduce a collapsing map and an inverting map.

3. Systems which do not use empty tokens rely on word order to construct argument

maps. For example, in a system with no empty tokens, predicates relating solely
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(a)

(kissed 1 2) (rat 1)

(rat 1) (kissed 1 2)

1:1
2:2

1:1

(rat 1) (kissed 1 1)

1:1
2:1

ojouzo ane

(kissed 1 2) (rat 1)

(rat 1) (kissed 1 2)

1:1
2:2

1:1

uzo ane

(b)

(kissed 1 2) (rat 1)

(rat 1) (kissed 1 2)

1:1
2:2

1:1

uzo ane

(kissed 1 2)

la

1:2
2:1

(kissed 2 1)

(rat 1)

ane

1:1

uzo

2:2
1:1

(rat 1) (kissed 2 1)

Figure 2.11: Argument maps in Batali’s model. The larger complex exemplar in (a) is constructed
by combining the smaller exemplar with the token with the string ojo. While this token contributes
nothing to the formula set of the utterance as a whole, it does introduce another layer of structure.
In the argument map introduced with this top layer of structure, the variable 2 is collapsed with
variable 1. The ojo token could be said to function in this case as some kind of marker of a re-
flexive. (b) shows two more exemplars. The smaller of the two exemplars yields the formula set
which could be glossed as meaning “rat kissed someone”. In the second complex exemplar, the
insertion of the semantically-empty token with the string la allows an intermediate layer of struc-
ture to be built. The associated argument map swaps the variables around. This exemplar, when
combined with a further exemplar, yields the formula set which would be glossed as “someone
kissed rat” — the la token could be considered a marker of a passive-like construction.

to individual x will appear first, followed by a two-place predicate involving x and

another individual y, followed by all predicates relating solely to individual y.

What drives the emergence of coordinated communication and linguistic structure? In

B&R’s terms, the emergence of linguistic structure in Batali’s model appears to be driven

by a direct bias. Systems encodable using a small number of exemplars which are fre-

quently reused and recombined are favoured by this bias. The exemplars encoding these
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systems will have a low cost and will therefore be unlikely to be replaced by random, less

structured inventions, which have a high cost.

This bias will apply both to production — agents will prefer to reuse cheap exemplars,

which will therefore become cheaper and more reusable — and to learning — analyses of

novel meaning-signal pairs which involve existing exemplars will be preferred by learn-

ers, reinforcing the reusable components and forcing out analyses which involve large,

non-reusable chunks. The division between systems which use empty tokens to control

argument maps and those which use a rigid word order is an example of two alternative

solutions to the problem of arriving at a particular formula set when combining exem-

plars. Presumably the state of the final system with respect to this choice is contingent

on coincidences in the early rounds of the negotiation process.

We should also expect the transmission bottleneck to have an impact on the population’s

emerging language — learners acquire the ability to communicate approximately 1013

meanings after a few thousand exposures. However, the NM framework makes it dif-

ficult to tell how much cultural evolution is due to direct bias and how much is due to

the transmission bottleneck. The sharp discontinuity between generations in the ILM

highlights the importance the transmission bottleneck. In the NM, there is no notion of a

generation, no sharp discontinuity and no clear indication of when the bottleneck applies.

In fact, we would expect the impact of the bottleneck to be at its most severe at the start

of an NM simulation — at this point learners have made few observations and are still

called upon to produce utterances. The strength of the bottleneck decreases as observa-

tions are accumulated. Is the structure of the population’s language determined early on,

when the bottleneck is very tight, or later, after its severity is diminished?

Batali’s model represents a significant development of the very simple models of cultural

transmission proposed by B&R. Cultural variants are highly structured aggregations of

smaller culturally-transmitted variants. However, as discussed above, the framework of

the Negotiation Model makes the role of bias during cultural transmission difficult to

separate from forces arising from cultural transmission itself.

2.4 Summary of the Chapter

In this Chapter I have introduced B&R’s general model of cultural transmission, and the

more language-specific Expression/Induction Model. The latter is typically implemented

as either an Iterated Learning Model, where vertical transmission is paramount, or a

Negotiation Model, where horizontal transmission is paramount. Treating language as

91



a culturally transmitted trait requires us to question to what extent language is indeed

culturally transmitted, what constitute the units of cultural replication, and what form the

Primary Linguistic Data available to learners takes.

I then provided a summary of B&R’s taxonomy of pressures acting on cultural transmis-

sion — natural selection of cultural variants, guided variation, and biased transmission,

which can be further subdivided into directly biased transmission, indirectly biased trans-

mission and frequency-dependent bias. Each of these pressures has been implicated in

the cultural evolution of some aspect of language, and I have given examples of models

which demonstrate how these pressures can drive linguistic evolution. Finally, I described

a further pressure, which does not appear in B&R’s taxonomy, which has been hypoth-

esised to play a role is the evolution of linguistic structure — the pressure to generalise

arising from the bottleneck on cultural transmission.

These causes of cultural evolution, in particular the pressures arising from direct bias and

a transmission bottleneck, will play a recurring role in the thesis. I will show that some

of the fundamental structural properties of language are a consequence of the interaction

of these pressures during the cultural transmission of language.
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CHAPTER 3

The cultural evolution of communication

The first step in an investigation into the evolution of the distinguishing design features

of language — cultural transmission, symbolicism and compositionality — is to consider

the cultural evolution of simple, unstructured communication systems. Such systems are

the equivalent of a symbolic vocabulary. In particular, I will search for the circumstances

under which optimal communication emerges. My line of reasoning, for the purpose of

this chapter, is as follows. Humans have a culturally transmitted, symbolic vocabulary.

Therefore, humans must have the necessary mental apparatus to support such a symbolic

vocabulary. I will make the default adaptationist assumption that this capacity must have

provided a fitness payoff at some point in evolutionary history, and this payoff must have

been due to the communicative benefits of symbolic vocabulary. Therefore, humans have

the necessary mental apparatus to support a communicatively useful, culturally transmit-

ted symbolic vocabulary. The aim of this chapter is therefore to identify the learning bias

required to support a communicatively useful vocabulary, in the strongest case an optimal

communication system, and equate this with the mental capacity of humans.

The assumption that the human capacity for symbolic vocabulary evolved due to fitness

payoff arising from communication will be reexamined in Chapter 4.

In Section 3.1 I review previous computational models which tackle this issue. In Sec-

tion 3.2 a simple model of communication is developed. In Section 3.3 a new ILM is

introduced. This model shows that the key determinant of the population’s communica-

tive behaviour is the direct bias on cultural transmission resulting from the learner’s bias.

In light of this, a more sophisticated model is developed in Section 3.4 to investigate a

wider range of learning biases. In Section 3.5 the key bias for the cultural evolution of

vocabulary is identified and defined. Finally, parallels are drawn between this learning

bias and the learning bias applied by human language learners to the task of vocabulary
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acquisition. This comparison suggests that the human learning bias (and perhaps not the

learning bias of other, closely related species) exhibits the appearance of design for the

cultural evolution of communicatively-optimal symbolic vocabulary.

3.1 Models of the evolution of vocabulary

In the review carried out in Chapter 2 I covered the models of the cultural evolution of

vocabulary systems described in Hutchins & Hazelhurst (1995) and Nowak et al.(1999).

To summarise briefly, Hutchins & Hazelhurst (working within the NM framework) re-

port that communicatively-optimal symbolic vocabulary evolves culturally. I attributed

this to a direct bias acting on cultural transmission, a consequence of the autoassociator

network architecture used in their model. Nowak et al.also demonstrate (working within

the ILM framework) that communicatively-optimal symbolic vocabulary can evolve cul-

turally. However, in their model this is a consequence of the natural selection of cultural

variants — successful communicators are more likely to act as cultural parents, therefore

successful communication systems are preferentially retained in the population.

Hurford (1989) describes possibly the first computational investigation into the evolution

of communication. One of the central concerns of Hurford’s paper is the biological evo-

lution of learning strategies, and his work in this area will be returned to in Chapter 4.

However, Hurford does cover purely cultural evolution as well.

The communicative behaviour of individuals in Hurford’s model is represented with two

probability matrices — a production matrix, which gives the probability of producing a

particular signal given a certain meaning, and a reception matrix, which gives the prob-

abilistic reception behaviour of the individual. A generational ILM is used. Learners

form their production and reception matrices based on a sample of the observable be-

haviour produced by the previous generation. Each learner samples once from the pop-

ulation’s production and reception behaviour, yielding a set of observed meaning-signal

pairs (based on a stochastic sample of the population’s production behaviour) and a set of

observed signal-meaning pairs (based on a stochastic sample of the population’s recep-

tion behaviour). Hurford considers three learning strategies. Imitator agents form their

transmission matrix based on observed transmission behaviour, and their reception ma-

trix based on observed reception behaviour. Calculatorsbase their production behaviour

on observed reception and their reception on observed production. Saussureansbase

their production behaviour on observed production, then derive their reception behaviour

from this matrix.
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Imitator learners form their production and reception matrixes on the basis of direct ob-

servation of production and reception behaviour — if, for example, an Imitator observes

signal s1 being produced for meaning m1, it will set the probability of producing s1 for

m1 to 1 in its own production matrix.

Saussurean learners derive their production matrix from production behaviour in a sim-

ilar manner, then design their reception matrix so as to make it optimally coordinated

with their own production behaviour — for example, if a Saussurean learner arrives at a

production matrix where s1 is produced for meanings m1 and m2, then it will interpret

s1 as meaning m1 with probability 0:5 and m2 with probability 0:5.

Calculators form their reception matrix on the basis of observed production behaviour, in

the same way that a Saussurean learner forms its reception matrix on the basis of its own

production behaviour. For example, if a Calculator learner observes a population where

s1 is produced for meanings m1 and m2, then it will interpret s1 as meaning m1 with

probability 0:5 and m2 with probability 0:5. By the same optimisation process, Calcula-

tors calculate their production matrix on the basis of observed reception behaviour.

Hurford reports two results with relation to this ILM. Firstly, populations of Calculator

agents are unable to preserve an optimal communication system over time. Secondly,

populations of Imitator and Saussurean learners are capable of creating communication

systems which lead to intermediate levels of communicative accuracy through purely

cultural processes.

There are two candidate pressures acting on cultural transmission in Hurford’s model.

Firstly, the behaviour of the populations could be explained by natural selection of cul-

tural variants — more successful communicators are more likely to act as cultural parents

in Hurford’s model. Secondly, the different learning strategies could result in different

direct biases on cultural transmission. I will demonstrate in Section 3.5.3 that this later

pressure is probably the key one.

Oliphant & Batali (1997) introduce another Iterated Learning Model of vocabulary. In-

dividuals are required to communicate about a small set of meanings using a small set

of signals. As in Hurford’s (1989) model, individuals are modelled using probabilistic

functions, with each individual being characterised by a production function, which gives

the probability of each signal being sent for a given meaning, and a reception function,

which gives the probability of a given signal being interpreted as a particular meaning.

Oliphant & Batali use a gradual population turnover model. At each time-step a sin-

gle individual is removed from the population and replaced by a new individual. This
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individual estimates the average production and reception functions in use in the popu-

lation, by making a number of observations of the population’s production and reception

behaviour. Based on these estimated functions, the new individual then creates its own

production and reception functions according to one of two learning procedures, termed

Imitate-Choose(a slight variation on Hurford’s Imitator) and Obverter(related to Hur-

ford’s Calculator).

The learner’s estimation of the probability with which the population produces signal

�j for meaning �i is given by P (�i; �j) and the learner’s estimation of the probability

with which the population interprets �j as meaning �i is given by R (�j; �i). The learner

must choose their own production and reception probabilities, given by p (�i; �j) and

r (�j; �i).

The Imitate-Choose learner proceeds as follows:

For each meaning �i:

– Find the signal �j for which P (�i; �j) is maximum.

– Set p (�i; �j) = 1 and p (�i; �k) = 0 for all k 6= j.

For each signal �j:

– Find the meaning �i for which R (�j; �i) is maximum.

– Set r (�j; �i) = 1 and r (�j; �k) = 0 for all k 6= i.

The Imitate-Choose learner therefore bases its production behaviour on the average pro-

duction behaviour of the population, selecting the most frequently used signal for each

meaning. Similarly, reception behaviour is based on the population’s reception behaviour,

with the most frequent interpretation of a given signal being learned as the only interpre-

tation of that signal. Note that there is no coupling between production and reception

behaviour.

The Obverter learning procedure proceeds as follows:

For each meaning �i:

– Find the signal �j for which R (�j; �i) is maximum.

– Set p (�i; �j) = 1 and p (�i; �k) = 0 for all k 6= j.

For each signal �j:

– Find the meaning �i for which P (�i; �j) is maximum.

– Set r (�j; �i) = 1 and r (�j; �k) = 0 for all k 6= i.
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Obverter learners will produce the signal which is most commonly interpreted by the rest

of the population as conveying the meaning they wish to convey. Similarly, Obverter

learners will interpret a signal as meaning the meaning it is most frequently produced

for. The Obverter learner therefore bases its production behaviour on the population’s re-

ception behaviour and its reception behaviour on the population’s production behaviour.

Note that, unlike in the Imitate-Choose strategy, this results in the coupling of production

and reception behaviour — the population’s production behaviour at time t will influence

its reception behaviour at time t + 1.

Oliphant & Batali define a measure of communicative accuracy for individuals using

these probabilistic send and receive functions, and measure how the communicative ac-

curacy of a population changes over time as new individuals are introduced and learn

according to one of the two strategies. Communicative accuracy within the population

is measured according to a variant of the canonical formula given in Chapter 2, Section

2.2.2.1 — simply put, a communicative episode between two individuals is a success if

the hearer interprets the form produced by the speaker as conveying the meaning that the

speaker intended.

Oliphant & Batali report that the Imitate-Choose strategy can increase communicative

accuracy among a population where communicative accuracy is already high. However,

in poorly coordinated populations the use of Imitate-Choose can result in further degra-

dation. In contrast, use of the Obverter strategy always results in a steady increase in

communicative accuracy until optimal levels are reached.

Why does the Obverter learning strategy result in optimal communication, but the Imitate-

Choose strategy does not? Oliphant & Batali attribute the success of the Obverter strat-

egy to its implicitly communicative aims — during learning, signals are selected so as to

maximise their probability of being understood. Imitator agents do not have this built-

in understanding of the communicative task. They suggest that both strategies build in

ambiguity-avoiding measures — in both cases the most popular meaning-signal combi-

nations are selected to the exclusion of other possible combinations. As we will see in

the remainder of this Chapter, these comments are somewhat wide of the mark. Firstly,

it is not necessary to build in an implicit understanding of the communicative task — in

Section 3.4 I will demonstrate that optimal communication can emerge in a population of

learners who do not select signals so as to maximise the probability of being understood.

Secondly, building in an understanding of the communicative task does not necessar-

ily lead to optimal communication — Hurford’s Calculators are similar to Oliphant &

Batali’s Obverters, but cannot even preserve an optimal system. Finally, it will be shown

in Section 3.5.3 that the Obverter and Imitate-Choose strategies respond differently to
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different types of ambiguity, and that this difference is crucial in understanding the be-

haviour of populations of such learners.

What is clear, however, is that the emergence or non-emergence of optimal communi-

cation in these populations is driven by what B&R term directly biased transmission —

the Imitate-Choose and Obverter strategies have different biases as to how they acquire

communication systems, and over the course of repeated cultural transmission the cul-

tural variants which most closely match these biases come to dominate the population.

We can surmise that the Imitate-Choose and Obverter strategies have different biases,

with only the Obverter strategy being biased in favour of communication systems which

maximise communicative accuracy.

Livingstone & Fyfe (1999) investigate the evolution of vocabulary using a model which is

a hybrid NM-ILM. Livingstone and Fyfe’s main concern is the emergence of diversity of

vocabulary, but they do make some observations of the overall structure of the vocabular-

ies in their populations. Individuals are modelled using neural networks, mapping from

input signals to output meanings1. The neural network model of an agent has N input

units and M output units, where these units can take values of �1. Meanings are repre-

sented by patterns of activation over the M nodes where a single node has an activation

of +1. This yields M distinct meanings. Signals are represented by arbitrary patterns

of activation over the N signal nodes, yielding 2N possible signals. The network’s be-

haviour while producing signals for a given meaning and arriving at the interpretation of

a particular received signal are determined by the single layer of connection weights in

the network, connecting all nodes in N with all nodes in M .

At each generation each individual in the generation g + 1 receives t exposures to the

communicative behaviour of generation g individuals, where each exposure consists of

an observation of a single meaning-signal pair. Generation g+1 individuals then receive

a further t=2 exposures to the communicative behaviour of other generation g + 1 in-

dividuals. This model therefore exhibits a degree of hybridization between the Iterated

Learning and Negotiation models. However, it is more appropriate to classify the model

as of the Iterated Learning type, as the exposures to the previous generation’s commu-

nicative behaviour occur first and will have the greatest impact. The model outlined in

Section 3.3 also suggests that the behaviour of the model would be qualitatively similar

if the negotiation portion of learning were omitted.
1Livingstone & Fyfe (1999) actually present the network as one which maps from input meanings to

output signals. However, during learning signals are treated as input and meanings as output. This turns
out to be the key factor in understanding the behaviour of the model.
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At each training episode the learner is presented with a signal-meaning pair. The learner

takes the signal as input and produces a pattern of activation over the output meaning

nodes, x0, representing that individual’s interpretation of that signal. The teacher’s mean-

ing x is then used to perform weight adjustment according to:

�wij = � (xi � x0i) yi

where wij is the weight of the connection between input node i and output node j, yi
and xi gives the activation levels of the ith input and output unit respectively and � is the

learning rate. This type of network model is typically referred to as an Obverter network

(as is the network described in Batali (1998), discussed in Section 2.3.3.4), by analogy

with the Obverter learning strategy of Oliphant & Batali (1997) — observed production

behaviour is used to acquire reception behaviour.

Livingstone and Fyfe report that, over time, populations of such agents converge on

shared, stable mappings between meanings and signals which would be optimal in terms

of the communicative accuracy measures used by Oliphant & Batali. What drives the

emergence of this optimal vocabulary system? As with the models of Hutchins & Hazel-

hurst (1995), Oliphant & Batali (1997) and Batali (1998), the learning bias of these agents

results in directly biased transmission, with the learners happening to favour communi-

cation systems which are optimal in terms of communicative accuracy. A discussion of

the nature of this bias is postponed until later in this Chapter.

3.2 The communication model

A communication system C consists of a productionfunction p (m), mapping from un-

structured meanings m to unstructured signals s, and a receptionfunction r (s), mapping

from signals s to meanings m. m and s are selected such that m 2 M and s 2 S where

M =
n
m1; m2 : : :mjMj

o
and S =

n
s1; s2 : : : sjSj

o
. This simple model is suitable for

studying the emergence of conventionalised symbolic vocabulary.

How can we evaluate the communicative accuracy of a population using such a commu-

nication system? The accuracy of a single communicative event involving a producer P

with production function p (m), a receiver R with reception function r (s) and a meaning

mi 2 M, ca (P;R;mi), is defined as:
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ca (P;R;mi) =

8<
: 1 if r (p (mi)) = mi

0 otherwise

9=
;

When ca (P;R;mi) = 1 the communication is successful. A population’s commu-

nicative accuracy can be estimated by taking the average ca (P;R;mi) for a random

sample of P , R and mi. In a population possessing an optimal communication system

ca (P;R;mi) = 1 for any choice of P , R and mi. This method of measuring commu-

nicative accuracy is adopted in Section 3.3.

Equivalently, if the production function p(m) is viewed as a probabilistic function p(sjjmi),

which gives the probability of producing signal sj given meaning mi, and the reception

function r(s) is similarly viewed as a probabilistic function r(mijsj) then the commu-

nicative accuracy between two individuals with respect to a single meaning, ca (P;R;mi),

is given by:

ca(P;R;mi) =
j=jSjX
j=1

p(sjjmi) � r(mijsj)

The communicative accuracy of P and R over all meanings, ca(P;R) can then be defined

as the average of their communicative accuracy over each meaning mi 2 M e.g.

ca (P;R) =

Pi=jMj
i=1

Pj=jSj
j=1 p (sjjmi) � r (mijsj)

jMj

In a population possessing an optimal communication system ca(P;R) = 1 for any

choice of P and R. This method of evaluating communicative accuracy is more appro-

priate for the model outlined in Section 3.4.

3.3 Model 1: a feedforward network model

In this Section a simple ILM is described, which is designed to allow the investigation of

the impact of learner bias and natural selection of cultural variants on emergent commu-

nication systems. This model is based on my undergraduate dissertation (Smith 1998),

and has been published in more recent form in Smith (in press).
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In this ILM, communicative agents are modelled using feedforward neural networks.

Neural networks were chosen for several reasons. Firstly, there is some tradition of us-

ing neural networks in research on the evolution of communication — neural networks

of some form are used by Batali (1994), Hutchins & Hazelhurst (1995), Batali (1998),

Cangelosi & Parisi (1998), Cangelosi (1999), Livingstone & Fyfe (1999) and Kirby &

Hurford (2002). Continuing this tradition provides several benefits. In particular, using

a similar model allows the results of this research to be more easily related to previous

research and the generality of the results of earlier simulations to be tested.

Secondly, well-established mechanisms exist for training neural networks to learn input-

output mappings (i.e. backpropagation). Using an established learning mechanism re-

duces the amount of novel elements contained in the model, as well as allowing our

understanding of that mechanism to be expanded.

Finally, using neural networks allows both genetically-transmitted and culturally-transmitted

information to influence, in principle, the eventual behaviour of agents in the model. This

will prove useful in Chapter 4, when I will consider dual-transmission models.

3.3.1 The communicative agent

The model of a communication system is as described above in Section 3.2. Commu-

nicative agents must be capable of representing, using and learning such systems.

3.3.1.1 Representation

Feedforward neural networks are used to model communicative agents. Each individual

is modelled using a single network mapping between meanings and signals. There are

two possible types of networks: one which takes a representation of a meaning as input

and produces a representation of a signal as output, and one which takes a signal as

input and produces a meaning as output. The structure of the two networks are shown in

Figure 3.1. Feedforward networks mapping from input meanings to output signals will

be termed imitator networks, whereas networks mapping from input signals to output

meanings will be referred to as obverternetworks. The precise nature of the meaning-

signal mapping in these networks is determined by the network connection weights.

Given that the input and output layers in these networks have three nodes, commu-

nication systems are mappings between three-dimensional meaning vectors and three-

dimensional signal vectors. Binary vectors are used, giving 23 possible meanings and 23

possible signals. A subset of the set of possible meaning vectors, MCRS , are considered
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Imitator Network Obverter Network

Input/Meaning

Output/Signal

Input/Signal

Output/Meaning

Figure 3.1: The two network architectures. Imitator networks map from input meanings to
output signals. Obverter networks map from input signals to output meanings.

to be communicatively relevant situations, meaning the agents are required to communi-

cate about them. For all simulations outlined in this section, MCRS consists of the unit

meanings represented by the vectors (1 0 0), (0 1 0) and (0 0 1). The full set of possible

signals are allowed. Therefore jMj = 8, jMCRSj = 3 and jSj = 8.

3.3.1.2 Production and reception

These neural network models of agents embody the production and reception functions

p (m) and r (s). Deriving p (m) from an imitator network or r (s) from an obverter net-

work is straightforward. For imitator networks p (m) is derived by presenting the pattern

of activation corresponding to each m 2 MCRS to the network, propagating activations

forward through the network and thresholding the resultant real-valued output pattern of

activation to give the signal s 2 S associated with the given meaning. Similarly, for

obverter networks r (s) is derived by presenting the pattern of activation corresponding

to each s 2 S to the network, propagating activations forward through the network and

thresholding the resultant real-valued output pattern of activation to give the meaning

m 2 M associated with the received signal.

Reception for imitator networks and production for obverter networks is slightly more

complex, given that the networks are not bidirectional. To derive r (s) for an imitator

network each signal s 2 S is considered in turn. All m 2 MCRS are propagated through

a given agent’s network to produce a real-numbered output pattern of activation for each

meaning. Each output pattern is given a confidence rating, corresponding to how closely

that pattern matches the signal currently under consideration, s. The meaning which
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Network TypeProcess
Imitator Obverter

Production propagate confidence measure
Reception confidence measure propagate

Table 3.1: A summary of the production and reception procedures for the two types of
networks. Imitators produce a signal for a given meaning by propagating activations
forward through their network, and arrive at a meaning given a received signal using the
confidence measure. Obverter networks produce using the confidence measure process,
and receive by propagating activations.

yields the real-numbered output vector closest to s, according to the confidence mea-

sure, is chosen as the interpretation of s. This method is based on the method used by

Batali (1998) and Kirby & Hurford (2002) for producing outputs for similar networks.

Similarly, to derive an obverter network’s p (m) each meaning m 2 MCRS is consid-

ered in turn. All s 2 S are propagated through a given agent’s network to produce a

real-numbered output pattern of activation for each signal. Each output pattern is given

a confidence rating, corresponding to how closely that pattern matches the meaning cur-

rently under consideration, m. The signal which yields the real-numbered output closest

to m, according to the confidence measure, is chosen as the network’s production for m.

The confidence measure that a given real-numbered output vector, o, of length n matches

a target binary vector t of length n is given by C (t; o). C (t; o) is simply the product of

the confidence scores for each individual node 1:::n in the output vector i.e.

C (t [1 : : : n] ; o [1 : : : n]) =
nY
i=1

C (t [i] ; o [i])

where the confidence measure for node i is

C (t [i] ; o [i]) =
n o [i] if t [i] = 1;

(1� o [i]) if t [i] = 0:

(Equations adapted from Kirby & Hurford (2002))

The production and reception processes for both types of networks are summarised in

Table 3.1.

The deterministic nature of these networks during production means that a definition of

ambiguity for communication systems can be formally stated. Communication systems

used by neural networks will be termed:
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� Unambiguousif p(m) is a one-to-one function.

� Partially ambiguousif p(m) is a many-to-one function, but the range of p(m) is

not a singleton set.

� Fully ambiguousif the range of p(m) is a singleton set.

3.3.1.3 Learning

In common with most implementations of the NM and ILM, I assume here that indi-

viduals learn from observed meaning-signal pairs. Well-established procedures exist for

training feedforward networks to associate pairs of input-output pairs — here I use the

backpropagation method (Rumelhart et al. 1986). For imitator agents, the training pro-

cess involves attempting to associate an input meaning with an output signal. Imitators

are therefore learning their production function on the basis of observed production be-

haviour. Obverter networks learn to associate input signals with output meanings —

obverters learn their reception function on the basis of observed production behaviour, as

in Batali (1998), Livingstone & Fyfe (1999) and others.

3.3.2 The Iterated Learning Model

As discussed in Chapter 2, the results of repeated cultural transmission can be inves-

tigated using an Iterated Learning Model. In an ILM agents acquire their competence

through learning from observations of the behaviour of other agents. This competence is

then used to generate behaviour which is observed in turn by other agents. In the case of

this model, the culturally-transmitted behaviour of interest is a communication system.

The process of iterated learning requires a model of population turnover. In this model

I use a generational population turnover model, illustrated in Figure 2.6 (a) in Chapter

2. At every time-step a new population of a certain size is created. The pre-existing

population produces some observable behaviour and the members of the new population

observe and learn from that behaviour. The pre-existing population is then removed and

replaced by the newly-created population and the process repeats.

More formally, the generational ILM consists of an initialisation process and an iteration

process:

Initialisation Create a population populationg=0 of N agents2. Each agent is either

an imitator or obverter, as described above, with populations being homogeneous in this
2N = 100 for all ILMs outlined in this section.
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respect. Each agent has random initial connection weights in the range [�1; 1]. Each

agent’s communication system is determined by these random initial connection weights.

Iteration

1. Evaluate the communicative accuracy of every member of populationg by evaluat-

ing every individual’s communicative accuracy as both producer and receiver with

two randomly selected partners according to the measure ca (P;R;m), for every

m 2 MCRS .

2. For every member of the population populationg, generate a set of meaning-signal

pairs by applying the network production process to every m 2 MCRS . Noise is

added to each meaning-signal pair3 with probability pn.

3. Create a new population populationg+1 of N agents of the same type (imitator or

obverter) as populationg, where each member of populationg+1 has random initial

connection weights in the range [�1; 1].

4. Each member of populationg+1 receives e exposures to the observable behaviour

generated by populationg. During each of these e exposures the new agent ob-

serves the complete set of meaning-signal pairs generated by a member of populationg
selected randomly from among the tmost successful communicators in populationg.

For each exposure the learner updates their connection weights according to the

observed meaning-signal pairs using the backpropagation learning algorithm4.

5. populationg is removed and replaced with populationg+1. Return to 1.

Each pass through the iteration process will be termed a generation. Note that the selec-

tion of individuals to observe depends on t and therefore allows the possibility of natural

selectionof cultural variants, as described by B&R. If t = N then selection of individuals

to act as cultural parents is independent of the communicative success of those individu-

als and there is no natural selection of cultural variants. When t < N the probability of

an individual being observed and learned from will depend on their evaluated commu-

nicative success, and there will be natural selection, acting on cultural transmission, in

favour of communication systems which result in successful communication.

The fact that every individual in a population begins their life with a particular net-

work type (imitator or obverter) and a particular set of connection weights (randomly
3In order to add noise to a meaning-signal pair hm i; sji, sj is replaced with a randomly-selected sk 2 S,

where k 6= j.
4A learning rate of 0.5 is used
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distributed within some range) suggests some kind of innate endowment of these com-

ponents. It is our goal to investigate the impact of this innate endowment on the com-

municative behaviour of the population. However, every agent begins life with the same

endowment – there is no possibility of genetic variation within the population. The emer-

gent behaviour of the population will therefore be determined by the dynamics resulting

from the iterated cultural transmission of communication systems among individuals with

a common genetic endowment. In Chapter 4 I will investigate how the biological evolu-

tion of this innate endowment in a genetically heterogeneous population can impact on

the evolution of communication systems.

3.3.3 Network architecture, learning bias and natural selection

The goal of this Chapter of the thesis is to identify the learning mechanisms necessary

to create, through cultural processes, a communicatively useful vocabulary. The ILM de-

scribed above can be used to investigate whether imitator and obverter agents construct

an optimal, unambiguous communication system from random initial behaviour, and un-

der what circumstances. To this end, runs of the iterated learning model were carried

out. In these simulations, the communication system used by agents in the initial popula-

tion is dependent on their random connection weights, and is therefore random. 10 runs

were carried out for each set of experimental conditions, with runs proceeding for 1000

generations. We are primarily interested in the end statesof these runs, rather than their

progress through time. In order to evaluate the end state communication system in use

in the populations, the average communicative accuracy of the population is recorded for

the last 10 generations of each run. Each point in the plots that follow therefore represents

the average communicative accuracy of 10 populations over a period of 10 generations.

3.3.3.1 Learning bias and no natural selection

Figure 3.2 shows the results for simulation runs for imitator and obverter populations

where t = N , (every member of the population is a potential cultural parent) for various

numbers of learning exposures (e), in the absence of noise on cultural transmission (pn =

0).

The different network architectures clearly result in very different behaviour, when placed

in the context of the ILM. For imitator networks, the populations converge on commu-

nication systems which result in communicative accuracy of 0.33. This level of com-

municative accuracy is a consequence of the population using a shared, fully ambiguous
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Figure 3.2: The average final communicative accuracy of imitator (solid line) and obverter
(dashed line) populations as a function of the number of learning exposures (e) used during the
simulation runs. These results are for the case where there is no natural selection of cultural
variants (t = N ). Imitator populations converge on systems which yield chance levels of commu-
nicative accuracy, regardless of e. In contrast, given high enough e, obverter populations converge
on communication systems which give high levels of communicative accuracy.

communication system. In contrast, obverter populations converge on levels of com-

municative accuracy close to optimal when e is large — given large enough e, obverter

populations converge on a shared, unambiguous vocabulary.

Why do the two different network architectures display this behaviour when placed in

the context of the ILM? We can rule out natural selection of cultural variants (because

t = N ). This behaviour therefore must be due to direct bias pressure operating on cultural

transmission.

In order to understand the source of this bias, it is necessary to assess the ability of indi-

vidual agents, in isolation, to acquire systems of various levels of ambiguity, with varying

levels of exposure to such systems. The possible range of meaning-signal mappings is ac-

tually rather small — jMCRSj = 3 andjSj = 8 gives jSjjMCRS j = 512 possible meaning-

signal mappings. It is therefore possible to examine the ability of agents to acquire every

possible system. Of the 512 possible systems, 8 are fully ambiguous, 168 are partially

ambiguous and 336 are unambiguous. For each system, 100 networks with random ini-

tial weights in the range [�1; 1] were given e exposures to that system of meaning-signal
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System Type
e

Fully Ambiguous Partially Ambiguous Unambiguous

1 25.4 0.3 0.0
2 47.1 0.8 0.0
3 74.0 1.4 0.0
4 91.8 1.4 0.1
5 98.0 1.7 0.0
10 100.0 0.5 0.0
25 100.0 1.6 0.1
50 100.0 34.2 13.1

100 100.0 92.8 82.9
150 100.0 99.4 98.3
200 100.0 100.0 99.8

Table 3.2: The imitator learning bias. The table shows the percentage of imitator networks
which succeed acquiring languages of the various classifications, according to e, the number of
exposures to the system. For imitator networks, fully ambiguous systems are easier to learn.

System Type
e

Fully Ambiguous Partially Ambiguous Unambiguous

1 0.1 0.2 0.3
2 0.0 0.3 0.3
3 0.1 0.3 0.5
4 0.0 0.5 0.5
5 0.1 0.4 0.7
10 0.0 0.9 1.6
25 0.0 3.7 7.8
50 0.0 10.1 26.2

100 0.0 14.9 49.1
150 0.0 15.2 53.8
200 0.0 15.2 54.8

Table 3.3: The obverter learning bias. The table shows the percentage of obverter networks
which succeed acquiring languages of the various classifications, according to e, the number of
exposures to the system. Obverter networks find unambiguous systems easier to learn.

mappings. Learning proceeds via the backpropagation process, with the same learning

rate as used in the ILM. A network was judged to have learned a system successfully if

the observed system could be reproduced in production — for every meaning-signal pair

hmi; sji production of the signal associated with mi resulted in sj being produced. The

results are summarised in Tables 3.2 and 3.3 by communication system type.

As can be seen from Table 3.2, for imitator agents systems exhibiting a higher degree of

ambiguity are easier to acquire than systems exhibiting a lower degree of ambiguity, for
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System Type % population
Unambiguous 2

Partially Ambiguous 25
Fully Ambiguous 73

Table 3.4: The behaviour of imitator agents with random connection weights. The table shows
the percentage (based on 1000 test networks) of imitator networks with random connection
weights (in the range [-1,1]) who use a communication system of the given type. Random imitator
networks tend to produce fully ambiguous systems.

all values of e. Table 3.3 shows that obverter agents have the opposite learning bias —

systems exhibiting lower degrees of ambiguity are easier to acquire, for all values of e.

Learnability never reaches 100%, even for unambiguous communication systems. It ap-

pears that certain unambiguous systems are unlearnable by obverter agents, while certain

unambiguous systems are 100% learnable. The key point is that certain unambiguous

systems are highly learnable whereas partially ambiguous and fully ambiguous systems

are less learnable.

Returning to the results for ILM runs involving imitator populations, for low values of

e, no communication system can reliably be learned. Populations essentially behave in a

random fashion. The typical random behaviour of imitator agents is shown in Table 3.4.

The majority of individuals use fully ambiguous systems, resulting in chance levels of

communicative accuracy. As e increases, fully ambiguous systems rapidly become highly

learnable, and are always more learnable than less ambiguous systems. Less ambiguous

systems are less likely to be successfully learned than fully ambiguous systems, and are

unstable over time. The populations therefore converge on fully ambiguous systems,

resulting in low levels of communicative accuracy.

In contrast, the communicative accuracy in obverter populations increases as e increases.

For low values of e all systems are unlearnable, and individuals use a random system. As

shown in Table 3.5, obverter agents with random connection weights tend to use a un-

ambiguous systems. The communicative accuracy of the population is therefore low, as

there are a large number of uncoordinated unambiguous systems present. As e increases,

the learnability of unambiguous systems increases, and is always higher than the learn-

ability of more ambiguous systems. Unambiguous systems become increasingly stable

relative to more ambiguous systems and the populations converge on shared unambigu-

ous communication systems, resulting in high levels of communicative accuracy for high

values of e.
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System Type % population
Unambiguous 65

Partially Ambiguous 33
Fully Ambiguous 2

Table 3.5: The behaviour of obverter agents with random connection weights. The table shows
the percentage (based on 1000 test networks) of obverter networks with random connection
weights (in the range [-1,1]) who use a communication system of the given type. Random obverter
networks tend to produce unambiguous systems.

The behaviour of these populations in the ILM is therefore determined by the learning

biases of the two network architectures. These learning biases result in direct bias act-

ing on cultural transmission, with the cultural variants favoured by the bias eventually

reaching fixation.

3.3.3.2 Learning bias and natural selection

Figures 3.3 and 3.4 show the results for simulation runs for imitator and obverter agents

where t < N (only the top t individuals act as cultural parents, and t is less than the

population size N , therefore the less able communicators may not act as cultural parents),

for various values of t and e (learning exposures), again in the absence of noise (pn = 0).

In these simulations there are two pressures operating on the communication systems in

the populations:

1. Selection for learnability, driven by the agents’ learning bias, favouring either more

ambiguous communication systems (in the case of imitator agents) or less ambigu-

ous systems (in the case of obverter agents).

2. Selection for communicative successdriven by natural selection of communication

systems, favouring systems which result in successful communication.

In populations of imitator agents pressures 1 and 2 are in conflict, with selection for learn-

ability favouring fully ambiguous systems (as discussed in the previous section), while

natural selection favours shared unambiguous systems. For obverter populations these

pressures are not in conflict, with both favouring the development of shared unambigu-

ous systems.

The addition of natural selection of cultural variants has little impact on the emergent

communication systems — as with the case where there is no natural selection, imitator

populations converge on fully ambiguous communication systems and communicative

accuracy remains uniformly low, while obverter populations converge on unambiguous
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Figure 3.3: The average final communicative accuracy of imitator populations where there is
natural selection of cultural variants (t � N ), and no noise on cultural transmission (pn = 0), as
a function of e. Natural selection of cultural variants clearly has no impact.
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Figure 3.4: The average final communicative accuracy of obverter populations where there is
natural selection of cultural variants (t � N ), and no noise on cultural transmission (pn = 0),
as a function of e. Natural selection of cultural variants has little impact — there are very slight
differences in final communicative accuracy, dependent on t.
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Figure 3.5: The average final communicative accuracy of imitator populations where there is
natural selection of cultural variants (t � N ), and noise on cultural transmission (pn = 0:05), as
a function of e. Natural selection of cultural variants clearly a slight impact for high e.

communication systems given sufficiently high e, with consequently high communicative

accuracy. The behaviour of the populations is still dominated by the intrinsic learning

bias of the agents.

B&R highlight the importance of cultural variation in populations where cultural trans-

mission is undergoing natural selection — where there is no variation, natural selection is

powerless. It is possible that we are not seeing any impact from natural selection due to a

lack of cultural variability in the populations. While the initial populations exhibit vari-

ability (see Tables 3.4 and 3.5), which direct bias clearly feeds off, it could be that biased

cultural transmission eliminates this variability too quickly, preventing natural selection

of cultural variants from functioning. In order to investigate this possibility, the exper-

iments outlined above were repeated with noise on cultural transmission (pn = 0:05).

This noise will potentially introduce cultural variation, which natural selection can then

feed off. The results are plotted in Figures 3.5 and 3.6.

The introduction of noise has a slight impact. In imitator populations, when e is very

high, there is a slight increase in average communicative accuracy for the case where

t = 20. This is in fact due to one (when e = 150) or two (when e = 200) of the ten

runs converging on partially ambiguous communication systems. This only occurs when
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Figure 3.6: The average final communicative accuracy of obverter populations where there is
natural selection of cultural variants (t � N ), and noise on cultural transmission (pn = 0:05), as
a function of e. Natural selection of cultural variants has a noticeable impact for e = 100 or 150.

e is very high as this is the point where the individual’s learning bias is weakest — as

can be seen from Table 3.2, partially ambiguous systems seem to be as learnable as fully

ambiguous systems where e � 150. However, the natural selection of cultural variants

needs to be very severe to produce this slight effect.

In obverter populations there is, similarly, a slight impact, with natural selection of cul-

tural variants improving the populations’ communicative accuracy somewhat for certain

amounts of learning (e = 100 or 150). The effect is still fairly minor.

3.3.4 Summary

The two distinct models of communicative agents have different learning biases, as high-

lighted by the acquisition tests outlined in Section 3.3.3.1. Placing these agents within

an ILM allows the consequences of the iterated application of these learning biases to

be explored. In the case where the direct bias on cultural transmission introduced by the

agents’ learning bias is the sole factor at play, the populations converge on the type of

communication system favoured by that bias, as predicted by B+R. Natural selection of

cultural variants in addition to this biased transmission has a very minor impact, and even

then only when noise is injected into the system to provide variation.
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Why do imitator and obverter agents have different biases and how can this bias best be

described? This issue will be returned to in Section 3.5. However, it is clear from the

relatively simple experiments outlined in this section that the behaviour of populations of

individuals is strongly determined by their learning bias, which can override other pres-

sures acting on cultural transmission, such as natural selection. Comparison of more than

two alternative learning biases remains desirable, and a model allowing the comparison

of a much wider range of biases is outlined in the next section. The feedforward neural

network model is returned to in Chapter 4, where it is used to investigate the interactions

between genetic and cultural transmission of communication.

3.4 Model 2: an associative network model

The feedforward network model described above is limited in the sense that the learning

bias of individual agents is a consequence of their network architecture, and there are only

two such possible architectures — the imitator architecture, and the obverter architecture.

Ideally we would like to be able to experiment with a wider range of learning biases,

in order to isolate the elements of bias which drive the cultural evolution of symbolic

vocabulary.

A promising approach to addressing precisely this question is outlined in Oliphant (1999).

Oliphant investigates how different learning rules influence the development of a vo-

cabulary system through cultural processes within a population of associative networks.

While the approach described in this paper is promising, its execution suffers from sev-

eral shortcomings. Firstly, only three possible learning rules are considered. Secondly,

while it is shown that certain learning rules result in the emergence of optimal communi-

cation, the properties of the learning rules that result in this behaviour are not explicitly

identified. Thirdly, the results for those three learning rules are not related to other results

in the field.

In this section I introduce a model, based on Oliphant’s, which allows a wide range of

learning rules, and associated learning biases, to be explored. This exploration allows

me, in Section 3.5, to identify the key bias leading to the emergence of communicatively

optimal, symbolic vocabulary through cultural processes. This bias can also be identified

in the feedforward network model described above, and in most other models of the

emergence of vocabulary via cultural evolution.
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3.4.1 Communicative agents

The model of communication is as outlined in Section 3.2. Given the nature of the com-

municative agent model, the probabilistic interpretation of the communicative accuracy

function is more natural, and is used in this section.

An associative network is used to model communicative agents. Since this model is

less standard than the feedforward network model outlined in Section 3.3 a detailed and

somewhat formal description is given here.

3.4.1.1 Representation

Agents are modelled using networks consisting of two sets of nodes NM and NS and a

set of weighted bidirectional connections W connecting every node in NM with every

node in NS .

Patterns of activation overNM are considered to represent meanings, whereas patterns of

activation over NS are considered to be signals. Restricting these patterns of activation

to contain a single active unit yields jNM j orthogonal meaning representations and jNSj

orthogonal signal representations, suitable for representing sets of unstructured meanings

and unstructured signals such as those described in Section 3.2. If Gi is the ith node

from the set NG and the activation of node Gi is aGi then the meaning mi corresponds

to a pattern of activation over NM where aMi = 1 and aM(j 6=i) = 0. Similarly, the signal

si corresponds to a pattern of activation over NS where aSi = 1 and aS(j 6=i) = 0. This

representational scheme is illustrated in Figure 3.7.

3.4.1.2 Production and reception

Patterns are retrieved from the network using a k-winners-take-all strategy. In order to

retrieve a pattern of activation over nodes in NS based on an input pattern of activation

over nodes in NM the weighted sum of inputs to node Si, qSi, for each Si 2 NS is

calculated according to the formula:

qSi =
j=jNM jX
j=1

aMj � wMj;Si

where wa;b 2 W is the weight of the connection between nodes a and b. The k nodes in

NS with the highest values of q then have their activations set to 1, while all other nodes

in NS have their activations set to 0. If several nodes have equal q a random winner

is selected from among them. Patterns of activation over the nodes in NM are retrieved
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Figure 3.7: A neural network where jNM j = jNS j = 3. Large filled circles represent nodes with
activation of 1, large empty circles represent nodes with activation of 0. The pattern of activation
over NM therefore represents the meaning m2 (aM2 = 1, aM1 = aM3 = 0). Similarly, the
pattern of activation over NS represents the signal s3

based on input patterns of activation overNS in exactly the same way. For all simulations

outlined in this paper, k = 1 — retrieved patterns of activation only ever consist of a

single active node and (jN j � 1) non-active nodes. This ensures that retrieved patterns

of activation conform to our representation of meanings and signals outlined above. This

retrieval process is illustrated in Figure 3.8.

Retrieving a pattern of activation over NS given an input pattern of activation over NM

corresponds to retrieving the signal associated with a given meaning — productionof a

signal associated with a given meaning. Retrieving a pattern of activation overNM given

an input pattern of activation over NS corresponds to retrieving the meaning associated

with a given signal — receptionof a given signal and interpretation of that signal to yield

a meaning. Note that the production and reception behaviour of such networks are not

necessarily closely related — for example, the network in Figure 3.8 would produce s2

when prompted with m2, but would interpret s2 as meaning m3. Using a single network

for both production and reception, as opposed to two separate networks, does however

allow the possibility of a coupling of production and reception.

3.4.1.3 Learning

In order to store the association between patterns of activation over NM and NS the

activations of the nodes in NM and NS are set to the required values and the weights

of the connections in W are adjusted according to some weight-update rule W . If we

assume that W must only adjust connection weights based on local information and that

all patterns of activation will be binary, W can be specified by the 4-tuple (� �  Æ),
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Figure 3.8: Retrieval of a pattern of activation over NS based on a pattern of activation over
NM . As before, large filled circles represent nodes with activation of 1. Connections between
nodes are represented by the intersections of connecting lines and have an associated weight. In
(a), the nodes in NM have been set to a pattern of activation, resulting in a pattern of weighted
sums of inputs over the nodes in NS — the q values for those nodes The numbers in the centre of
the nodes in NS represent the weighted sums to those nodes. In (b) the result of the application
of the winner-take-all process is shown — qS1 is greater than qS2 or qS3, therefore node S1 has
its activation set to 1 while nodes S2 and S3 have their activations set to 0.

where the value in � specifies how the weight of connection wi;j should be adjusted

when ai = aj = 1, the value in � specifies how wi;j should be adjusted when ai = 1 and

aj = 0, the value in  specifies how wi;j should be adjusted when ai = 0 and aj = 1 and

the value in Æ specifies how wi;j should be adjusted when ai = aj = 0. While weights

could be adjusted in many ways we will restrict ourselves here to the simplest case where

�, �,  and Æ must take integer values in the range [�1; 1]. This yields a range of 34 = 81

possible weight-update rules.

Given our interpretations of patterns of activations of NM and NS this storage process

represents the process of learning the association between a meaning and a signal in a

meaning-signal pair hm; si according to some rule W . The learning process is illustrated

in Figure 3.9.

3.4.2 Acquisition of an optimal system

We now have a model of communication, a model of an agent and processes of pro-

duction, reception and learning. The feedforward neural network model highlighted the

importance of the learning biases of agents when accounting for the behaviour of popu-

lations of such agents. The first question to be addressed here is therefore to ask whether

individual agents, in isolation, can acquire an optimal communication system. To this

end an unambiguous set of meaning-signal pairs A = fhm1; s1i; hm2; s2i : : : hm10; s10ig
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Figure 3.9: Storage of the meaning-signal pair hm2; s3i using the weight-update rule W =

(a b c d). In (a), the nodes in NM and NS have been set to the patterns of activation representing
m2 and s3. All connections have weight 0. In (b) the result of the application of the storage
process is shown — all connections now have weights of a, b, c or d, depending on the activations
of the nodes they connect.

was constructed. Agents using each of the 81 possible weight-update rules were then

trained onA, by storing each meaning-signal pair inA in their network. The agents were

then evaluated to see if they had successfully acquired an optimal communication system

based on exposure to the unambiguous set of meaning-signal pairs A. Agents are judged

to have acquired an optimal system, if, for every hmi; sii 2 A both:

1. Production of the signal associated with mi always5 results in si being produced,

i.e. hmi; sii can be reproduced in production and

2. reception of si always results in the interpretation mi, i.e. hmi; sii can be repro-

duced in reception, meaning that the agent would communicate optimally with

itself or another agent using the same weight-update rule exposed to A.

The 81 weight-update rules can therefore be classified according to a [�learner] feature.

31 of the 81 possible weight-update rules were judged to be capable of acquiring the

optimal communication system and were classified as [+learner]. The remaining 50

weight-update rules were classified [�learner].
5The term “always” has to be introduced to account for the stochastic nature of the behaviour of some

networks, resulting from multiple nodes in the network receiving the same weighted sum of inputs on
presentation of a pattern. In practice, “always” was reduced to “for every one of 1000 trials”.
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3.4.3 The Iterated Learning Model

As with the feedforward network model discussed above in Section 3.3, this model of a

communicative agent can be slotted into an Iterated Learning Model to evaluate how the

different weight-update rules influence the development of communication over time in a

population. Unlike the feedforward network model, a gradual, rather than generational,

population turnover model is used. The gradual population turnover model was preferred

to counter the possibility in the new model of “inverting” learners, who learn the oppo-

site communication system to their cultural parents. In a generational ILM populations

of such agents would score highly on the intra-generational communicate accuracy mea-

sures, but could not be said to have learned the communication system of their cultural

parents.

In the gradual population turnover model (see Figure 2.6 (b) in Chapter 2) at every time-

step a single agent is selected at random and removed from the population. The remaining

members of the population produce some observable behaviour, in the case of this model

sets of meaning-signal pairs. A new individual arrives and learns based on observations

of the population’s observable behaviour, then enters the population. The process then

repeats.

More formally, the ILM consists of an initialisation process and an iteration process:

Initialisation Create a population of N agents6, each using the weight-update rule W

and possessing communication system L.

Iteration

1. Select an agent at random from the population and remove it.

2. For every remaining member of the population, generate a set of meaning-signal

pairs by applying the network production process to every m 2 M. Noise is added

to each meaning-signal pair7 with probability pn.

3. Create a new agent with connection weights of 0 who uses weight-update rule W .
6N = 100 for all ILMs outlined in this section.
7In order to add noise to a meaning-signal pair hm i; sji, sj is replaced with a randomly-selected sk 2 S,

where k 6= j.
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4. The new agent receives e exposures to the population’s observable behaviour. Dur-

ing each of these e exposures the new agent observes the complete set of meaning-

signal pairs of a randomly selected member of the population and updates their con-

nection weights according to the observed meaning-signal pairs and their weight-

update rule W .

5. The new agent joins the population. Return to 1.

Each pass through the iteration process will be termed a cohort. Note that the random re-

moval of agents from the population means there is no selection based on communicative

ability. As with the feedforward network ILM, the fact that every individual begins its

life with a weight-update rule and initial set of connection weights suggests some kind

of innate endowment of these components. In the simulations outlined in this section

populations are homogeneous with respect to this endowment, and we restrict ourselves

to investigating the impact of cultural transmission factors on the emergent communi-

cation systems. In Chapter 4 the biological evolution of these innate endowments in a

genetically heterogeneous population will be investigated.

3.4.4 Maintenance of an optimal system

The first question to be addressed using the ILM is whether a population of agents pos-

sessing a weight-update rule W can maintain an optimal system over time in the presence

of a small degree of noise. Recall from the description of the ILM given above that the

agents in the initial population use some predefined communication system L. For the

experiments outlined in this section, the initial population’s set of weights W were con-

structed such that the p(m) of the initial L generates the set of meaning-signal pairs

L = fhm1; s1i; hm2; s2i : : : hm10; s10ig — the initial population shares an unambiguous

meaning-signal mapping. ILMs were run with each of the 81 possible learning rules,

with noise introduced with probability pn = 0:05 and each individual receiving expo-

sures to the communication systems of three randomly-selected members of the popula-

tion (e = 3). Populations were defined as having maintainedthe initial optimal system

if the population’s communicative accuracy remained above 0.95 for every cohort of a

run.8 Weight-update rules were classified as [+maintainer] if the optimal system was

maintained for each of ten 2000-cohort runs.

The populations exhibited four typical patterns of behaviour, illustrated in Figure 3.10.

Populations (a), (b) and (c) in Figure 3.10 have failed to maintain the optimal system
8The population’s communicative accuracy was estimated by evaluating every individual’s average

communicative accuracy as both producer and receiver with two randomly selected partners according to
the measure ca(P;R) given in Section 3.2, averaging over all individuals in the population.
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Figure 3.10: Populations of agents using the 81 learning rules exhibit four patterns of behaviour
when attempting to maintain an optimal system. This figure plots the communicative accuracy
over time of single populations exhibiting these patterns of behaviour: rapid collapse to chance
levels of communicative accuracy, as in (a); less rapid collapse to chance levels of communicative
accuracy, as in (b) and (c); maintenance of the optimal system, as in (d).

and can therefore be classified as [�maintainer], although population (a) in Figure 3.10

exhibits a more rapid decrease in communicative accuracy than populations (b) and (c).

Unsurprisingly, all 50 populations using weight-update rules with the [�learner] feature

followed the pattern of (a) and can therefore be classified [�learner, �maintainer]. Of

the remaining 31 weight-update rules, 13 resulted in the type of pattern exemplified by

populations (b) and (c) and can be classified as [+learner,�maintainer] and 18 resulted in

patterns similar to that of population (d) in Figure 3.10 and can be classified as [+learner,

+maintainer].

3.4.5 Construction of an optimal system

Finally, the 81 weight-update rules were examined to see whether they resulted in the

emergence of optimal communication systems from random behaviour when placed in

the context of the ILM. In the previous section the initial population’s communication

system, L, was optimal. In the models outlined in this section L has maximum entropy

— everym 2 M is associated with every s 2 S with equal probability, jMj = jSj = 10.

This was achieved by setting the connection weights of every individual in the initial

population to 0. Unlike in the previous section, cultural transmission is noise-free —
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pn = 0 (although results show that similar behaviour occurs with pn > 0). Simulations

were run for each of the 81 possible learning rules. A population was defined as having

constructedan optimal system if the population’s communicative accuracy reached 1:0.

Weight-update rules were classified [+constructor] if optimal systems were constructed

in each of ten 5000-cohort runs.

The populations exhibit three typical patterns of behaviour, of which populations (a), (b)

and (c) in Figure 3.11 are representative examples. The populations which fit the pattern

exemplified by (a) in Figure 3.11 have clearly failed to construct an optimal system and

in fact persist at the random level of performance for jMj = jSj = 10. All of the

weight-update rules which were classified as [�maintainer] follow this pattern and can

be classified as [�constructor].

Populations behaving similarly to population (b) in Figure 3.11 are performing above

the random level, but have not constructed an optimal system as defined above. In fact,

as suggested for a more limited case by Oliphant (1999), the level of communicative

accuracy in these populations hovers around the level we would expect given a random

assignment of signals from S to meanings from M with replacement:

communicative accuracy � 1�

 
1�

1

jSj

!jMj

The reason for this level of performance will be made clear in section 3.5.1. Nine of the

18 weight-update rules which were classified [+maintainer] fit this pattern and can be

classified as [�constructor].

Populations fitting the pattern exemplified by population (c) in Figure 3.11 have suc-

ceeded in constructing an optimal system from random behaviour and can be classi-

fied as [+constructor]. Nine of the 18 weight-update rules which were classified as

[+maintainer] fit this pattern.

3.4.6 Summary: The classification hierarchy

The three tests outlined above divide the 81 weight-update rules into four groups, sum-

marised in Table 3.6.

The fact that all weight-update rules which are [+constructor] are [+maintainer] and all

rules which are [+maintainer] are [+learner] suggests a hierarchy of weight-update rules,

summarised in Figure 3.12.
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Figure 3.11: Populations of agents using the 81 learning rules exhibit three patterns of be-
haviour when attempting to construct an optimal system: failure to construct an optimal system
and chance-level communicative accuracy, as in (a); failure to construct an optimal system, but
levels of communicative accuracy significantly above chance, as in (b); construction of an optimal
system, as in (c).

Classification Number

[�learner, �maintainer, �constructor] 50
[+learner, �maintainer, �constructor] 13
[+learner, +maintainer, �constructor] 9
[+learner, +maintainer, +constructor] 9

Table 3.6: The number of weight-update rules of each particular complete classification,
from the sample of 81.
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weight-update rules
(81)

[+learner]
(31)

[-learner]
(50)

[-maintainer][+maintainer]
(18) (13)

[-constructor][+constructor]
(9) (9)

Figure 3.12: The hierarchy of weight-update rules. Read from the top, each node places ad-
ditional restrictions on the properties of the weight-update rules. The numbers possessing each
feature are given in parentheses at each point in the tree.

3.5 The Key Bias

Why are obverter networks in the feedforward network model described in Section 3.3

biased in favour of acquiring unambiguous systems but imitator agents, with a slightly

different architecture, are biased in favour of acquiring fully ambiguous systems? Simi-

larly, what is it about the particular assignment of �1s, 0s and 1s to the four conditions

�, �,  and Æ in the associative network model9 (described in the previous Section) that

makes one weight-update rule incapable of learning an optimal communication system

whereas another weight-update rule is capable of constructing such a system from ran-

dom behaviour in the context of iterated cultural transmission?

The learning biases of the different network architectures or weight-update rules are best

described in terms of the one-to-one nature of mappings between meanings and signals.

As defined in Section 3.2, in an optimal communication system r(p(m)) = m for all

m 2 M. This requires that:

1. Each m 2 M should be expressed by a distinct s 2 S, i.e. p(m) should be a

one-to-one function.

2. Each s 2 S should map back to a single m 2 M such that p(m) = s, i.e. r(s)

should be a superset of the inverse of p(m).

9See Section 3.4.1.3. To recap, the value in � specifies how to change the connection weight between
coactive units, � specifies how to change the connection weight between an active meaning node and an
inactive signal node,  specifies how to change the connection weight between an inactive meaning node
and an active signal node, and Æ specifies how to change the connection weight between two inactive units.
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3.5.1 The key bias in the associative network model

There is a clear pattern relating the properties of weight-update rules to the assignment

of actions to values in the (� �  Æ) 4-tuple. Given the (approximately) bidirec-

tional nature of the networks and assuming jSj � jMj, point 1 above (p (m) should

be a one-to-one function) proves to be crucial in determining which weight-update rules

are [+constructor], which are [+maintainer, �constructor] and which are [+learner,

�maintainer, �constructor]. Weight-update rules which are [+constructor] are biased

in favour of a one-to-one p(m), those which are [+maintainer, �constructor] are neutral

with respect to the one-to-one nature of p(m) and those which are [+learner,�maintainer,

�constructor] are biased in favour of a many-to-one p(m).

3.5.1.1 The [+constructor] bias

Is there any pattern of assignment of values to conditions in the weight-update rule spec-

ification (� �  Æ) that characterises rules which are [+constructor] but not rules which

are [�constructor]? Yes.

A weight-update rule is [+constructor] if � > � ^ Æ > 

Why does this pattern of weight changes result in the construction of optimal systems

from random behaviour? Consider a network where jNM j = jNSj = 2 using the weight-

update rule (a b c d). Prior to learning, all the connection weights in W are 0. If we

represent W as a matrix with the value in row i and column j representing the weight of

the connection between nodes Mi and Sj then its initial weights will be:

0
@ 0 0

0 0

1
A

If this network is exposed once to the meaning m1 (recall from Section 3.4.1.1 that for

this meaning aM1 = 1, aM2 = 0), paired with the signal s1 (similarly, aS1 = 1, aS2 = 0),

its weight matrix will be: 0
@ a b

c d

1
A

For rules which are [+constructor] a > b. This means that if our simple network uses a

[+constructor] rule it will correctly produce s1 to communicate m1, due to the winner-

take-all retrieval procedure.
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For [+constructor] rules, d > c. In the context of our simple network, this means that

if the network uses a constructor rule it will automatically prefer to use the signal s2 to

communicate meaning m2, despite the fact it has only been trained to associate m1 with

s1. This is the crucial property of [+constructor] rules — they are biased in favour of

acquiring one-to-one mappings between meanings and signals. What consequences does

this bias have in the context of iterated cultural transmission?

Only communication systems which conform completely to the biases of learners will

be stable over iterated cultural transmission — communication systems which partially

conform to learner biases will be less likely to be acquired than systems which conform

more fully to the learner biases, and will therefore be filtered out of the population over

time. This differential retention of communication systems resulting from learner biases

results in direct bias on cultural transmission, as defined by B&R. The [+constructor]

bias in favour of one-to-one mappings between meanings and signals results in many-

to-one mappings being filtered out of the population. Eventually, through the process

of iterated learning, the population converges on a shared one-to-one mapping between

meanings and signals — an optimal communication system is constructed.

3.5.1.2 The [+maintainer] bias

Can the [+maintainer] property also be explained in terms of allocations of actions to the

(� �  Æ) weight-update rule specification? First, is there any pattern which uniquely

identifies the [+maintainer, �constructor] rules? Yes.

A weight-update rule is [+maintainer, �constructor] if � > � ^ Æ = 

Once again consider a network where jNM j = jNSj = 2 using the rule (a b c d) exposed

once to m1 paired with s1. As before, the resultant weight matrix is:

0
@ a b

c d

1
A

As for [+constructor] rules, for [+maintainer,�constructor] rules a > b. This means that

if our simple network uses a [+maintainer, �constructor] rule it will correctly produce

s1 to communicate m1.

For [+maintainer, �constructor] rules d = c. This means that, unlike [+constructor]

rules, the network using a [+maintainer, �constructor] rule will be equally likely to

express m2 using s1 or s2, due to their equal weights in the network. [+maintainer,
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�constructor] rules are therefore neutral with respect to one-to-one mappings. This ex-

plains both the ability of populations of agents using such rules to maintain optimal sys-

tems in the context of the ILM and the behaviour of these populations as they attempt to

construct optimal systems.

[+maintainer, �constructor] rules can maintain an optimal system in the presence of

noise. The initial optimal system is, by definition, a one-to-one mapping between mean-

ings and signals. Given the neutrality of [+maintainer,�constructor] rules to the one-to-

one nature of mappings, such optimal systems can be acquired in the presence of noise,

provided the noise is not sufficient to drown out the one-to-one mapping.

Recall from Section 3.4.5 and Figure 3.11 that, when provided with an initially random

system, populations of agents using [+maintainer, �constructor] rules converge on the

level of communicative accuracy one would expect given a random assignment, with re-

placement, of signals to meanings. This can be explained in terms of the neutrality of

[+maintainer,�constructor] rules to the one-to-one nature of mappings. The initial pop-

ulation’s random behaviour, when taken as a whole, will embody a random assignment of

signals to meanings. This random assignment will become shared among the population

through the process of cultural transmission. While [+constructor] agents remove the

many-to-one elements of the initial random system, [+maintainer, �constructor] agents

do not — the population’s eventual communication system will embody the same number

of many-to-one mappings as the initial random behaviour.

What then of the [+maintainer] property in isolation from the [�constructor] feature?

This can be captured thus:

A weight-update rule is [+maintainer] if � > � ^ Æ � 

The fact that rules which are [+constructor] are always [+maintainer] is captured by this

statement, as is the fact that it is possible to be [+maintainer, �constructor].

3.5.1.3 The [+learner] bias

The pattern of assignments of actions to the weight-update rule specification (� �  Æ)

that characterises rules which are [+learner] is:

A weight-update rule is [+learner] if �+ Æ > � + 

or, in simple terms, in order to be able to acquire an optimal communication system you

must make stronger associations between units which tend to have matching activations
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(α + δ > β + γ)
[+learner]

(α + δ <= β + )γ

^(α > δβ )> γ

^(α > δβ >= γ)
^(α < δβ > γ)

weight−update rules

[−learner]

[−constructor]
γ^(α > δβ )=

[−maintainer][+maintainer]

[+constructor]

^(α > δβ < γ)
or

Figure 3.13: The hierarchy given in Figure 3.12, expressed in terms of restrictions on possible
values in each condition of weight-update rules.

than between units which tend to have conflicting activations. Note that the � > �^Æ � 

constraint on [+maintainer] rules guarantees that all such rules are also [+learner].

Why are rules which are [+learner, �maintainer, �constructor] unable to maintain or

construct optimal communication systems? As we might expect, such weight-update

rules are biased againstone-to-one mappings between meanings and signals and in favour

of many-to-one mappings. This immediately rules out construction of the one-to-one

mappings characterising optimal systems, and also maintenance of such systems. Any

many-to-one mappings introduced by noise will be preferentially acquired by [+learner,

�maintainer, �constructor] agents and will spread through populations of such agents,

resulting in the type of decrease in communicative accuracy seen in Figure 3.10.

3.5.1.4 Summary of the key bias in the associative network model

The weight-update rule hierarchy given in Figure 3.12 is re-presented in Figure 3.13 in

terms of the constraints on the values of the weight-update rules. Each terminal node of

the tree has a bias, summarised in Table 3.7.

3.5.2 The key bias in the feedforward network model

In the feedforward network model both imitator and obverter agents learn using the back-

propagation algorithm. The bias is therefore introduced by the architecture of these net-

works, rather than the particular learning rule used. Imitator networks map from input
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Classification Bias

[�learner, �maintainer, �constructor] NA
[+learner, �maintainer, �constructor] favours many-to-one mappings
[+learner, +maintainer, �constructor] neutral
[+learner, +maintainer, +constructor] favours one-to-one mappings

Table 3.7: A summary of the learning biases of each particular combination of features. Weight-
update rules which are classified as [�learner, �maintainer, �constructor] cannot be said to have
a learning bias as they cannot learn.

meanings to output signals, whereas obverter networks map from input signals to output

meanings. This turns out to be crucial in understanding the bias of these networks.

Feedforward neural networks learn many-to-one functions. Due to the deterministic na-

ture of the feedforward propagation of activation values they cannot learn one-to-many

mappings. The easiest function for a network to acquire is an all-to-one mapping from

inputs to outputs, the hardest learnable function is an injective (one-to-one) function and

one-to-many mappings are unlearnable. The reversal process used to model reception

behaviour for imitators and production behaviour for obverters is similarly biased — it

generates a function, which may be injective or many-to-one, based on the function the

feedforward network has acquired. In general, if the network has acquired a function

f(x) which has a range y, then the reversal process ensures that element yi 2 y will map

onto a single element xi 2 x such that f(xi) = yi — in simple terms, the reversal process

deterministically reverses the function acquired by the network.

In imitator agents the feedforward network learns functions from meanings to signals

— it learns p(m). Since it is a feedforward network it will be biased towards acquir-

ing a many-to-one or all-to-one p(m). As illustrated in Figure 3.14 and discussed in the

caption, the maximally stable p(m) for imitator agents is therefore an all-to-one fully

ambiguous function. Imitators are therefore biased against one-to-one mappings from

meanings to signals. Reception in imitators will be based on their acquired p(m) — as

shown in Figure 3.14, in the case of an all-to-one p(m), in r(s) the signal si that consti-

tutes the range of p(m) will map onto a single element from m. Therefore a population

of imitators agents will tend to produce the same signal for every meaning and interpret

the ambiguous signal as communicating one arbitrary selected meaning. This situation

results in performance equivalent to random guessing.

In obverter agents the feedforward network learns functions from signals to meanings —

it learns r(s). As illustrated in Figures 3.15 and 3.16 the only culturally stable system

has a one-to-one p(m) and an r(s) which includes at least the inverse of p(m). Obverter
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m1 m2 m3

s1 s2 s3 s4 m3m2m1

s3 s4s1 s2

m1 m2 m3

s1 s2 s3 s4
(d)

reverse

m1 m2

s2 s3 s4

learn

evaluate

m3

s1
(a) (b) (c)

Figure 3.14: (a) is a representation of an imitator agent’s feedforward network encoding an
all-to-one p(m) mapping three meanings onto a single signal, s2. The function from a domain
of real numbers (input unit activations) to a codomain of real numbers (output unit activations)
is represented by two lines, the lower line representing the domain, the upper representing the
codomain. Squares represent particular points on the line corresponding to binary meanings or
signals. Associations are shown with solid lines between elements in the domain and elements
in the codomain. (b) represents the confidence-measuring step of the reversal process for the
network underlying (a). In order to decide r(s2), the real-number values of p(m1), p(m2) and
p(m3) are calculated. These real-numbered mappings are represented by dotted lines in (b). (c)
represents the r(s) derived from applying the reversal process to (a). r(s2) = m2 because m2

mapped closer to s2 than any other m in (b). The other associations are effectively random.
The random nature of these mappings is represented by dashed lines. (d) represents the function
acquired by an imitator network exposed to behaviour generated by (a) — as it is an all-to-one
function between meanings and signals it is easily learned by imitator agents. This is in fact the
only stable function for imitators.

agents are therefore strongly biased in favour of acquiring systems with the properties of

optimal communication systems.

How can we relate these feedforward network biases to the classification hierarchy de-

veloped for the associative network weight-update rules? Obverter networks, biased in

favour of one-to-one mappings between meanings and signals, should clearly be classi-

fied as [+constructor]. The classification of imitator agents is less clear. Imitator agents

are capable, given sufficiently high e, of acquiring an optimal, unambiguous commu-

nication systems, and should therefore be classified as at least [+learner]. Populations

of such agents cannot construct an optimal system, and should therefore be classified

[�constructor]. Their status with respect to the [�maintainer] feature is less clear. We

would expect, given their bias in favour of many-to-one functions, that they should be

classified as [�maintainer]. However, simulation runs were carried out to measure the
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m3m2m1

s3 s4s1 s2

m3m2m1

s3 s4s1 s2

m3m2m1

s3 s4s1 s2

evaluate reverse learn

s1 s2 s3 s4

m1 m2 m3

(a) (b) (d)(c)

Figure 3.15: (a) represents an all-to-one r(s) encoded in an obverter agent’s feedforward net-
work. As obverters map from signals to meanings this is the most learnable r(s). (b) represents
the confidence-measuring step of reversing this r(s) to generate a p(m) — as before, real-number
mappings are shown as dotted lines. (c) shows the p(m) derived from (a). p(m2) = s3 as s3
mapped closest to m2 in (b). The other associations are essentially random. The p(m) in (c) pro-
duces the meaning-signal pairs f(m1; s1); (m2; s3); (m3; s3); g. Meanings and signals in these
pairs are transposed (yielding f(s1;m1); (s3;m2); (s3;m3); g) to train the next generation of
obverter networks. (d) shows the r(s) resulting from training an obverter network on the signal-
meaning pairs f(s1;m1); (s3;m2); (s3;m3); g. r(s1) = m1, as expected. However, feedfor-
ward networks cannot learn one-to-many mappings so r(s3) is effectively randomly assigned to
a signal, in this case m2. As s2 and s4 are not represented in the training set they are effectively
randomly assigned mappings. Notice that the mapping in (a) has been destroyed in (d) — the
many-to-one mapping in (a) is not culturally stable.

s3 s4s1 s2

m3m2m1

s3 s4s1 s2

reverse learn

s1 s2 s3 s4 m3m2m1

m1 m2 m3

(a) (b) (c)

Figure 3.16: Only an unambiguous p(m) is stable for obverter agents. (a) represents an obverter
agent’s r(s). (b) is the p(m) derived from reversal of (a) — it is a one-to-one function. (c)
illustrates that the r(s) resulting from training the next generation of agents on data produced by
(b) is effectively similar to (a) and will therefore lead to (b) once again — (a) and (b) are culturally
stable. The only unstable aspect is the floating synonym s4. This synonym is highly unlikely to
interfere with the mapping in (b) and the floating synonym phenomenon can be observed in other
obverter models.
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ability of populations of such agents to maintain an optimal system in the presence of

noise (e = 200, pn = 0:05) and no runs were found for which they failed to do so. How-

ever, this appears to be due to the large value of e, which reduces the impact of noise.

As we will see in Chapter 4, injection of a slightly different form of noise does result in

failure to maintain an optimal system. We will therefore classify imitator networks as

[+learner,�maintainer,�constructor].

3.5.3 The key bias in other models

Can we understand the behaviour of other models of the cultural evolution of vocabulary

in terms of this key bias? Specifically, in the models where cultural evolution is driven by

direct bias, does the direct bias result from a learning bias similar to that of [+constructor]

agents? Dealing with other neural network models first, does this key bias appear in the

neural network models of Hutchins & Hazelhurst (1995), Batali (1998) and Livingstone

& Fyfe (1999) (discussed in Section 3.1) and Kvasnička & Pospı́chal (1999) (which

will be discussed in Chapter 4), and Hare & Elman (1995) and Kirby & Hurford (2002)

(discussed in Chapter 5)?

Hutchins & Hazelhurst’s (1995) model can be treated separately from the other models,

which all share a common model of a learner. Hutchins and Hazelhurst use autoassocia-

tor networks to model communicative agents, with patterns of activation over the hidden

layer being interpreted as signals. Autoassociator networks must develop a distinct pat-

tern of activation over the hidden layer for every input-output pair (input-output pairs are

equivalent to meanings as defined here) in order to succeed in the autoassociator task.

Interpreting the hidden-layer patterns of activation as signals therefore builds in a one-

to-one bias of the type identified as crucial for developing an optimal communication

system.

Batali (1998), Kvasnička & Pospı́chal (1999), Livingstone & Fyfe (1999) and Kirby &

Hurford (2002) all use the obverter feedforward network configuration, with networks

mapping from input signals to output meanings. As discussed in Section 3.5.2, such a

configuration results in a learning bias in favour of one-to-one meaning-signal mappings.

The obverter network configuration, which is quite common in the literature, therefore

builds in a strong bias in favour of optimal communication systems.

Hare & Elman’s (1995) model of morphological change deserves a brief mention here.

This network maps from semantic representations of verbs to representations of the

phonological realisation of those verbs, and Hare & Elman observe a simplification of
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the phonological system, with increasing numbers of verbs being expressed with simi-

lar affixes. While this pattern exhibits some complex interactions between phonological

regularity and frequency of tokens, the general pattern of convergence to many-to-one

mappings is what we should expect to see from an imitator network architecture. We

can speculate that, had Hare & Elman allowed their simulations to continue for several

hundred generations, all verbs would end up being expressed with a single phonological

form. The learning bias of the imitator network would essentially destroy the morpho-

logical system. Contrast this with Batali’s (1998) results, where the obverter network

architecture results in the emergence of a morphological system.

Non-neural network models of the evolution of vocabulary, where that evolution is driven

by direct bias, are actually rather scarce, the only clear examples being the models of

Hurford (1989) and Oliphant & Batali (1997). As discussed in Section 3.1, Hurford con-

siders three learning strategies — Calculators, Imitators and Saussureans. Populations of

individuals using the first of these strategies cannot maintain optimal systems over time,

even when there is no noise on cultural transmission, while Imitator and Saussurean pop-

ulations can construct communication systems which yield intermediate levels of com-

municative accuracy, with Saussureans being somewhat more successful than Imitators

in this respect.

Based on these results, we would expect that Calculators can be classified as [�learner,

�maintainer,�constructor] and Imitators and Saussureans can be classified as [+learner,

+maintainer, �constructor]. Saussureans have the additional advantage over Imitators

that their production and reception behaviour are necessarily closely coupled — while

Imitator learners acquire their production and reception matrixes completely indepen-

dently from one another, Saussureans construct their reception matrix on the basis of

their own production matrix.

Do these learning strategies have the biases we would expect with respect to the one-to-

one nature of the meaning-signal mapping? In other words, are Imitators and Saussureans

neutral with respect to the one-to-one nature of mappings, and how are Calculators biased

with respect to this property?

It should be fairly obvious that Imitators and Saussureans are neutral with respect to

many-to-one mappings from meanings to signals — they acquire their production matrix

straightforwardly, by memorising the meaning-signal pairs they observe being produced.

The story with Calculators is somewhat more complicated. Consider a Calculator trying

to learn a system involving 2 meanings and 3 signals. Assume that the learner observes

a system where m1 is communicated using s1 and m2 is communicated using s2, with
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s3 being unused. This is a one-to-one system. On the basis of this observed production

behaviour the Calculator will arrive at the reception matrix

R m1 m2

s1 1 0

s2 0 1

s3 0.5 0.5

s3 is interpreted as meaning m1 and m2 with equal probability, given that these signals

are unused in the observed production system. This individual’s reception behaviour will

now be used by the next generation of learners to form their production behaviour. What

happens?

The Calculator above will produce two possible sets of reception behaviour. In both,

s1 is interpreted as m1, s2 interpreted as m2, with s3 being interpreted as m1 or m2

at random. What consequence does this have for the production matrices of the next

generation? If the learner at the next generation observes s3 being interpreted as m1 they

will arrive at the production matrix

P s1 s2 s3

m1 0.5 0 0.5

m2 0 1 0

In other words, they will now produce either s1 or s3 to communicate m1. If the learner

instead observes s3 being interpreted as m2 they will arrive at the production matrix

where s2 and s3 are produced with equal probability for m2. In other words, the spare

signal leads to the creation of one-to-many mappings between meanings and signals.

The inability of Calculators to acquire an optimal system (albeit over the course of two

learning episodes) therefore indicates they should be classified as [�learner]. This classi-

fication explains the fact that populations of such individuals immediately lose an initially

perfect system in an ILM where there is no noise on cultural transmission.

As discussed in Section 3.1, Oliphant & Batali contrast two learning strategies (Imitate-

Choose, henceforth imitator, and obverter). Populations of obverter learners can con-

struct an optimal system, whereas populations of imitators cannot. Oliphant & Batali

attribute this to the fact that obverter agents base their production behaviour on the popu-

lation’s reception behaviour, therefore explicitly designing their communication systems

so as to be understood, whereas imitator agents do not. However, the [+constructor]

agents described in Section 3.4 base their production behaviour on production behaviour,

yet still arrive at an optimal communication system. Do the obverter agents described by
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Oliphant & Batali arrive at an optimal system in a different way, or can the behaviour of

populations of such individuals be better explained in terms of a learning bias in favour

of one-to-one mappings between meanings and signals?

Figure 3.17 analyses how a population’s production (P) and reception (R) functions

change over time, for two initial starting conditions — an initial one-to-one mapping,

and an initial many-to-one mapping. Both these initial mappings are learnable by imi-

tator agents. For obverter agents, the one-to-one mapping remains stable over time —

the one-to-one P matrix leads to a one-to-one R matrix, which in turn leads back to the

one-to-one P matrix. In contrast, the many-to-one P matrix is unstable. The obverter

procedure attempts to derive an R matrix from this P matrix by finding the meaning mx

for which s1 and s2 is at a maximum. Since m1 and m2 are equally likely in both these

contexts, a random choice is made, which leads to four possible R matrixes, all equally

probable. For the sake of convenience, only two are shown in Figure 3.17. One of these

is a one-to-one R matrix, which leads to a one-to-one P matrix, which, as we have seen,

is stable. The other is a many-to-one R matrix, which leads, again through random selec-

tion, to 4 possible P matrixes, two of which are shown. Only the one-to-one P matrix is

stable — the other, as we have seen, is unstable. The learning bias of the obverter agents

favours one-to-one mappings between meanings and signals.

3.6 Biases in vocabulary acquisition in humans and non-humans

Is there any evidence that language acquisition in humans is guided by biases in favour

of one-to-one mappings between meanings and signals? If so, then the result of the com-

putational models shown here would suggest that optimal, or at least communicatively

useful, communication systems could arise in human populations through purely cultural

processes.

The one-to-one bias described here is typically broken down into two subcomponents

when talking about vocabulary acquisition in humans. The one-to-one bias consists of

both a bias against homonymy (many-to-one mappings from meanings to signals) and a

bias against synonymy (one-to-many mappings from meanings to signals). In Sections

3.6.1 and 3.6.2 I will present evidence from the language acquisition literature that sug-

gests that children apply both these biases to the learning of vocabulary. I will start with

the proposed bias against synonymy, as this is perhaps slightly less controversial, then

move on to homonymy. Finally, in Section 3.6.3 I will briefly review some evidence

from ape ‘language’ learning experiments which suggest that apes may not possess sim-

ilar learning biases to human infants. The postulated uniqueness of these learning biases
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Figure 3.17: The learning bias of Oliphant & Batali’s obverter learner. As illustrated in (a),
one-to-one mappings are stable over time — a one-to-one production matrix (marked by a P)
leads to a one-to-one reception matrix (R), which leads back to a one-to-one production matrix.
Many-to-one mappings are unstable, as illustrated in (b). The many-to-one production matrix
leads to four possible reception matrixes (only two are shown here). The one-to-one reception
matrix leads to a one-to-one production matrix which, as shown in (a), is stable. The many-to-one
reception matrix leads either to a one-to-one production matrix, which is stable, or a many-to-one
production matrix, which as we have seen is unstable. In other words, only one-to-one matrixes
are stable over time in populations of such learners.

to humans forms the motivation for Chapter 4, where investigations into the biological

evolution of the one-to-one learning bias are discussed. I will return to the role of one-

to-one biases in the acquisition of linguistic structure (both syntactic and morphological,

as opposed to essentially unstructured vocabulary which I discuss here) in Chapter 5.

3.6.1 Biases against synonymy in humans

Eve Clark and Ellen Markman have proposed that children have word-learning biases

which make synonyms (mappings from one meaning to several distinct words) either

unlearnable or difficult to learn. Both authors claim that these biases help children in the

rapid acquisition of vocabulary — the acquisition process in children has been termed

“Fast Mapping” (see Bloom (2000), Chapter 2, for review). While their conception of

this bias is in fact rather different, both base their theories on a set of experimental studies

carried out by Kagan (1981), replicated by, among others, Markman & Wachtel (1988).

136



In Kagan’s original study, children were shown three objects, two of which were famil-

iar (a doll and a dog) and one of which was unfamiliar (for example, a lemon zester).

Children were allowed to play with the objects, and were then asked to “Give me the

zoob” (or some other nonsense word) by the experimenter. The children showed a strong

preference for giving the novel item.

In Markman & Wachtel’s (1988) replication, children were shown a single familiar object

(for example, a plate) and an unfamiliar object (e.g. a radish rosette maker) and asked by

a puppet frog to “Show me the fendle” or some other nonsense word. Children reliably

respond by giving or showing the unfamiliar object. Results from a control group study,

where children were asked simply to “Show me one”, indicated that this preference was

not due to a preference on the part of children to respond with the unfamiliar object —

children only exhibit such a preference when prompted with a novel word.

Clark (Clark 1988; Clark 1990; Clark 1993) proposes two pragmatic principles guiding

vocabulary acquisition. The first, which she terms the Principle of Contrast (henceforth

Contrast), states that “different words have different meanings”. The second, the Prin-

ciple of Conventionality (henceforth Conventionality), states that “for certain meanings,

there is a form that speakers expect to be used in the language community”.

How does this relate to the child’s behaviour in the experiment outlined above? The child

knows, through Contrast, that contrasting words contrast in meaning. The child knows,

through Conventionality, that established words have priority. It is assumed that the child

already knows the established word for the familiar object. The child then deduces, via

Conventionality, that if the experimenter wished to refer to the familiar object they would

use the conventional word for that object. However, notes the child, the experimenter

used a novel word. The child reasons that that word cannot refer to the familiar object,

because different words have different meanings. The child therefore concludes that

the new word must refer to the unfamiliar object, responds appropriately by giving the

experimenter the unfamiliar object, and learns the (nonsense) name for the unfamiliar

object.

Contrast rigidly rules out synonyms — Clark emphasises that any difference in the form

of a word indicates a difference in meaning. To put it another way, according to Clark

synonyms do not exist. Clark is keen to point out that it does not rule out homonymy

(many-to-one mappings from meanings to signals), a point which I will return to below.

Markman (Markman & Wachtel 1988; Markman 1989; Markman 1992) proposes a Mu-

tual Exclusivity (ME) bias in children — “children should be biased to assume, especially
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at first, that terms [words] are mutually exclusive” (Markman 1989:188) and “each object

will have only one label”. Note that, unlike Contrast, this is not an inviolable principle,

but a tendency or bias that can be overridden given sufficient evidence. Like Contrast, ME

discourages synonymy — each object ideally has only one label, therefore there should

be no one-to-many mappings between meanings and signals. Markman is less clear on

the status of ME with respect to homonymy (for example, the term does not appear in the

index to her 1989 book), although she makes frequent reference to “one-to-one” biases in

vocabulary acquisition. Like Contrast, ME enables the child in the experiment above to

deduce that the novel word should refer to the unfamiliar object and learn that labelling

— ME dictates that the novel word cannot refer to the object which is already labelled,

therefore the novel word must refer to the unfamiliar object.

The main difference between Clark’s position and Markman’s is in the severity of the

bias. Markman (1989) presents what she considers to be evidence that children canlearn

to violate ME. Specifically, they can learn super-ordinate terms (“poodle” but also “dog”

and “animal”). However, children find such super-ordinate terms difficult to learn, with

children as old as 14 making errors. Typically, the error involves mistaking a super-

ordinate term for a term expressing a collection of the subordinate items. Macnamara

(1972) gives the example of a child who will accept that a particular plaything is a

“truck” or a “train”, but will simultaneously deny that it is a “toy”, with the term “toy”

being reserved for a group of trucks, trains, Teddy bears and so on. This type of evi-

dence leads Markman to conclude that ME is violable. In contrast, Clark would say that

super-ordinate terms have a different meaning from their subordinate terms, therefore

Contrast is preserved, although this offers no explanation as to why children find super-

ordinates hard to learn. However, regardless of the debate between Contrast and ME, the

experimental evidence suggests that children have a bias against acquiring synonyms,

one-to-many mappings from meanings (objects in the experiment) to signals.

3.6.2 Biases against homonymy in humans

The status of biases with respect to homonymy is somewhat problematic. One does not

have to look very far through any language to find homonyms, mappings from several

meanings to a single surface form. At first blush, this seems to indicate that children

do not have any bias against acquiring many-to-one mappings from meanings to signals.

Indeed, Clark is keen to point out that Contrast and Conventionality do not in any way

bias against homonymy. Markman remains silent on the subject of homonymy, although

in several places she refers to “one-to-one” biases in vocabulary acquisition.
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Briefly considering a possible experiment should, however, serve to cast doubt on the first

intuition that children are unbiased with respect to the acquisition of homonyms. Imagine

a slight variation in the experiment outlined above, where, rather than the experimenter

asking the child to “show me the zoob”, the experimenter asks the child “Show me the

shoe” or whatever the familiar object was. I suspect that the child would respond by

showing the shoe, at least with the same level of reliability as children prompted with

the novel word would respond by showing the unfamiliar object. The fact that nobody,

to my knowledge, has carried out this experiment indicates that this is probably not a

very controversial hypothesis — our everyday experience indicates that people know the

names for things and if you request those things then they don’t assume you are talking

about something else.

However, this experiment, were it to proceed as I expect, would illustrate that children

must be biased against homonymy. If children are unbiased with respect to homonymy

then under such experimental circumstances they should show the shoe or the unfamiliar

object with equal probability — if many-to-one mappings between meanings and signals

are as possible as one-to-one mappings, then the child cannot tell whether “shoe” means

shoe1, the familiar sense of shoe, or shoe2, a new use of homophonous “shoe” to refer

to the unfamiliar object. It could be argued that the child would prefer the familiar sense

of “shoe” due to the fact that they have frequently encountered this use of “shoe” (this is

essentially Clark’s Conventionality principle). However, if we agree that children prefer

not to learn new meanings for established words then we are accepting a bias against

homonymy. It could be argued that this bias against homonymy only comes into play

once a well-established convention is in place — for example, once the child has ex-

perienced several hundred utterances of “shoe”, all with the same reference, they will

be resistant to learning a new meaning for “shoe”. However, it cannot simply be sheer

weight of numbers which performs this function. Bloom & Markson (1998) describe an

experiment where children are presented with two novel objects, given a single nonsense

name for one object (“bem”, for example), then asked to “Show me the jop”. Under these

circumstances children still reliably show the unnamed novel object. Given that neither

object has been encountered before, and the word “bem” is also novel, it seems that a

single exposure to a word paired with an object biases children against interpreting or

acquiring that word as conveying a different meaning.

It in fact seems that, with a learner unbiased with respect to homonymy, word learning

would become all but impossible — every possible utterance of a familiar word could

refer to any object at all. If we accept Contrast or ME, then the problem is fractionally

reduced — any word can refer to any object which has not already been labelled with a
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different word. However, Contrast/ME cannot really resolve the issue as learning even a

single label becomes an intractable task. This problem becomes worse when we consider

that children can learn labels for subparts of objects. Joint attention might narrow down

the focus of possible objects, ruling out other whole objects as the referent of “shoe”, but

when I say “Show me the shoe”, do I mean shoe1, the whole object, or shoe3, the string

that ties the shoes up, or shoe4, the man-made fibre which the shoe uppers are made of?

I believe that we are forced to conclude, on logical grounds, that children must have

some bias against acquiring homonyms, many-to-one mappings from meanings to words.

Without such a bias, word learning would become impossible or at best extremely ardu-

ous. This is in fact not a terribly new position, although the argument given above may

be a novel one. McMahon (1994) briefly discusses work carried out by Jules Gilliéron

in France from 1896. Gilliéron, with the aid of several fieldworkers, compiled the Lin-

guistic Atlas of France. One of Gilliéron’s primary concerns was to construct “phonetic

etymologies”, by comparing the expected forms of modern French words (based on a set

of hypothesised changes occurring between Latin and modern French) to the words ac-

tually attested. Where the predictions and the data did not match up Gilliéron attempted

to explain the discrepancy.

Gilliéron’s theory predicted that the modern French word for cockerel should be derived

from the Latin “gallus”. In the Gascony region these hypothesised changes should have

lead to the form “gat”. However, this is also the predicted form for the word for cat,

“cattus” in Latin. Gilliéron’s survey revealed that “gat” in Gascony does in fact refer to

cat, with cockerel being referred to by another word. Gilliéron appealed to an avoidance

of homonymy to explain this mismatch — cats and cockerels are both farmyard animals

(or presumably were in turn-of-the-century France), and homophony involving meanings

from the same semantic field is avoided, therefore “gat” was restricted to meaning cat

and an alternative form was employed for cockerel.

This early example does not indicate where the bias against homonymy resides — is it

in the language learner or the language user? Martinet (1972) proposes the second of

these alternatives. Martinet’s primary concern is an account of phonemic change, but he

works within a functionalist framework: “The basic assumption of functionalists in such

matters is that sound shifts do not proceed irrespective of communicative needs, and that

one of the factors which may determine their direction and even their appearance is the

basic necessity of securing mutual understanding” (Martinet 1972:144). The imperative

to preserve mutual understanding should discourage, among other things, homonymy —

homonymy leads to ambiguity.
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Lass (1980) provides a concrete example of an irregular phonemic change which ap-

pears to result in the avoidance of homonymy. During the change from Old English to

modern English, the Old English vowel /y/ appears to change in two distinct ways. In

the first, regular path, Old English /y/ changes to modern English /I/, via Middle En-

glish /i/. However, in some lexical items Old English /y/ appears to change to Middle

English /u/ and then to modern English /2/. The vowel of modern English “shut” pro-

ceeded according to the less frequent, irregular path. Had it proceeded according to the

more regular path, the result would have been “shit”, as Lass puts it “[t]his particular ho-

mophony would be, I would think, about as ‘pernicious’ as any” (Lass 1980:76). Those

subscribing to Martinet’s line of reasoning would perhaps argue that “shut” avoided the

more regular change in order to avoid homonymy, which would lead to a decrease in

communicative function, although Lass argues strongly against this interpretation, as we

will see below.

Turning briefly to cross-categorial homonymy, Macnamara (1982) reports two pieces

of evidence, based on the acquisition behaviour of two young subjects, that children

prefer not to acquire homophonous terms which refer both to an action and an object.

Macnamara’s first subject preferred to use ambiguous terms such as “comb” to refer to

either the action or object, but not both, even when the child’s parents used the term as

both noun and verb in the child’s presence. Macnamara’s second subject, his son, went

so far as to invent a new word to avoid this type of homonymy.

To summarise, the logical argument and proposed experiment outlined at the beginning

of this Section suggest that children must be biased to some extent against acquiring

many-to-one mappings from meanings to signals. This is supported by some concrete

examples of where this type of homonymy avoidance might be observed empirically. The

empirical evidence at this point is somewhat weak, and will be considerably strengthened

in Chapter 5, where more evidence for a bias against homonymy is presented. However,

for now it is time to return to the two main arguments against a bias with respect to

homonymy — the fact that languages contain numerous homonymous mappings, and

that teleological mechanisms do not exist for homonymy avoidance.

Firstly, if children do need to be biased against homonymy, why is homonymy so frequent

in language? Doesn’t this prove that children are in fact not biased against homonymy?

There are two possible responses to this position, both similar to Clark and Markman’s

respective defences of their proposed biases relating to synonymy.

We could imitate Clark’s rather rigid line of argument, and insist that, just as difference

in signal reflects difference in meaning, congruence of signal represents similarity of
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meaning. This line, in a rather strong form, is pursued by Haiman (1980). While this

argument can probably be used to deflect some cases of homonymy, such as polysemous

uses of “mouth” (mouth of an animal, mouth of a cave, mouth of a river etc), it perhaps

does not do to push it too far.

Alternatively, we could appeal to the kind of explanation that Markman makes to explain

violations of ME — perhaps homonyms are simply somewhat harder to learn than non-

homonyms, but still learnable. This testable hypothesis therefore allows that we should

indeed expect to see homonymy in language, particularly when we consider that a learner

bias against homonymy is not the only pressure acting on language and language acquisi-

tion — not only do phonological shifts and borrowing continually bring homonymy into

a language, but there are other possible pressures:

“[These other pressures might] pertain to the number of fixed expressions,

patterns, and locutions that a speaker must master, remember, and manipulate

in language use. The impracticality of having a separate lexical item for

every conceivable object, event, or situation a speaker is likely to encounter

is of course a truism. Languages never provide a lexical inventory that is

vast enough to label with uniqueness and precision the elements of every

conceivable contingency; rather they depend on the speaker to use creatively

a more restricted inventory of lexical units in conjunction with the resources

of the grammatical system.” (Langacker 1977:114)

It is interesting that this tendency to minimise the number of lexical items which have

to be learned impacts differently on synonyms and homonyms. Synonyms will be dis-

favoured — memorising two words for a single object increases (perhaps unnecessar-

ily) the learning burden. The preference for smaller vocabularies then reinforces the

child’s bias against synonyms. However, a pressure to minimise vocabulary size favours

homonyms — if a single word can be used for two meanings, then the total number

of words which must be learned is reduced. The tendency to minimise vocabulary size

therefore fights against the postulated learner bias against homonyms. This is one pos-

sible explanation for the apparently contradictory fact that there are few (if any) true

synonyms in language and numerous homonyms, while children are biased against both

synonyms and homonyms.

The second objection to proposed anti-homonymy biases is the suggested location of

such biases. Lass (1980) deals rather forcefully with functionalist explanations. Perhaps

his most telling criticism is that, according to the functionalists, “it seems that speakers
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avoid homophones by prolepsis, i.e. by taking avoiding action in advance . . . [b]ut this

is surely absurd . . . the only mechanism left is for speakers actually to produce the of-

fending articles, and then, having discovered what they’ve done, to remove them (’My

God, I’ve just said “please shit the door”; better change it to shut’)” (Lass 1980:79). If

we accept this line of argument, this leaves us with the homonymy avoidance residing in

the language learner.

Croft (2000) deals with teleological explanations for homonymy avoidance:

“perhaps the greatest objection is that there is no plausible theory motivat-

ing a teleological mechanism [whereby language users change the linguistic

system for the sake of the linguistic system] . . . innovations must be brought

about ultimately as a result of actions by speakers. Yet there is no obvious

motivation for speakers to innovate to make the grammatical system more

symmetrical, or to preserve distinctions for the sake of preserving distinc-

tions. Speakers have many goals when they use language, but changing the

linguistic system is not one of them” (Croft 2000:70)

I could not agree more. Locating a bias against homonymy in the language learner avoids

the distasteful aspects of teleological and functional explanations — children learning

language avoid homonyms not because they’re worried that they’ll say “Please shit the

door mother”, but simply because they can’t help it — the bias against homonymy is a

component of the innate device which determines the way children acquire language. Of

course functionalist explanations of the origin of this language learning bias still have to

be explained, which will be the role of Chapter 4.

3.6.3 Biases in non-human animals?

Clark and Markman present evidence that children are biased against acquiring one-to-

many mappings between meanings and signals. I have also presented an argument that

children must be biased against acquiring many-to-one mappings between meanings and

signals. We should therefore, if we accept both these factors, expect children to be biased

in favour of one-to-one mappings between meanings and signals. This is precisely the

bias that we found to be necessary for the cultural evolution of functional communication

systems. This provides partial support for our theory that only humans have the mental

capacity to support learned symbolic vocabulary — we have established that humans

have the necessary bias. The second supporting strut for this argument would be to fill
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in the “only” piece — to show that no non-human animals have a learning bias which

favours one-to-one mappings between meanings and signals.

Do non-human animals have a bias in favour of one-to-one mappings between meanings

and signals? Some evidence on this front comes from the ape language-learning experi-

ments, but this evidence is somewhat sketchy. This is largely due to the fact that Kanzi,

possibly the most prominent and successful ape language learning subject, essentially

learned what he learned without the researchers noticing — while the focus had been

on teaching Kanzi’s mother to communicate “Kanzi had been keeping a secret. He had

been learning these words all along . . . We thought he did not know how to talk with

the keyboard, but he did.” (Savage-Rumbaugh et al.1998:22). While this set of circum-

stances may shed some light on whether or not apes need explicit reinforcement to learn a

communication system, it is rather disappointing from our current perspective — nobody

noticed how Kanzi went about learning lexical items.

There is some empirical evidence on this point, however. David Premack reports (in

the discussion section following Premack (1983)) on an experiment where chimpanzees

requested a previously unnamed object using a “new word”, a newly introduced piece

of plastic. This suggests a bias against homonymy — if the apes were unbiased with

respect to homonymy, they could happily refer to the unnamed object using a known

word, therefore introducing a many-to-one mapping between meanings and signals.

Other experimental work casts doubt on this conclusion, however. Lyn & Savage-Rumbaugh

(2000) describe a fairly rigorous set of experiments into the ability of two pygmy chim-

panzees (Kanzi and his younger half-sister Panbanisha) to learn new words for novel

items. Their overall experimental setup is inspired by the experimental setup used to

investigate the Contrast/ME principle in human infants.

Lyn & Savage-Rumbaugh tested the ability of the two apes to acquire new words (lexi-

grams) for ten novel items. Before an ape was tested on an item, it received pre-exposure

to that item being named by two human experimenters in a naturalistic dialogue. These

dialogues took place outside the ape’s living enclosure, but in clear view of the ape. Dur-

ing each presentation session, the two experimenters played with and discussed the item,

naming it between six and 19 times. Presentation sessions were grouped in threes, with

the experimenters discussing one novel item, going away, returning with another novel

item, and so on.

Within one hour of these groups of three presentation sessions the apes were tested on

their ability to name the novel items. During each test session the ape was presented
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with five familiar items and the three novel items it had just seen named. The apes were

allowed to play with all the items until their initial curiosity waned. 11 tests were then

conducted, during which the ape was asked to give a particular item to the experimenter.

During the first three such tests the apes were instructed to hand over a familiar item. Both

apes responded correctly in at least two thirds of these initial tests. For the remaining

eight tests the apes were told to give the experimenter each of the eight items, in random

order. If the ape made a mistake during any one of these eight tests, the request was

repeated a single time. During testing, food and praise were given freely to the apes, but

“[i]ndication of the incorrectness of a response was kept to a minimum” (Lyn & Savage-

Rumbaugh 2000:261), notwithstanding the repetition of the request.

If an ape failed to correctly name all three novel items the presentation and test sessions

were repeated within 48 hours. The repeat presentation sessions proceeded exactly as

before, with all three novel items being named. However, during the test sessions, the

apes were only prompted to give the novel items which they had earlier failed on.

Lyn & Savage-Rumbaugh report that Kanzi required a mean of 2 presentation/test ses-

sions before he correctly responded to the name of a novel item, which amounted to a

mean 22.8 exposures to that novel item being named by experimenters. Panbanisha fared

rather less well, requiring a mean of 4.1 presentation/test sequences and 42.5 exposures

per item. Furthermore, on 70% of the test incidents when the apes were asked to give

a novel item they failed to do so, either choosing a familiar item, choosing more than

one item or refusing to answer. As Lyn & Savage-Rumbaugh point out, this is a below-

chance level of performance, indicating a preference by the apes to select familiar items

when asked for a novel item. Finally, while Kanzi’s level of performance remained fairly

constant over the series of experiments, Panbanisha’s performance gradually improved

— it took her a greater number of cycles to learn the name for the first novel item than it

did for the last novel item.

How should we interpret these results with respect to homonymy and synonymy biases

in apes? Firstly, it should be noted that apes clearly have a rather more difficult time with

the task than children, requiring pre-exposure and multiple tests to select ‘novel’ items

when presented with ‘novel’ words. Secondly, the apes’ performance at some aspects of

the task indicate a lack of a bias against homonymy, or at least a very weak bias. The

apes sometimes failed when asked to give a familiar item during the first three trials of

each test session, although not more than 33% of the time. This suggests that they are

not strongly biased against associating a familiar word with a novel object or the wrong

familiar object (a many-to-one mapping from objects to words). Their performance on
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requests for familiar items during the remaining eight tests is not reported. Thirdly, the

apes’ preference for selecting familiar, already-named items when prompted with a novel

word indicates the absence of a bias against synonymy — the apes fail, or at least take

time to pass, the Contrast/ME test. Finally, Panbanisha apparently has to learn how to

perform the task, while it comes naturally to human infants. Whereas the experimenters

interpret this as Panbanisha coming to terms with the test environment (Heidi Lyn, per-

sonal communication), it could be taken to indicate that she takes time to come to terms

with the idea of naming novel items with novel words. What is clear from this set of

experiments is that apes find the acquisition of words much more difficult than humans,

and the process, which is known as Fast Mapping in human infants, takes time. The

experiments also suggest that apes are either unbiased with respect to homonymy and

synonymy, or at least much less biased than human infants, although this conclusion is

more a matter of interpretation.

To further muddy the waters, it could be noted that, in a detailed report on a separate set

of ape language experiments, Savage-Rumbaugh et al.(1986) report that Mulika (Kanzi’s

younger sister) “began by using the lexigram milk for many different things, including

requests to be picked up, requests for attention, requests to travel to different places,

requests for food and requests for milk” (Savage-Rumbaugh et al. 1986:219). Matata,

Kanzi and Mulika’s mother, “did not develop an adequate concept of one-to-one cor-

respondence between a given symbol and a given referent” (Savage-Rumbaugh et al.

1986:215). These (admittedly circumstantial) examples of a lack of any obvious one-to-

one bias in ape vocabulary acquisition should throw further doubt on whether the biases

humans bring to this task are present in a closely related species.

3.7 Summary of the Chapter

In this Chapter I have presented two models of the cultural evolution of unstructured com-

munication systems — one revolving around a feedforward network model of a learner,

the other based on an associative network model. In both models, a learning bias in

favour of one-to-one mappings between meanings and signals was found to be key in

driving the cultural evolution of communication. In the feedforward network model, ob-

verter agents have this bias whereas imitator agents do not. Consequently, populations

of obverter agents converge on optimal, unambiguous communication systems whereas

populations of imitator agents do not. These results were found to hold even in the face of

fairly strong natural selection of cultural variants. In the associative network model, only

certain weight-update rules (those classified as [+learner, +maintainer, +constructor])

possess the one-to-one bias. Only those weight-update rules, when placed in the context

146



of the ILM, result in the emergence of communicatively optimal systems of meaning-

signal mappings.

An examination of the learning biases involved in other models of the cultural evolu-

tion of communication shows that this one-to-one learning bias is paramount. More

significantly from the point of view of understanding language evolution in human pop-

ulations, one-to-one biases seem to be brought to bear by human infants when acquiring

vocabulary. I have presented arguments that human infants are biased against acquiring

synonyms and homonyms. Furthermore, non-human primates appear not to have this

bias. This suggests that the one-to-one biases applied by humans to the vocabulary learn-

ing task may be unique among primates, and may explain the uniqueness (among the

primates) of language as a culturally transmitted, symbolic communication system.

147





CHAPTER 4

The genetic and cultural evolution of

communication

In the previous Chapter I equated the properties of the learning bias required for the cul-

tural evolution of optimal communication with properties of the human language acqui-

sition device, in particular the apparent human biases against synonymy and homonymy

during vocabulary acquisition. I made the assumption, for the purpose of Chapter 3, that

this human capacity must have evolved through natural selection for communication.

It is time to return to this assumption and investigate whether the learning bias required

to support a learned symbolic vocabulary can, in fact, evolve under selection pressure for

communicative success. If this is the case then we can form an argument that this aspect

of the human cognitive apparatus evolved specifically to support vocabulary acquisition.

Chapters 2 and 3 focussed on models of cultural transmission. In Section 4.1 I introduce a

simple mathematical model of genetic transmission. This is synthesised with the general

model of cultural transmission discussed in Chapter 2 to form B&R’s dual transmission

model(Section 4.2). The Iterated Learning equivalent of the dual transmission model is

the Evolutionary Iterated Learning Model, outlined in Section 4.3. In Sections 4.4 and 4.5

I describe how the two ILMs which form the basis of Chapter 3 can be expanded to Evo-

lutionary Iterated Learning Models, to investigate the possibility of coevolution between

a culturally-transmitted communication system and the genetically-encoded learning bias

facilitating the acquisition of such a system.

4.1 Modelling genetic transmission

The most basic models of genetic transmission are based around three processes:
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Figure 4.1: A simple model of genetic transmission. Gt gives the distribution of genotypes at
time t. This leads, via developmental processes, to an associated distribution of phenotypes, Ft.
The environment then takes its toll, removing some phenotypes and their associated genotypes.
This gives a new distribution of phenotypes F 0

t and genotypes G 0
t . The remaining genotypes then

lead, via reproduction, to the distribution of genotypes at time t+ 1.

� Ontogeny, where the genotype1 is translated, in the context of the environment,

into the phenotype. This depends on 1) the distribution of genotypes population,

Gt, and 2) the process of ontogeny.

� Selection, where the environment takes its toll on the population by removing in-

dividuals based on the performance of their phenotypes. This depends on 1) the

distribution of phenotypes, Ft, and 2) the selection procedure for removing pheno-

types from the population.

� Genetic transmission, where the surviving individuals reproduce and transmit their

genotypes to their offspring. This depends on 1) the distribution of phenotypes

after selection, F 0
t , which implicitly gives G0

t, the distribution of genotypes of sur-

viving individuals, and 2) the procedure by which new genotypes are formed during

reproduction.

This cycle is illustrated in Figure 4.1.

4.1.1 Natural selection on genetic transmission

The simplest models of natural selection acting on genetic transmission deal with the

changes in frequency of alleles of a single gene in asexually-reproducing haploid pop-

ulations — each individual has a single gene drawn from a set of n alleles and each

individual inherits the allele of their single parent. In sexually-reproducing diploid pop-

ulations the equations are complicated by the fact that each individual has two alleles for

each gene and receives one allele from each of their two parents.
1A clarification of terminology is perhaps useful here:

Genotype:The particular genetic makeup of an individual.
Phenotype:The particular physical, non-genetic makeup of an individual, which will be a consequence of
an individual’s genotype in interaction with the environment.
Genome:The specification of possible genotypes, which limits the range of possible genotypes.
Phenome:The specification of possible phenotypes, which limits the range of possible phenotypes.
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Ontogeny is typically treated in a very simplistic manner in mathematical models of pop-

ulation genetics. In the haploid organism, single gene case there are n distinct alleles

and therefore n distinct genotypes G1 : : : Gn. It is typically assumed that there are n

distinct phenotypes F1 : : : Fn and ontogeny maps genotype Gi onto phenotype Fi. Selec-

tion then acts on the phenotype, but since there is a one-to-one correspondence between

genotypes and phenotypes we can talk of selection acting on genotypes and effectively

ignore ontogeny.

The fitnessof such a genotype is the average probability of individuals with that genotype

surviving to reproductive age, multiplied by the average number of offspring that each

genotype of reproductive age produces. Now consider a population with two genotypes

Ga and Gb with fitness fa and fb respectively. Evolution by natural selection takes place

in such a population where the two genotypes do not reproduce at equal rates — fa 6= fb.

As shown in Section A.2 in Appendix A, if fa > fb then genotype Ga will increase in

frequency, and if fa < fb then it will decrease in frequency — the fitter genotype comes

to dominate the population. The rate of change is at a maximum when genetic diversity

is at a maximum, which occurs when both genotypes occur with equal frequency — in

other words, natural selection depends on genetic diversity, and the rate of evolution is

higher when the population exhibits more diversity.

4.1.2 Models of the genetic transmission of communication

Models of the genetic evolution of communication can be roughly divided into two main

groups — those which address the question “when should we expect to see commu-

nication?” and those which ask “what structure should we expect communication to

exhibit?”.

4.1.2.1 When should we expect to see communication?

The first question has typically been addressed by theoretical biologists but has recently

been tackled by researchers using agent-based modelling techniques. Researchers in this

area are concerned with the interlocking issues of signal honesty, altruism and signal

costs.

Much of this work has been inspired by, or relates to, Krebs & Dawkins’s (1984) concep-

tion of signalling as manipulation. Krebs & Dawkins define signals as “means by which

one animal makes use of another animal’s muscle power” (Krebs & Dawkins 1984:382)

— a signal emitted by one animal causes another animal to act in a certain way. This is

bound up with their definition of communication (given in Dawkins & Krebs (1978)) that
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communication systems are systems where the signaller has evolved to induce a response

in the receiver which benefits the signaller in terms of inclusive fitness.

Where the interests of the signaller and the receiver are coincident (both signaller and

receiver get some benefit), the evolution of signalling seems fairly unsurprising — indi-

viduals who signal will be selected for, as will individuals who respond to signalling. One

common thread in the formal modelling approach revolves around identifying common

interests between signallers and receivers, particularly in situations where no common

interest is obvious. For example, alarm call systems obviously offer a benefit to receivers

of alarm calls (they can evade a predator they may not have noticed), but the signallers

receive no obvious benefit (they have already seen the predator), and may in fact incur a

cost (their signalling behaviour may attract the predator). So why do alarm call systems

exist? Kin selection, whereby signallers receive an indirect payoff via the genes they

share with receivers, has been advanced as an explanation for this apparently altruistic

behaviour, based on both empirical evidence from studies of alarm-calling species (Sher-

man 1977) and evidence from computational modelling (Ackley & Littman (1994) and

Oliphant (1996), but see Noble (1999) for a negative result).

Krebs & Dawkins (1984) make the subsidiary prediction that, where the interest of sig-

nallers and receivers coincide, there should be coevolution between signaller and receiver

so that the signal is cheap for the signaller to produce and the receiver is sensitive enough

to pick up on these “conspiratorial whispers”. Analytic and simulation models (Noble

1998) support a slightly modified version of Krebs & Dawkins’s (1984) conspiratorial

whispers theory — where both sender and receiver receive a clear payoff then signals

should be cheap, whereas if the signaller can expect to receive a large payoff but the re-

ceiver only receives a marginal benefit, receivers should be resistant to cheap signals and

signallers should therefore evolve to use costly signals.

Matters are more complicated where there is a direct conflict of interest between signaller

and receiver, which cannot be resolved by appeals to mechanisms such as kin selection.

Consider the case of males who produce signals to indicate to females their quality as a

mate. Males, typically, will wish to mate as often as possible whereas females should be

choosy, preferring to bear offspring only for high-quality males. In this scenario there

is a direct conflict of interest and we would predict that signalling would be useless —

any population of “honest” signallers, where the signals of males reliably reflected their

quality and the females took the males at their word, would be prone to invasion by

“liars”, males who exaggerated their own quality.
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One potential solution to this problem is the handicap principle (Zahavi 1975; Zahavi

1977). If the signals males produce are costly, with a cost proportional to their claims

of quality, then females can trust the signals — only a male of high quality could afford

to bear the cost of producing the signal indicating high quality, therefore individuals

producing the high quality signal must be telling the truth. This result has been verified

by analytic and simulation models, with one or two qualifications (see, for example,

Grafen (1990) and Bullock (1997)).

Alternatively, Krebs & Dawkins (1984) suggest that signalling could persist in the face

of a conflict of interests, but result in an evolutionary arms race between signallers and

receivers — signallers will be selected to produce increasingly effective manipulative sig-

nals, and receivers will be selected for increased resistance to these manipulative signals.

This position has received less support from formal models — Noble (1999) presents

results from both analytic and simulation models which suggest that communication is

never more than a transitory phenomenon when a conflict of interests exists.

While these issues are obviously important, they are somewhat outwith the main area of

inquiry of this thesis — I assume that signallers and receivers have coincident interests,

and both receive a payoff from successful communication. In part this is due to my focus

on the structureof communication systems and the learning bias required to bring it

about, but also to the observation that issues of honesty, altruism and so on don’t seem to

have a great impact on the structure of language — people tell the truth and tell lies, and

altruistically give and selfishly withhold information all the time, and it’s not clear if this

has any lasting structural consequences.

4.1.2.2 How should communication be structured?

There are several models which show that communicatively-optimal, innate communi-

cation systems (i.e. shared one-to-one mappings) can evolve under natural selection for

communicative success (e.g. Werner & Dyer (1992), MacLennan & Burghardt (1993),

Levin (1995)). Such models typically assume a pre-existing dedicated communication

channel, although it has been shown recently that communication can evolve in the ab-

sence of such a dedicated channel, through evolutionary reappropriation of initially non-

communicative behaviours (Quinn 2001). Functional communication systems have also

been shown to emerge as a consequence of the evolution of internal representations (Can-

gelosi & Parisi 1998).
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Turkel (2002)2 presents an interesting model, based on Hinton & Nowlan’s (1987) influ-

ential paper, which demonstrates the occurrence of the Baldwin effect. Turkel interprets

his model as a model of language evolution. This is perhaps the weakest point of the

model, for reasons which will become obvious. However, the results show interesting

behaviour with respect to the evolution of coordinated behaviour, and as such it is rele-

vant to models of the evolution of communication.

In the model, an individual’s genotype is a string of 1s, 0s and ?s. The process of

genotype-phenotype mapping simply directly maps this genotype to a phenotype string

of 1s, 0s and ?s. Individuals then participate in pairwise coordination interactions, which

could be considered communicative interactions, where coordination is simply phenotype

matching. During each interaction the two individuals involved temporarily3 replace all

the ?s in their phenotype with a 0 or a 1, selected at random. If the two phenotypes then

match then the interaction is considered to be a success. Otherwise, a different temporary

replacement of ?s with 1s and 0s is attempted. This process repeats until coordination

is established or a certain prespecified number of replacement trials is reached, in which

case the interaction is considered to be a failure. The level of success of an episode of in-

teraction is inversely proportional to the number of replacement trials required to achieve

a phenotype match.

There are several points to note here. Firstly, if, at any given point on the phenotype,

one individual has a 1 and the other individual has a 0 then coordination is impossible.

Secondly, individuals with large numbers of ?s are likely to take longer to successfully

match their phenotypes. Finally, Turkel explicitly penalises individuals who require 0

trials to match their phenotypes (i.e. both individuals have no ?s in their phenotypes and

their phenotypes match) — this apparently capricious step is taken to ensure that ?s never

disappear from the population, a consequence of Turkel’s interpretation of the model as

a model of P&P UG.

Turkel’s main contribution is to show that aspects of phenotypes which were originally

plastic (?s) become fixed (to 1s or 0s), via the Baldwin effect, although plasticity is never

fully eliminated, in part due to Turkel’s quirky fitness function. The Baldwin effect can

be summarised thus: behaviour which is initially plastic becomes innately fixed when

plasticity has some cost. In Turkel’s model, excess ?s have a cost as they reduce the
2This paper has in fact been in circulation, and receiving citations, since 1994. However, for a variety

of reasons, it has only recently been published. This explains the fact that, for example, Kirby & Hurford
present an extension of a model in 1997 that was not published till 2002.

3The replacement is only temporary, therefore there is no true cultural transmission in the population
— an individual’s phenotype after a series of interactions is exactly the same as its phenotype before those
interactions.
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coordination payoff individuals can expect to receive. Parts of the genotype which began

as ?s therefore tend to be replaced by 1s or 0s, depending on the genetic makeup of the

rest of the population. This model therefore demonstrates that the Baldwin effect can

potentially lead to the transfer from a learned coordinated system of behaviour (perhaps

a communication system) to a largely innate, coordinated system of behaviour. Yamauchi

(2001) demonstrates that this can only happen when the relationship between genotypes

and phenotypes is fairly simple — when a single phenotypic trait is determined by several

genes, or when a gene determines several phenotypic traits, the impact of the Baldwin

effect is reduced.

4.2 The dual inheritance model

How can models of genetic transmission be combined with models of cultural transmis-

sion to produce a unified model of transmission? B&R propose the dual inheritance

model, sketched in Figure 4.2.

The population at time t is defined by Ft, a distribution over phenotypes, and Gt, a

distribution over genotypes. Gt is derived from G0
t�1, the distribution of genotypes of

individuals of reproductive age at the previous generation. The process of ontogeny and

cultural transmission then give Ft, the phenotype distribution, based on:

� the mechanisms of ontogeny,

� Gt, the distribution of genotypes in the population,

� the mechanisms of cultural transmission and

� F 0
t�1, the distribution of phenotypes of individuals of reproductive age at the previ-

ous generation.

In a dual transmission model the distribution of genotypes in the population is relevant

because genetic variants are taken to have an influence on the process of cultural transmis-

sion — for example, individuals with a particular genotype may not take part in cultural

transmission, or may prefer to acquire a particular cultural trait.

The dual inheritance model then proceeds in a similar fashion to the general model of

cultural transmission given in Chapter 2. F l
t gives the distribution of phenotypes in the

population once individual learning has been taken into account. This depends on two

factors: 1) Ft, the distribution of phenotypes prior to individual learning; 2) the process

of individual learning, by which individuals change their phenotype in response to the
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Figure 4.2: The dual transmission model. The genotype distribution of the population at time t,
Gt is determined by the the reproduction process and the distribution of genotypes in the popu-
lation at time t � 1. Cultural transmission, constrained by the genetic makeup of the population
(Gt) then yields the distribution of cultural variants Ft. This process is dependent on the mech-
anisms of cultural transmission, the influence of genes on the cultural transmission process, and
the distribution of cultural variants in the population at time t� 1.

environment. F 0
t and G0

t give the distribution of phenotypes in the population after re-

moval of individuals through death has been taken into account. These depend on: 1) F l
t

and Gt, the distribution of phenotypes and genotypes prior to death; 2) the process of dif-

ferential retention, by which some individuals survive and some individuals are removed

due to environmental factors. Note that the distribution of genotypes remains unaffected

by cultural transmission and individual learning.

4.2.1 The genetic transmission of direct bias

B&R consider the circumstances under which a biological capacity for individual learn-

ing and biased and unbiased cultural transmission will be favoured by natural selection.

In general, their technique is to assume that the capacity for the behaviour of interest

is genetically encoded, and that there are two possible alleles. Individuals with one al-

lele will participate in the relevant behaviour, whereas individuals with the other allele

will not. B&R construct equations to see under what circumstances the allele for the

particular behaviour will be favoured by natural selection on genetic transmission.

For the purpose of this thesis it is sufficient to review their model of the genetic evolution

of direct bias. Recall from Chapter 2 that direct bias on cultural transmission will increase

the frequency of the favoured variant in a population, with the rate of increase depending

on the strength of the direct bias and the cultural variance in the population. B&R expand
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this model, following their general technique outlined above, to consider the case where

an individual’s genotype determines their preference for cultural variants.

Let us assume that there are two cultural variants, c and d, and two genetic variants, e and

f . e is the unbiased genotype, and f is the biased genotype. In other words, individuals

with genotype e will happily acquire cultural variants c or d, whereas individuals with

genotype f will prefer to acquire one particular cultural variant, let’s say c.

As shown in Section A.3 of Appendix A, if genetic parents are selected at random (there

is no natural selection acting on genetic transmission) then, as we would expect, the

frequency distribution of genotypes in the population remains unchanged. Among in-

dividuals with the biased allele f cultural variant c increases in frequency according to

the strength of the bias and the cultural variance in the parent population, and variant

d decreases by a similar factor. Among individuals with the unbiased allele e the fre-

quency of the two cultural variants remains unchanged. In other words, individuals with

the unbiased genotype acquire either cultural variant, whereas individuals with the biased

genotype preferentially acquire variant c at the expense of variant d.

B&R then go on to add natural selection to the model. Natural selection weeds individ-

uals out after cultural transmission and prior to breeding. Let us assume that individuals

in possession of cultural variant c receive some fitness payoff s (and are therefore more

likely to reproduce genetically and act as cultural parents), and individuals with the bi-

ased genotype f incur some cost z for that bias (and are therefore penalised if z > 0).

Assume for a moment that the proportion of individuals with cultural variant c, is fixed

at some arbitrary value. What happens to the frequency of individuals with the biased

genotype? As shown in Section A.3 of Appendix A:

� if the biased genotype has no associated cost (z = 0):

– if the population exhibits no cultural variation then the biased allele has no

fitness advantage over the unbiased allele and does not change in frequency.

– if the population exhibits cultural variation then the biased allele will increase

in frequency.

� if the biased genotype has a cost (z > 0):

– if the population exhibits no cultural variation then the biased genotype will

decrease in frequency — the biased allele will suffer a fitness penalty due

to its cost and no fitness benefit over the unbiased allele due to the lack of

cultural variation.
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– if the population exhibits cultural variation then the biased genotype will ei-

ther be selected for or against, dependent on the relative strength of the direct

bias, the cultural makeup of the population, the advantage of possessing cul-

tural variant c and the cost associated with the bias.

To summarise, in a population which is completely converged culturally (on either vari-

ant) the frequency of the biased variant should either remain constant (if biased learning

is costless relative to unbiased learning), or decrease (if biased learning has a cost).

What can we predict about the frequency of cultural variant c? As discussed in Section

A.3 of Appendix A, variant c is always favoured by selection, and by biased transmission

when there are individuals with the biased genotype in the population. Therefore variant

c will increase in frequency until the population completely converges on c. As discussed

above, at this equilibrium state the biased genotype either has no advantage over the

unbiased genotype or is at a disadvantage (where z > 0). Therefore, at equilibrium

we should expect selection to either be neutral with respect to bias, or to see only the

unbiased allele — directly biased transmission pushes the population to converge on the

favoured cultural variant, at which point selection pressure on the population’s genotypes

either stops, or acts to reduce the frequency of the biased allele which drove cultural

convergence in the first place.

4.3 The Evolutionary Iterated Learning Model

The Evolutionary Iterated Learning Model (EILM) is an extension of the ILM to model

the dual transmission of cultural and biological traits — it is the Iterated Learning equiv-

alent of B&R’s dual transmission model. As in the ILM, populations consist of collec-

tions of individuals, who acquire their linguistic competence on the basis of the observed

behaviour of other individuals. Individuals also inherit their genetic endowment from

other members of the population, their biological parent(s). As with the ILM, population

turnover can either be generational, as depicted in Figure 4.3, or gradual, as in Figure 4.4.

4.3.1 The evolutionary iterated learning of vocabulary

Hurford (1989) presents the original EILM. Hurford assumes three possible genetically-

encoded learning strategies, which he calls Imitators, Calculators and Saussureans. As

discussed in Chapter 3, Section 3.5.3, based on experiments outlined in Hurford (1989)

and an analysis of these three learning strategies, Calculators can be classified as [�learner,

�maintainer,�constructor] and Imitators and Saussureans can be classified as [+learner,
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Figure 4.3: The generational EILM. (a) illustrates the process of genetic transmission — individ-
uals at generation n+ 1 (represented by circles) inherit their genotypes via genetic transmission
(arcs) from individual at generation n. (b) illustrates the process of cultural transmission — the
generation n individuals produce a set of observable behaviour which is observed and learned
from by generation n+ 1 individuals.
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Figure 4.4: The gradual EILM. A single individual is removed from the population, representing
death. The remaining individuals then reproduce to produce a new individual, who inherits its
genotype from its parent(s). The new individual then learns based on the observable behaviour
produced by the population, and enters the population.
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+maintainer, �constructor]. Saussureans have the additional advantage over Imitators

that their production and reception behaviour are necessarily closely coupled.

Hurford conducts three sets of experiments, the first two of which have been discussed in

Section 3.5.3 and will not concern us here. In the third set of experiments, using a gener-

ational model of population turnover, Hurford investigates how natural selection during

genetic transmission of learning strategies affects genetically heterogeneous populations.

Hurford’s simulation runs start with each meaning–signal pair being equiprobable, with

an equal distribution of the three genetically-encoded learning strategies. There is strong

selection during genetic transmission, with individuals who are more successful at com-

municating with other members of the population being more likely to breed. Under such

circumstances, the Saussurean learning strategy comes to dominate each of 20 simulated

populations — natural selection during genetic transmission leads to the evolution of the

‘optimal’ learning bias. However, Hurford (1989) does not report the frequencies of the

various genotypes over the course of the runs, and does not retain the original data (James

Hurford, personal communication). This is a pity, as we will see in Section 4.5 that the

manner in which the population arrives at the final state is in fact more telling than the

final state itself.

Kvasnička & Pospı́chal (1999) present an EILM similar to the model which I will de-

scribe in Section 4.4. Briefly, Kvasnička & Pospı́chal use a feedforward network model

of a communicative agent, with the obverter architecture. Individuals acquire their com-

munication system based on the observable behaviour produced by the previous genera-

tion of the population. The connection weights in an individual’s network, together with

some limited aspects of network topology, are specified genetically, and opportunity to

breed is determined by communicative accuracy. Kvasnička & Pospı́chal report that op-

timal communication emerges from initially random behaviour, and conclude that this is

a consequence of gene-culture coevolution. However, it is not clear from their model that

there is actually any gene-culture coevolution occurring. While the network topology

may indeed evolve to facilitate communication (a similar result is reported by Living-

stone & Fyfe (2000)), it is not clear to what extent the transmission of initial connection

weights plays a role in biasing the learners towards acquiring optimal communication

systems. As discussed in Chapter 3, the obverter network architecture builds in a bias in

favour of one-to-one mappings from meanings to signals — optimal communication can

emerge in populations of obverter networks in the absence of any genetic transmission of

connection weights. The relative importance of pressures acting on genetic and cultural

transmission is not adequately decoupled in Kvasnička & Pospı́chal’s (1999) model.
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EILMs have also been used to investigate gene-culture interactions in the evolution of

structured communication — for example, the models described in Kirby & Hurford

(1997) and Briscoe (2000b). Discussion of these models will be delayed until Chapter 6.

4.4 Model 1: Adding genetic transmission to the feedforward network

model

In this Section, I describe an extension of the feedforward network model outlined in

Section 3.3 which can be used to investigate possible interactions between the genetic

transmission of learning bias and the cultural evolution of communication. This research

appears in Smith (in press).

Feedforward neural networks are sensitive to their initial connection weights (Kolen &

Pollack 1990) — certain combinations of initial connection weights can make certain

input-output mappings unlearnable, whereas other initial weights can reduce the number

of exposures required to learn particular mappings. The initial connection weights ef-

fectively bias a feedforward neural network towards acquiring certain input-output map-

pings. This suggests a first step towards investigating the dual transmission of vocabulary

systems — if we assume that the initial connection weights in an individual’s neural net-

work are genetically determined, then we have a model where genetic information affects

that individual’s learning bias.

The feedforward network model outlined in Section 3.3 can be straightforwardly ex-

tended to include the genetic transmission of initial connection weights, in order to in-

vestigate how differential genetic transmission of learning bias impacts on the evolution

of unstructured communication. Some of the assumptions arising from this treatment are

somewhat dubious, in particular the assumptions that there is a one-to-one correspon-

dence between genotype and phenotype and that genetic information merely provides

a starting point for unconstrained learning in the phenotype. Two points can be made

in defence of this model. Firstly, the technique of evolving initial connection weights

for neural networks is not a new one, and has been adopted for non-linguistic problem

domains with some success by, for example, Montana & Davis (1989), Belew et al.

(1992) and Nolfi et al. (1994). Batali (1994) adopts a similar technique to a study of the

learnability of structured languages. Secondly, the feedforward network model merely

provides a starting point — while it yields some useful results, it will be superseded by

the more plausible model outlined in Section 4.5.
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Figure 4.5:Genotype-phenotype mapping, the process of translating a genotype into a pheno-
type. Each locus on the genome specifies the weight of a connection in the phenome. In the
genotype-phenotype mapping process, the allele at each locus in an individual’s genotype spec-
ifies the initial weight of the associated connection in the individual’s phenotype network, as
illustrated here. The weights from bias nodes to nodes in the hidden and output layer are shown
in the centre of the associated node.

4.4.1 Genotypes, phenotypes and the genotype-phenotype mapping

The EILM requires a model of the genome and a model of the phenome. The phenome

model is simply the feedforward network model of a communicative agent outlined in

Section 3.3. The genome is a chromosome with 24 loci. The possible alleles for each

locus are the set of real numbers.

Ontogeny, in the terms outlined in Section 4.1, involves the mapping from a genotype to

a phenotype. Each individual consists of a genotype-phenotype pair. Each locus in the

genome corresponds to a connection in the phenome network. In the process of genotype-

phenotype mapping the allele at each locus in an individual’s genotype specifies the initial

weight of the associated connection in the individual’s phenotype network. This mapping

process is illustrated in Figure 4.5.

4.4.2 Reproduction

Individuals inherit their genotype from their parents. In this model the genome is hap-

loid, so asexual reproduction would be a reasonable and simple option. However, previ-

ous research suggests that asexual reproduction in small populations tends to result in a
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rapid loss of genetic diversity and a corresponding weakening of evolutionary pressures

(Mitchell 1996). A sexual model of reproduction is therefore used, to attempt to maintain

genetic diversity in the population.

Each individual has two parents. The parental genotypes are combined to form a single

offspring genotype using one-point crossover4. Mutation5 during reproduction is also

included, once again to maintain genetic diversity in the population.

4.4.3 The EILM algorithm

As with the ILM described in Section 3.3, in the feedforward network EILM a gener-

ational model of population turnover is used. Populations consist exclusively of either

imitator or obverter networks. The EILM consists of an initialisation process and an

iteration process.

Initialisation Create a populationpopulationg=0 of N agents6. Each agent is either an

imitator or obverter, with populations being homogeneous in this respect. Each initial

agent has a random genotype, with the allele at each locus selected randomly from the

range[�1; 1]. The population is heterogeneous in this respect. Each initial agent’s phe-

notype is determined by their genotype and the genotype-phenotype mapping process

discussed in Section 4.4.1 .

Iteration

1. Evaluate the communicative accuracy of every member ofpopulationg by evaluat-

ing every individual’s communicative accuracy as both producer and receiver with

two randomly selected partners according to the measureca (P;R;mi), for every

communicatively relevant meaningmi 2 MCRS.

2. For every member ofpopulationg, generate a set of meaning-signal pairs by ap-

plying the network production process to everym 2 MCRS.
4Crossover occurs with probabilitypx (px = 0:95 in all simulations outlined in this section). When

crossover takes place, the alleles for the firstn loci of the offspring’s genotype are inherited from the first
parent and the remaining alleles are inherited from the second parent.n is randomly selected to be between
1 andlg�1, wherelg is the length of the genome. When crossover does not take place the whole genotype
is inherited from the first parent.

5Point mutations occur on the newly-formed genotype with probabilitypm (pm = 0:1
lg

for all simu-
lations outlined in this section). Mutation involves replacing the allele at the mutated locus, which has a
valuea, with an allele with the valuea+r, wherer is a random number in the range[�1; 1]. This mutation
operator, in conjunction with the unrestricted range of alleles, allows the possibility of the emergence of
extremely large-valued alleles. However, in practice such alleles do not occur. In the simulations outlined
in this section all alleles remain within the range[�5:41; 5:29].

6N = 100 for all the EILMs outlined in this section.
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3. Create a new populationpopulationg+1 of N agents of the same type (imitator or

obverter) aspopulationg. Each member ofpopulationg+1 inherits their genotype

from two parents frompopulationg, via the reproduction process outlined above.

Parents are selected randomly from amongst the fittestb members ofpopulationg.

4. Each member ofpopulationg+1 receivese exposures to the observable behaviour

generated bypopulationg. During each of thesee exposures the new agent ob-

serves the complete set of meaning-signal pairs generated by a member ofpopulationg

selected randomly from among thetmost successful communicators inpopulationg.

For each exposure the learner updates their connection weights according to the

observed meaning-signal pairs using the backpropagation learning algorithm7.

5. populationg is removed and replaced withpopulationg+1. Return to 1.

In this model there are three possible pressures operating on the population:

1. Selection for communicative success operating on genetic transmission(whenb <

N ), driven by natural selection, favouring genes whose phenotype realizations are

successful communicators.

2. Selection for communicative success operating on cultural transmission(when

t < N ), driven by natural selection of communication systems, favouring systems

which result in successful communication.

3. Selection for learnability operating on cultural transmission, driven by the agents’

learning bias, favouring either more ambiguous communication systems (in the

case of imitator agents) or less ambiguous systems (in the case of obverter agents).

How do these pressures interact? The behaviour of populations attempting to construct

and maintain an optimal system, for various simulation parameter settings, are discussed

in the next two sections.

4.4.4 Emergence of a communication system

Simulation runs were carried out to evaluate the behaviour of imitator and obverter popu-

lations with initially random communication systems (given by the random initial weights

in the generation 0 population), for various levels of natural selection pressure acting on

genetic transmission (dependent onb) and cultural transmission (dependent ont). Runs

were allowed to proceed for 1000 generations, with 10 runs being carried out for each

set of simulation parameters. In the figures that follow, the measurement of interest is
7As before, a learning rate of0:5 is used.
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Figure 4.6:The final communicative accuracy of imitator populations in the EILM, in the case
where there are varying degrees of natural selection acting on genetic transmission (b � N ) and
no natural selection of cultural variants (t = N ), as a function ofe. Communicative accuracy
drops rapidly ase increases — cultural transmission clearly has a detrimental effect.

the final average communicative accuracy of the populations. This was obtained by mea-

suring the communicative accuracy of each individual in the final 10 generations of the

population, according to the process outlined above, averaging over the population then

averaging over the 10 simulation runs carried out with that experimental setting.

4.4.4.1 Imitator populations

Figure 4.6 shows the communicative accuracy of the final systems in imitator popula-

tions, for the case whereb � N andt = N , for various values ofe (numbers of learning

exposures). Results are not shown for the case wheret < N — as we might expect

given the results discussed in Section 3.3, differential access to cultural parent roles had

virtually no impact on the behaviour of the populations.

For the case whereb = N = 100 (breeding is independent of fitness), the behaviour of

the populations is essentially as it was when there was no genetic transmission of ini-

tial connection weights — communicative accuracy remains uniformly low. As can be

seen from Figure 4.7, for very low values ofe andb < N (natural selection on genetic

transmission) communicative accuracy does rise significantly above chance levels. When
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Figure 4.7:The final communicative accuracy of imitator populations whereb � N , t = N , for
low values ofe.

e = 0 communicative accuracy reaches optimal levels. This is the result we would ex-

pect, given the mathematical and computational models of genetic transmission given

above — in the absence of learning, natural selection acts to increase the frequency of

fitter genotypes. In the model considered here, fitness is dependent on communicative

accuracy, and natural selection therefore acts to increase the frequency of genotypes en-

coding successfully communicating individuals.

However, ase increases communicative accuracy rapidly drops. Forb < N (natural

selection on genetic transmission) ande > 10 the populations converge on maximally

ambiguous communication systems, leading to chance levels of communication. The

importance of cultural transmission increases ase increases, and consequently the im-

portance of directly biased cultural transmission increases. As discussed in Section 3.3,

imitator individuals are biased in favour of acquiring ambiguous communication systems.

Whene = 10 fully ambiguous systems become completely learnable, and remain more

learnable than less ambiguous systems. When this value ofe is reached, the pressure

for genotypes encoding successful communicators is completely overridden by the pres-

sure on cultural transmission introduced by learner bias, and the populations converge on

fully ambiguous communication systems. To put it another way, ase increases, cultural

transmission begins toshield(Ackley & Littman 1992) genetic information from natural
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selection — learning makes individuals with distinct genetic makeups appear phenotyp-

ically identical, therefore selection cannot identify beneficial genotypes. This is also the

situation predicted by B&R — when the population exhibits no cultural variation, se-

lection acting on genetic transmission is neutral with respect to the genetically-encoded

direct bias.

4.4.4.2 Obverter populations

Figure 4.8 plots the communicative accuracy of obverter populations, forb � N and

t = N , for various values ofe. Again, no significant effect was found when natural

selection of cultural variants was introduced — settingt < N leads to similar results.

For the case whereb < N , natural selection on genetic transmission clearly has a positive

effect — the average communicative accuracy of the populations increases above the

level for b = N . Natural selection fine-tunes initial connection weights so as to increase

the learnability of unambiguous systems. For low to intermediate values ofe a direct bias

on cultural transmission has clearly evolved. However, for highe the obverter network

learning bias alone leads to optimal communication. Under these circumstances, there is

no selection pressure in favour of an additional direct bias introduced by the networks’

initial connection weights — the population’s initial connection weights undergo genetic

drift. As discussed above, this situation matches the predictions of both B&R and Ackley

& Littman (1992) — when the population exhibits no cultural variation, selection acting

on genetic transmission is neutral with respect to the genetically-encoded direct bias.

4.4.5 Maintenance of an optimal system

In Chapter 3, I briefly alluded to the behaviour of imitator populations when attempting

to maintain an optimal system. I predicted that imitator agents would be unable to do

so, due to their bias in favour of many-to-one mappings between meanings and signals.

However, no results from the ILM were found to support this prediction. It turns out that

some support for this position can be found by considering populations of imitator agents

attempting to maintain an optimal system in the EILM.

Figure 4.9 shows the average communicative accuracy of populations of imitator agents

who start out with a shared, optimal, innate communication system — all the agents in

the initial population have a set of genes which encode an unambiguous communication

system.e = 200 for all simulations in Figure 4.9. Various amounts of selection pressure

(b andt) are used on genetic and cultural transmission. As can be seen from Figure 4.9,
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Figure 4.8:The final communicative accuracy of obverter populations whereb � N , t = N ,
for various values ofe. Communicative accuracy increases ase increases — cultural transmis-
sion is beneficial. Overall levels of communicative accuracy are also higher whenb < N —
natural selection acting on genetic transmission is beneficial, although the benefit decreases ase

increases.

all populations collapse from using an unambiguous communication system to using a

partially or fully ambiguous communication system within 25000 generations.

As discussed above, learning in the phenotype almost completely masks an agent’s genes

but there are certain combinations of genes which make learning a particular commu-

nication system impossible. Given the absence of cultural variation in populations with

an optimal initial system, genetic transmission occurs at random — there is no selec-

tion pressure in favour of a direct bias which results in successful communication. The

population’s genotypes, and therefore the population’s initial connection weights, will

undergo drift. In each simulation shown in Figure 4.9 an agent is eventually born whose

genes are so bad that they cannot learn the unambiguous communication system in use

by the rest of the population. This individual learns a partially ambiguous or fully am-

biguous communication system instead. Such agents are unlikely to breed, given that

their fitness is usually lower than other agents in the population. Suboptimal communi-

cators do have a negative effect on the fitness of optimally-communicating agents, given

that those optimally-communicating agents suffer a penalty for not understanding or be-

ing understood by suboptimal communicators, although this will not usually depress the

population’s fitness enough to allow a suboptimal communicator to breed. However,
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Figure 4.9:Slumping from optimal to suboptimal communication systems in imitator popula-
tions in the EILM.

while such individuals are unlikely to breed, their communication systems may be ob-

served and learned from by agents in the next generation, depending ont. Genetic drift

therefore introduces cultural variation into the population. This cultural variation then re-

sults in the reintroduction of directly biased cultural transmission, resulting from learning

bias, which leads to the spread of ambiguous communication systems.

Note thate = 200 represents the best-case scenario for imitator agents.e = 200 results

in the highest level of learnability for unambiguous communication systems and also

ensures that, at the early stages of collapse, suboptimal communication systems will

constitute only a small part of a learner’s observations. In populations wheree � 2

the collapse phenomenon does not occur, but as discussed above the behaviour of these

populations is entirely determined by natural selection — they cannot truly be called

learning populations.

4.4.6 Summary

The addition of natural selection acting on the genetic transmission of initial connection

weights has rather different effects in imitator and obverter populations. In both cases,

the learning bias inherent in the two network architectures is still the best predictor of the

populations’ eventual communication system. In imitator populations, this learning bias
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favours many-to-one mappings from meanings to signals. The imitator populations there-

fore converge on fully ambiguous mappings, unless cultural transmission has very little

impact (e is low). Furthermore, imitator populations cannot maintain optimal systems in

this scenario, due to phenotypic noise introduced by genetic drift.

In obverter populations, in contrast, the addition of natural selection acting on the genetic

transmission of initial connection weights has positive effects. When cultural transmis-

sion is weak, the addition of natural selection leads to the emergence of initial connection

weightings which help establish an optimal, shared communication system. However,

this effect diminishes as the strength of cultural transmission increases. Furthermore,

comparison of the behaviour of imitator and obverter populations reveals that the correct

overall learning bias has to be in place before such beneficial effects are observed.

4.5 Model 2: Adding genetic transmission to the associative network

model

While the results outlined in the previous section give an interesting insight into the

interaction between directly biased cultural transmission and genetic transmission, they

are somewhat unsatisfactory for a number of reasons. There are two forms of direct

bias in the feedforward network EILM — one introduced by the network architecture

(imitator or obverter), which is externally determined, and one introduced by the genetic

transmission of initial connection weights. This second, and much weaker, bias is the

only element manipulable by natural selection. We would like the primary bias to be

genetically transmitted, to investigate whether biases favouring optimal communication

can evolve.

To this end, the associative network model outlined in Section 3.4 is extended to include

the genetic transmission of weight-update rules. A small part of this research (Section

4.5.5 in particular) appears in Smith (2001b). Rolls & Stringer (2000) take a similar

approach to investigating the evolution of learning, although in their model learning is

individual, rather than cultural.

4.5.1 Genotypes, phenotypes and the genotype-phenotype mapping

The phenome is the associative network model of a communicative agent outlined in

Section 3.4 of Chapter 3, withjNM j = jNSj = 10. This phenome is defined by the

pair hW;W i, whereW is an initial set of connection weights andW is a weight-update
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rule. The genome is a 4-locus chromosome. A genotype is specified by the 4-tuple

(a� a� a aÆ) whereax is an allele drawn from the setf�1; 0; 1g.

The process of mapping from a genotype to a phenotype involves converting such a

4-locus chromosome into ahW;W i phenotype. As discussed in Section 3.4.1.3, each

weight-update ruleW is specified by a 4-tuple(� �  Æ). During genotype-phenotype

mapping� is set to the value of allelea�, � is set to the value of allelea� and so on. The

genotype therefore specifies the phenotype’s weight-update rule. Allwi;j 2 W are set

to 0 — everyagent has all their initial connection weights set to 0. It would be possible

to specifyW in the genotype, as was done in the feedforward network model. However,

that option was not explored — the results from the feedforward network model suggest

that the genetic evolution of initial connection weights will be of fairly minor importance

in comparison to the evolution of the learning bias itself.

To recap, there are 81 possible genotypes, which encode the 81 possible weight-update

rules discussed in Chapter 3, Section 3.4. Of these 81 rules, 50 are classified as [�learner,

�maintainer,�constructor], 13 are classified as [+learner,�maintainer,�constructor],

9 are classified as [+learner,+maintainer,�constructor] and 9 are classified as [+learner,

+maintainer,+constructor].

4.5.2 Reproduction

Individuals inherit their genes from their parents. As with the feedforward network

model, organisms are haploid but sexual recombination (involving crossover, in an iden-

tical fashion to that outlined for the previous model) is used. Newly-formed genotypes

are also subject to mutation.8 Given the short chromosome it is not clear whether sexual

reproduction is necessary to maintain genetic diversity in the population, or whether mu-

tation is sufficient. Simulation runs similar to those described here were carried out with

asexual reproduction (each individual has a single genetic parent) and the results were

found to be qualitatively similar.

4.5.3 The EILM algorithm

As with the associative network ILM discussed in Chapter 3, a gradual population turnover

model is used in the associative network EILM. The EILM consists of initialisation and

iteration processes.
8Point mutations occur on the newly-formed genotype with probabilitypm (pm = 0:04

lg
for all simula-

tions outlined in this section, wherelg is the length of the genome.) Mutation involves replacing the allele
ai at the mutated locus with another alleleaj 6=i, whereaj is selected from the set of possible alleles.
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Initialisation Create a population ofN agents9. Each initial agent has a random geno-

type, with the allele at each locus selected randomly from the range of possible alleles.

Each initial individual’s phenotype is determined by their genotype and the genotype-

phenotype mapping.

Iteration

1. Select an individual from the population according to the death procedure outlined

below and remove it.

2. For every remaining member of the population, generate a set of meaning-signal

pairs by applying the network production process to every meaningm 2 M.

3. Create a new agent. The new agent inherits its genotype from its parents, who

are selected from the population according to the reproduction procedure outlined

below.

4. The new agent receivese exposures to the population’s observable behaviour. Dur-

ing each of thesee exposures the new agent observes the complete set of meaning-

signal pairs of a randomly selected member of the population and updates their con-

nection weights according to the observed meaning-signal pairs and their weight-

update ruleW .

5. The new agent joins the population. Return to 1.

The iteration process requires procedures for selecting which individuals die and which

individuals reproduce. In the ILM version of the model death was random, and reproduc-

tion was effectively ignored. In the feedforward network EILM reproduction occurred

with equal probability among the fittestb members of the population. This rank selection

procedure would be acceptable for the gradual EILM described here. However, for rea-

sons of computational efficiency10 a tournament selectionprocedure was used. During

a tournament,T individuals are selected from the population at random and evaluated.

Each individual is scored according to their average communicative accuracy when act-

ing as both producer and receiver with two randomly selected partners according to the

measureca (P;R) given in Section 3.2 in Chapter 3. During selection to decide death,

the individual with thelowestcommunicative accuracy from among theT selected in-

dividuals ‘wins’ the tournament and is removed from the population. During selection

to decide reproduction, the individual with thehighestcommunicative accuracy wins the

tournament and reproduces.
9N = 100 for all models outlined in this section

10As a new individual is introduced at every cohort, communicative accuracy for the entire population
would have to be reevaluated at every cohort if the rank procedure was used.
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Figure 4.10:Probability of breeding or dying according to rank fitness, for various values ofT .
i gives the rank fitness of an individual andpi gives the probability of that individual winning a
tournament. For death tournaments, theleastfit individual has rank 1 and the most fit individual
has rank 100. For breeding tournaments, themostfit individual has rank 1. Based on the equation
from Bäck (1994):pi = N�T

�
(N � i+ 1)T � (N � i)T

�

The strength of selection pressure in the population therefore depends onT . Figure 4.10

shows the probability of individuals of different rank fitness reproducing for various val-

ues ofT . T = 3 was selected for the simulations outlined in this section — it offers a

reasonable selection pressure, while still allowing less fit individuals to reproduce, there-

fore helping to maintain genetic diversity in the population.

One note should be made here regarding the natural selection of cultural variants. The

individual who is removed from the population at each cohort does not produce observ-

able behaviour. This was due to reasons of continuity with previous work (e.g. Oliphant

(1999)) and simplicity of coding. However, given that removal is dependent on com-

municative accuracy in the EILM, this introduces natural selection of cultural variants

during cultural transmission — less successful communicators are more likely to be re-

moved prior to cultural transmission, and therefore unsuccessful communication systems

are selectively removed from the population’s culture. It turns out that this does not af-

fect the results reported here. Firstly, it is only a very weak selection pressure (see Figure

4.11). Secondly, as we saw in Chapter 3 with respect to the feedforward network model,
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Figure 4.11:Probability of acting as a teacher according to rank fitness, for various values of
T . Note the narrow range of the y-axis.i gives the rank fitness of an individual andpi gives the
probability of that acting as a cultural parent. Here theleastfit individual has rank 1 and the most
fit individual has rank 100. The probability of an individual acting as a cultural parent is given
by the probability of them not dying multiplied by the probability of being selected to act as a

cultural parent —pi =
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N�T
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(N � i+ 1)T � (N � i)T

���
�
�
1�

�
1� 1

N�1

�e�
. For

the plots shown here,N = 100, e = 3. There is little difference between the probabilities of the
least fit and most fit individuals acting as cultural parents — there is very little natural selection
of cultural variants.

natural selection of cultural variants tends to be drowned out by the pressures introduced

by learning bias.

4.5.4 Main result: optimal communication rarely emerges

100 runs of the EILM were carried out fore = 3 (the same amount of exposures as used

in the ILM runs outlined in Section 3.4). Each run proceeded for 5000 cohorts. Figure

4.12 shows the progress of a run of the simulation where the population constructed an

optimal11 communication system. This is a typical example of a successful run. However,

only 3 of 100 runs were successful in this respect. Natural selection does not reliably lead
11The definition of “optimal” was weakened in comparison to the ILM construction tests, to allow for

the fact that populations would be genetically heterogeneous and therefore might suffer reduced commu-
nicative accuracy due to the presence of non-learners. A population was considered as having converged
on an optimal system if communicative accuracy exceeded 0.95 within the 5000 cohorts, and once com-
municative accuracy exceeded this threshold it remained above it. Weaker definitions of optimal systems
yield qualitatively similar results.
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Figure 4.12:The evolution of learning biases leading to optimal communication. Proportions
of all the classes of genotypes are given (for example, the black line gives the proportion of the
population who use one of the 50 weight-update rules classified as [�learner]). This is a plot of a
successful run of the EILM. However, such successful runs are rare.

to the evolution of optimal communication — optimal systems were found to be unlikely

to emerge.

Why does natural selection during genetic transmission have such difficulty in iden-

tifying weight-update rules which lead to optimal communication? The problem is

that the cultural construction of a communication system takes time. Individuals with

[+constructor]12 weight-update rules gradually converge, over hundreds of cohorts, on

increasingly unambiguous areas of communication system space. In the early stages
12I will be frequently referring to the various classifications of weight-update rules for the remainder

of this Chapter, and writing out the full [�learner,�maintainer,�constructor] specification becomes
somewhat laborious. I will therefore adopt two simplifying conventions, one which exploits the hierar-
chical arrangement of the classification system, and one which is more intuitive. The conventions are
summarised below:

Full specification Abbreviated specification Name
�learner,�maintainer,�constructor �learner non-learner
+learner,�maintainer,�constructor +learner,�maintainer learner
+learner,+maintainer,�constructor +maintainer,�constructor maintainer
+learner,+maintainer,+constructor +constructor constructor
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of this construction process individuals whose genotypes encode [+constructor] weight-

update rules will have little fitness advantage over other individuals. As a consequence

the genetic transmission process will be essentially random — the population will un-

dergo genetic drift. In successful runs, such as that shown in Figure 4.12, genetic drift

preserves genotypes encoding [+constructor] rules, by chance, in sufficient numbers for

sufficient time to allow the construction process to get well under way. Individuals with

genotypes encoding [+constructor] rules then show increased communicative accuracy,

which leads to steady selection for such genotypes, which increase in number. In the

more common, unsuccessful runs, drift does not provide constructor agents in sufficient

numbers for sufficient time for the construction process to get under way.

Interestingly, when the population’s communicative accuracy nears optimal levels, selec-

tion for genotypes encoding [+constructor] weight-update rules stops. The population

enters a second stage of genetic drift, where constructor numbers fluctuate randomly.

This is due to the fact that maintainers are capable of putting the finishing touches on

a communication system and maintaining that system once it is established. Learner

agents are also able to acquire the population’s optimal system once it is established.

Constructor agents lose their fitness advantage over maintainers and learners and genetic

transmission becomes semi-random once more. However, non-learners never drift back

into the population — they are incapable of learning an optimal system and suffer a

severe fitness penalty.

This three-stage drift-selection-drift pattern is common over all successful runs and is

illustrated schematically in Figure 4.13. In Figures 4.14–4.17 the relative communicative

accuracy13 of the four classes of genotypes are plotted against their change in number,

with the population’s average communicative accuracy and the proportion of constructor

agents plotted for reference. As can be seen from Figure 4.14, the relative communica-

tive accuracy (henceforthrca) of constructor agents fluctuates around 1 till approximately

1000 cohorts through the simulation. We might be tempted to think, given that construc-

tor rca is sometimes slightly above 1, that constructors are being selected for. However,

this is confounded by the fact that increases in constructor numbers brought about by

drift lead to an increase in the communicative accuracy of constructor agents — drift is

the cause of the fluctuations in constructorrca. More reliable indicators are given by

the rca values of maintainers, learners and non-learners, for whom this effect is weaker
13The relative communicative accuracy of a particular weight-update rule is the communicative accuracy

of individuals with that weight-update rule divided by the average communicative accuracy of the popula-
tion. The relative communicative accuracy of a classification (constructors, maintainers etc) is the average
of the relative communicative accuracies for all weight-update rules which fall into that classification.
Relative communicative accuracy of greater than 1 indicates above-average performance.
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Figure 4.13:The three phases of a successful run. Drift establishes constructor agents in suf-
ficient numbers for the construction process to get underway. Constructor genotypes are then
preferentially selected, and communicative accuracy increases rapidly. When an optimal sys-
tem is established, constructors loose their selective advantage over maintainers (and, to a lesser
extent, learners), and a second period of drift occurs.

or non-existent. Learners and non-learners in particular showrca of around 1 until 1000

cohorts into the run, by which point the mini-plateau of constructor agents has been estab-

lished by drift. At this point therca of these individuals plunges, overall communicative

accuracy increases markedly and constructor numbers increase due to natural selection

for constructor genotypes. After communicative accuracy reaches 1, thercas of learner,

maintainer and constructor individuals hover at 1, with non-learners having very lowrca

whenever they are reintroduced by crossover or mutation.

The second period of genetic drift follows the predictions of B&R — once the population

reaches cultural convergence, the selection pressure for biases disappears. However, in

this model there is still strong selection pressure against [�learner] individuals, who

cannot acquire the cultural variant in use in the population.

The first period of drift is not predicted by B&R’s mathematical model, which suggests

that, given costless learning, the biased allele should increase in frequency when the

population is culturally heterogeneous. This turns out not to be the case in this model, for
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Figure 4.14:The relative communicative accuracy of agents with constructor genotypes. This
value fluctuates around 1, although it is most obviously above 1 from 1300 to 1900 cohorts.
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Figure 4.15:The relative communicative accuracy of agents with maintainer genotypes. This
value fluctuates around 1, and is obviously below 1 from 1500 to 1900 cohorts, during which time
maintainer numbers drop sharply.

178



learner proportion
learner relative communicative accuracy

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
cohort

constructor proportion
communicative accuracy

Figure 4.16:The relative communicative accuracy of agents with learner genotypes. This value
fluctuates around 1, and drops most markedly below 1 from 1100 to 1800 cohorts, during which
time learner numbers drop sharply.
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Figure 4.17: The relative communicative accuracy of agents with non-learner genotypes. This
value initially fluctuates around 1, and appears to be below 1 from 600 cohorts onwards. By this
time, drift has already delivered a significant number of constructor agents. The rca for non-
learners drops markedly after about 1000 cohorts, at which point constructor numbers shoot up.
After the optimal system is established, non-learner numbers and rca remain very low.
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the initial period until drift establishes [+constructor] individuals in sufficient number.

This is due to the fact that the fitness payoff in this model, unlike in B&R’s model, is

frequency-dependent — if no other individuals have the same cultural variant as you,

you receive no payoff.

These simulation results emphasise a fairly basic logical point — if there is no estab-

lished useful communication system present in the population, natural selection will not

favour individuals who are predisposed to learn such a system. In the simulation results

shown here, genetic drift is required to break the cycle of non-communication, at which

point being biased to acquire an optimal communication system becomes advantageous.

However, the point remains that, in a non-communicating population, being able to learn

an optimal communication system confers no advantage.

4.5.5 Varying the speed of convergence by varyinge

The speed of convergence of [+constructor] populations on optimal systems depends on

e, the number of exposures learners receive to the observable behaviour of the population.

In general, larger values of e lead to more rapid cultural convergence in the ILM. The

results outlined above suggest that larger values of e will result in a higher proportion

of runs of the EILM converging on optimal systems. For higher values of e there will

be a shorter time-lag between emergence of genotypes encoding [+constructor] rules

and an increase in communicative accuracy for individuals using such rules, therefore

the populations will be less vulnerable to genetic drift during the abbreviated period of

construction.

The experiments outlined in the previous section were repeated for all integer values of e

in the range [1; 30]. The proportion of runs (out of 100) converging on optimal systems

are plotted in Figure 4.18, along with the average speed of construction for those values

of e in pure ILM runs. As can be seen from this Figure, there is a clear relationship

between speed of construction in the ILM and probability of convergence on an optimal

system in the EILM — as e increases, speed of construction decreases and probability

of convergence in the EILM increases as a consequence. The correlation between time

to convergence in the ILM and proportion of convergent runs in the EILM is statistically

significant (r = �0:56, p = 0:01).

4.5.6 Varying the speed of convergence by varying cultural population size

Oliphant (1999) reports that population size impacts on the speed of cultural convergence,

with larger populations taking longer to converge culturally on optimal systems. More
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Figure 4.18: The relationship between e, convergence speed in the ILM and probability of con-
vergence on an optimal system in the EILM. As e increases, the time taken by runs of an ILM to
converge on a stable system decreases (speed of convergence is averaged over 10 runs and shown
as a proportion of the time taken by the slowest converging runs). In the EILM, increased speed of
convergence reduce the reliance on genetic drift, and consequently as e increases the proportion
of EILM runs converging on an optimal communication system increases.

generally, we would expect cultural innovations to take longer to diffuse through larger

populations, assuming that the rate of diffusion is invariant with respect to population

size. Given the relationship between speed of convergence in the ILM and probability of

converging on an optimal system in the EILM, we might expect smaller population sizes

to lead to a higher probability of convergence in the EILM. However, this prediction

is complicated by the genetic drift phase of the EILM described above. Genetic drift

is more pronounced and its effects more dramatic in smaller populations, which would

be a confounding factor in repeating the EILM experiments outlined above for smaller

populations.

In order to decouple the effects of genetic population size and cultural population size,

a model of spatial organisation was introduced to the EILM. The model of spatial or-

ganisation outlined in Oliphant (1997) is adopted for our purposes. The population of

N agents is organised in a ring. This allows us to define a distance measure between

individuals in the population. In the case where the population is unorganised spatially

the probability of picking a particular individual is independent of their position in the

181



population. However, in the spatial organisation case this is a function of their distance

from a particular focal position on the ring.

There are four processes which involve picking individuals from the population:

1. picking individuals to participate in death tournaments.

2. picking individuals to participate in breeding tournaments.

3. picking individuals to communicate with.

4. picking individuals to observe and learn from.

Individuals are picked at random to participate in death tournaments, irrespective of their

position in the population. Each of the remaining three processes is given a spatialisation

parameter, db, dc and dl. The processes then proceed as follows:

Breeding Tournaments: Breeding produces a single individual to replace the single

dead individual, who occupied slot i. The T individuals who will participate in the

tournament are selected from the population probabilistically, according to their

distance from position i. f is a normal distribution with a mean of 0 and standard

deviation db. The probability of an individual with distance j from individual i

being picked is equal to f (j) — if db is low, only individuals close to i will be

picked, whereas if db is high, individuals who are distant from i may be picked.

The offspring produced by breeding occupies slot i.

Communication: Individual i is scored according to their average communicative ac-

curacy when acting as both producer and receiver with two partners according to

the measure ca (P;R) given in Section 3.2 in Chapter 3. The partners are selected

according to a normal distribution around individual i with standard deviation dc.

Learning: Individual i receives e exposures to the population’s communicative behaviour.

During each of these e exposures the learner observes the complete set of meaning-

signal pairs of a member of the population, where that member of the population

is selected according to a normal distribution around individual i with standard

deviation dl.

For low values of d the population will be highly organised spatially, with individuals

interacting only with individuals who are close by in terms of the distance measure.

As d increases the population becomes less spatially organised, with the probability of

interacting with distant individuals increasing. For N = 100 and d � 50 the population

is effectively completely unorganised spatially with respect to the process of interest

(breeding, communication or learning).
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Figure 4.19: The impact of spatial organisation. � gives the spatial organisation parameter, for
those processes which are spatially organised. As � increases, spatial organisation decreases.
When cultural transmission is spatially organised, the proportion of EILM runs converging on
an optimal system decreases, due to the increased time to cultural convergence. Conversely,
when genetic transmission but not cultural transmission is spatially organised, the increase in �

results in a slight increase in the proportion of successful EILM runs, due to less fierce genetic
drift. When genetic and cultural transmission are both spatially organised, a cultural kin-selection
effect is observed, which tails off as � increases.

I will consider three combinations of parameters:

Cultural spatialisation: dl = dc = �, � 2 [1; 50],db = 50

Genetic spatialisation: db = dc = �, � 2 [1; 50],dl = 50

Complete spatialisation: dl = db = dc = �, � 2 [1; 50]

Figure 4.19 plots the proportion (out of 100) of populations which converge on optimal

systems14, for the three parameter conditions for various values of � (as with the earlier

ILMs, N = 100, e = 3).

Three patterns are clear here. Firstly, the number of convergent runs in the genetic spa-

tialisation condition is very low, and is at its lowest when genetic spatialisation is at its

most extreme. This is what we would expect — genetic drift in the sub-populations will
14Runs were classified as optimal if communicative accuracy reached and subsequently remained above

0.85. This value was lower than the previous classification values to allow for the reduction in communica-
tive accuracy resulting from boundaries between communication systems.
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be more pronounced, and cultural convergence will still take a long time. Secondly, the

proportion of convergent runs in the cultural spatialisation condition decreases as � in-

creases — as � increases, effective population size increases, resulting in slower cultural

convergence and hence greater vulnerability to genetic drift.

Finally, the runs for the complete spatialisation case exhibit a similar pattern to the cul-

tural spatialisation case, but with a higher overall proportion of convergence and a hump

for very low �. The hump is due to extreme genetic drift when db = 1. The overall higher

level of convergence suggests a positive interaction between genetic and cultural spatiali-

sation. Neighbouring individuals will typically have similar genotypes, will have learned

from similar observable behaviour and will have similar communication systems. If in-

dividuals are of the [+constructor] classification, this is likely to result in very quick con-

vergence on shared meaning-signal mappings. Sharing meaning-signal mappings leads

to increased communicative accuracy, increased probability of breeding, and increased

chances of adding yet more constructor agents into the constructor sub-population, who

will then learn from similarly biased individuals, and subsequently communicate suc-

cessfully with them.

Figures 4.20, 4.21 and 4.22 give sample convergent runs in more detail. As can be seen

from Figure 4.20, tight cultural spatial organisation leads to the rapid formation of di-

alects within the population, which yield above-average communicative accuracy. Figure

4.21 shows that these spatially-organised dialects do not form when the population is not

spatially organised for cultural transmission. A similar relationship between cultural spa-

tial organisation and dialect formation is reported by Livingstone & Fyfe (1999). Finally,

Figure 4.22 shows that, when both genetic and cultural transmission are spatially organ-

ised, the emergent, useful dialects are associated with constructor genotypes, which then

spread to dominate the population.

4.5.7 Summary

The simulation results outlined in this Section show that natural selection cannot reliably

identify weight-update rules which lead to the cultural evolution of optimal communica-

tion. This is due to the time-lag between the emergence of such weight-update rules and

any communicative payoff to individuals possessing them. In simulation runs which do

converge on optimal communication systems, genetic drift provides appropriate weight-

update rules in sufficient numbers for the cultural construction process to get under way,

at which point constructor weight-update rules are identified and selected for during ge-

netic transmission. Increasing the number of observations each learner makes (increasing
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Figure 4.20: Cultural spatialisation only (dl = dc = 1, db = 50). Time-space diagrams for
communicative accuracy (top), communication systems (middle) and genotypes (bottom). Each
vertical strip of each diagram represents the complete population at a particular point in time
(in cohorts). In the communicative accuracy diagram, different colours correspond to individ-
uals with different levels of communicative accuracy (see key). In the communication systems
diagram, each distinct p (m) is assigned a distinct (random) colour. In the genotypes diagram,
different colours correspond to genotypes encoding different weight-update rules (see key).
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Figure 4.21: Genetic spatialisation only (db = dc = 3, dl = 50). While genetic subpopulations
exist, diversity of communication systems is rapidly lost.
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Figure 4.22: Combined spatialisation (dl = db = dc = 1). Both cultural and genetic diversity
is maintained. Note that the early regions of increased communicative accuracy coincide with re-
gions dominated by constructor genotypes. Later on, dialects are less associated with a particular
genetic makeup. Note also the small subpopulation of learner agents, emerging at around 6000
cohorts and disappearing at 10000 cohorts. This build-up of [+learner, �maintainer] individu-
als leads to a drop in communicative accuracy, visible in the top diagram, and consequently the
elimination of the learner genotypes.
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e) or reducing the cultural population size (by introducing cultural spatialisation) speeds

up the cultural convergence process, resulting in more frequent convergence on good

genes and optimal communication systems. In successful runs, a kind of cultural niche

construction (Odling-Smee 1988; Laland et al. 2000) takes place — drift provides con-

structor genotypes in sufficient numbers for sufficient time to construct a cultural niche,

which constructor agents are then selected to occupy. However, the logical point remains

that in a non-communicating population there can be no communicative advantage in

being biased to acquire an optimal communication system.

4.5.8 Discussion

In Chapter 3 I argued that humans are biased in favour of acquiring one-to-one map-

pings between meanings and vocabulary items, and that this learning bias could result in

the emergence of effective communication in human populations through purely cultural

processes. The fairly natural assumption would be that this learning bias in human infants

has evolved through natural selection in favour of communication. However, the results

outlined in this Chapter cast doubt on this assumption — in the simulation model, such

biases are unlikely to evolve, in spite of strong selection pressure in favour of successful

communication.

What can these results tell us about the evolution of vocabulary acquisition biases in hu-

mans? There are two possible interpretations. I will take as the starting-point for both in-

terpretations the assumption that pre-linguistic human populations resembled current-day

primate populations in terms of communicative behaviour — they possessed some fairly

limited set of stimulus-bound, innate signalling behaviours, possibly augmented by a few

idiosyncratic, ontogenetically-ritualised signals shared between pairs of individuals. It

should of course be remembered that non-human primates have undergone a significant

period of evolution since we last shared a common ancestor, and do not constitute some

kind of living fossil. However, modern humans still possess a small range of universal,

innate signals (facial expressions for disgust, anger and so on) and it is reasonable to sug-

gest that the basis of this common characteristic existed in the last common ancestor of

chimpanzees and humans, and therefore in the first non-common ancestor on our side of

the family tree. I will further assume that any emergent, culturally-transmitted symbolic

communication system did not replace this innate, non-linguistic signalling system —

the persistence of human facial expressions and the like shows that it did not.

Under the first, positive interpretation, the simulation results outlined in this Chapter can

be seen as highlighting the conditions under which the learning bias in humans must have
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evolved. We can then draw parallels between the simulation parameters which lead most

reliably to the evolution of appropriate learning biases and the hypothesised ecological

setting of human evolution. Alternatively, we could emphasise the negative aspect of the

simulation results, and mount an argument that the human vocabulary acquisition biases,

apparently so well-designed for communication, are better understood as an exapted trait.

These two contrasting interpretations are considered in the following two Sections.

4.5.8.1 The positive interpretation

The weakest positive interpretation of the simulation results is to conclude that the evo-

lution of the human vocabulary acquisition bias was something of an evolutionary fluke

— the simulation results indicate that such learning biases are unlikely to evolve but,

given a large dose of luck, can do so. Under this interpretation, the uniqueness of human

language as a learned symbolic communication system (at least among the primates) can

be seen as a consequence of the fortuitous emergence of a significant number of individ-

uals possessing a language-specific learning bias with the correct properties. After the

cultural construction process got underway, these individuals reproduced with dispropor-

tionate success, due to the payoff of communication, and the genes encoding the bias

became fixed in the population.

This kind of account is rather unsatisfactory, relying as it does on a double saltation.

Firstly, the appropriate learning bias must emerge de novo in a population whose commu-

nication system was previously innate. Secondly, this learning bias must be maintained

in a significant proportion of the population for a significant period of time, despite a

lack of fitness advantage for those individuals possessing it. Of course, assuming that the

appropriate bias is costless relative to inappropriate biases, genetic drift may preserve it,

or even increase its numbers. However, given that the genes encoding the new bias will

initially occur in small numbers, drift is more likely to result in their disappearance than

their proliferation.

As a second possible interpretation, the simulation results could be taken as indicating

that the emergent learning bias in human populations immediately provided a fitness ad-

vantage to those individuals who possessed it — in this case, the time-lag problem would

not occur. It has been suggested (for example, in Chomsky (2002)) that an important

function of language is individual-internal, allowing the formulation of plans and so on

using “ inner speech” . If this was the case, then it could be argued that the initial indi-

viduals possessing the human vocabulary acquisition bias could use their acquired, sub-

optimal but non-random, communication system internally, thereby immediately gaining

a fitness advantage over individuals who could not communicate with themselves.
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I have never found this line of argument particularly convincing with respect to full-blown

language, and it is even less convincing when stretched to cover unstructured communi-

cation. Firstly, it is not clear to what extent inner speech is a widespread phenomenon,

or even a real phenomenon. Individuals who claim to think in speech could be imposing

some kind of post-hoc rationalisation on their thought processes. Even if some individu-

als do think in speech, it is not known if this is common, or a matter of personal cognitive

style. Even if all individuals do think in speech sometimes, it is also not clear that this

mode of thought is applied to a wide range of tasks — while we might be happy to agree

that we “ think in language” when performing tasks like rehearsing a talk or writing a

thesis, it is less clear to what extent we think in language when performing less wordy

tasks like painting a shed, going to the shops, or hunting a wildebeest. Ignoring the em-

pirical evidence (or lack thereof) regarding the degree to which we actually do think in

language, if this inner speech provided the main impetus for the evolution of the lin-

guistic capacity then we might expect language to be of a rather different form — see

Hurford’s points in Chapter 1, Section 1.4.1, on the apparent adaptation of language for

the externalisation of propositional structures. With respect to thinking in an unstructured

communication system, it is even difficult to see how thinking, for example, wildebeest 0,

signalling “wildebeest” , and re-arriving at wildebeest0 offers any improvement in clarity

of thought.

An alternative, more appealing possibility is that some aspect of the emergent learning

bias in pre-linguistic hominids or the social structure of pre-linguistic hominids resulted

in an immediate, or at least very rapid, fitness advantage to individuals possessing the

appropriate bias. The simulation results in Sections 4.5.5 and 4.5.6 show that increased

speed of cultural convergence, either by increasing the number of exposures learners re-

ceive or by reducing cultural population size, leads to more reliable emergence of learn-

ing biases supporting optimal communication. If a plausible argument could be presented

that one or both of these factors were at play in early stages of the emergence of human

language-learning biases then we might be more optimistic that these learning biases

evolved specifically for communication in the hominid line.

Human infants have an unusually long period of immaturity, a consequence of the re-

duced size of the pelvic opening in humans, which requires that babies be born at a

relatively immature stage, before the head is too big to fit through the birth canal (Martin

1992). This extended period of immaturity and plasticity could be very roughly equated

with large e in the simulation models, which speeds up cultural convergence and leads to

more reliable evolution of the one-to-one bias. Alternatively, and perhaps more plausibly,

we could point to the speed of cultural convergence in creolization situations, arguably
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a consequence of a strong human learning bias. Bickerton argues that creolization takes

place in a single generation (Bickerton (1990), but see, for example, (McWhorter 1997)

for a contrasting view). If we accept for a moment that the emergent learning bias in the

hominid line led to significant convergence on a shared communication system within

one generation, or even a few generations, then natural selection would be more likely to

quickly identify and select for this bias. This does, however, require that the bias in its

initial form was extremely strong, ruling out initial emergence of a weak bias which was

gradually selected for in stronger and stronger forms.

Reduced cultural population size leads to rapid cultural convergence in the simulation

model. We could argue that this is characteristic of the population structure of pre-

linguistic hominids, but not other primates, facilitating the evolution of a unique learning

bias in the hominid line. Arguments based on group size have been made before in re-

lation to the evolution of language in humans (Dunbar 1996). However, two main prob-

lems exist with this approach. Firstly, Dunbar’s account is centred on the assumption that

group size increased down the hominid line. This produces exactly the wrong prediction

in terms of our model — larger group size should lead to slower cultural convergence and

therefore a lower likelihood of evolving the correct bias. It could be argued that, while

overall group size increased in hominids, groups became increasingly internally struc-

tured, which would produce the correct prediction. However, this brings us to the second

problem with group-size arguments. In a recent review of the archaeological evidence

underpinning theories of the evolution of language, Buckley & Steele (2002) conclude

that there is no good evidence that group size changed during the Pleistocene period

(from 1.6 million to 10,000 years ago), and that there is little to no direct evidence at all

from earlier times. Making inferences from the fairly sparse archaeological evidence on

group structure, a more subtle phenomenon, is likely to be even more fraught.

As a final, (semi-)positive interpretation, it could be concluded from these simulation

results that a bias for the acquisition of vocabulary did not evolve under natural selection

for communication in hominid populations, but a bias for the acquisition of structured

communication did. This possibility will be investigated in Chapter 6. We should, how-

ever, remain sceptical — we would expect the logical point that there is no advantage

to learning if there is nothing interesting to learn to pertain regardless of the degree of

structure of the object of learning.

4.5.8.2 The negative interpretation

The contrasting position would be to interpret the results in this Chapter as indicating

that the human capacity for vocabulary acquisition, and perhaps by extension language
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acquisition, did not evolve under natural selection for communication. This would mean

that this capacity was initially not language-specific, although subsequent modifications

may have refined the scope of the application of the bias.

How then should this learning bias in humans be explained? A first possibility is that this

piece of cognitive apparatus is an exapted trait — the learning bias evolved under reliable

selection pressure for some other task, and was later reappropriated for the acquisition

of communication systems. A slight modification of this theory would be that it evolved

initially for some general function, all the while being incidentally applied to the acqui-

sition of vocabulary. The cultural construction of effective communication systems got

underway, at which point the bias was selected directly for the communicative payoff it

offered.

The main problem with these accounts is that it is not clear what the original function

of the learning bias was — what other learning tasks require a one-to-one bias? As

discussed in Chapter 1, some theories of the evolution language have suggested that the

capacity for tool use and language are intertwined. It could be argued that the explosion in

specialisation in tool function which occurred towards the end of the Paleolithic period

(approximately 40,000 years ago) may have reflected a new bias in favour of one-to-

one mappings between functions (meanings?) and forms (signals?). However, this is

wildly speculative. An alternative, more plausible possibility is that the one-to-one bias

was initially a side-effect of the particular method of learning which was selected in

the population, for general or specific unknown purposes — the one-to-one bias was a

spandrel of the selected learning mechanism.

An interesting variation on this possibility is that the one-to-one bias is a consequence of

the evolution of a sophisticated theory of mind, an understanding of other individuals as

intentional agents. Tomasello (e.g. Tomasello (1997) and Tomasello (1999)) argues that

the human capacity for this type of mental gymnastics is uniquely sophisticated among

the primates. Tomasello argues that this cognitive capacity could have evolved under an

array of selection pressures, including selection for communication, cultural learning in

general, cooperation and tool use.

How would this understanding of others as intentional agents lead to a learning bias in

favour of the acquisition of one-to-one mappings between meanings and signals? Clark

(1990) and Bloom & Markson (1998) present the vocabulary acquisition biases of hu-

mans in essentially pragmatic terms — children understand the nature of communicative

acts, which is basically to draw their attention to particular items, and infer from that

understanding that ambiguity (introduced by synonymy or homonymy) is undesirable. I
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have tended to shy away from this interpretation here, preferring to discuss learning bias

as a consequence of weight-changing procedures. However, the two interpretations are

roughly equivalent for my purposes — a one-to-one bias should either be imposed on the

learning act itself (as I have it), or on the process by which the learner deduces the object

which is being referred to (as Bloom & Markson (1998) have it). My account has the

advantage of extending, as will be discussed in Chapter 5, to the evolution of structured

communication, whereas Bloom & Markson see their account as being restricted to lex-

ical learning. Bloom & Markson’s (1998) account has the advantage that two processes

which are distinct under my model (identifying the meaning of an utterance and learning

with a one-to-one bias) are shown to be aspects of a single cognitive process.

4.6 Summary of the Chapter

At the beginning of this Chapter I briefly outlined approaches to modelling genetic trans-

mission, and discussed some of the issues involved in applying such models to the inves-

tigation of the evolution of innate signalling systems. My primary concern, however, was

to introduce the dual transmission model, which unifies models of biological and cul-

tural evolution. The dual transmission model forms the basis of the Evolutionary Iterated

Learning Model.

I then outlined two EILMs, based on extensions of the feedforward network and asso-

ciative network ILMs discussed in Chapter 3. These EILMs allow us to investigate the

interactions between the biological evolution of learning bias and the cultural evolution

of communication systems acquired using this biased learning apparatus.

In the feedforward network EILM, there was found to be little significant interaction —

the learning bias associated with the imitator or obverter network architectures proved to

be the decisive factor in determining the behaviour of populations in the EILM. In the as-

sociative network EILM, the picture was more complex. One-to-one learning biases can

evolve under natural selection pressure for communicative success. However, the evolu-

tion of such biases was dependent on an initial period of genetic drift, due to the lack of

an immediate benefit to individuals with the appropriate learning bias. This dependence

on genetic drift can be reduced by speeding up cultural convergence within populations,

either by increasing the amount of learning each individual does or by introducing spatial

organisation and effectively dividing a single population up into several smaller subpop-

ulations. However, the point remains that there is no immediate benefit to being biased

to acquire an optimal communication system in a non-communicating population.
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This result has implications for our understanding of the evolution of vocabulary-learning

biases in human populations. We could take the simulation results as indicative of the

conditions under which such a bias evolved in hominid populations. The alternative,

possibly stronger view, is to conclude that these learning biases did not evolve directly

for the purpose of communication — human vocabulary learning biases are a spandrel,

or an exapted trait.
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CHAPTER 5

The cultural evolution of compositionality

In Chapter 3 I described an investigation into the properties of a learning bias required to

construct an optimal vocabulary system, and equated these properties with learning bi-

ases of humans. This investigation was carried out under the assumption that the human

learning biases evolved under natural selection for communication. However, the re-

sults outlined in Chapter 4 forced a re-evaluation of this position — such learning biases

are unlikely to evolve through natural selection for communication, due to the time-lag

between the emergence of an appropriate bias and a communicative payoff to those indi-

viduals possessing it.

In this Chapter I will pursue a similar route to that taken in Chapter 3, investigating

the conditions under which compositional language can emerge through purely cultural

processes, and attempting to draw analogies between these conditions and the factors at

play in human language acquisition. I will return to the issue of the evolution of the

learning biases necessary to support compositional communication in Chapter 6, while

for the meantime remaining sceptical as to whether these biases are communication-

specific.

The review of models of the cultural evolution of linguistic structure carried out in Sec-

tion 5.1 highlights three possible factors impacting on linguistic structure: the severity

of the transmission bottleneck, the biases of language learners and the degree of struc-

ture shared by communicatively-relevant situations. In Section 5.2 an Iterated Learning

Model is presented, based on an extension of the associative network model outlined in

Chapter 3, which is designed to shed light on these issues. In Section 5.3 the impact of

transmission bottleneck and environment structure on emergent communication systems

is investigated. The results outlined in this Section broadly support the conclusions of

other models — a transmission bottleneck leads to a pressure for generalisation, and the
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advantage of compositionality is at a maximum when the environment is structured. In

Section 5.4 I conduct a thorough examination of the learning biases required to support

compositional language in this model. A bias in favour of one-to-one mappings between

elements of meaning and elements of signal is found to be key, in combination with

a preference for exploiting internally-compositional representations. Similar biases are

present in several other ILMs dealing with the evolution of linguistic structure. Finally,

in Section 5.6, I argue that human language learners are also characterised by this type

of bias.

5.1 Models of the cultural evolution of linguistic structure

In Chapter 2, Section 2.3.6, I outlined models by Kirby (Kirby 2002) and Batali (Batali

2002) which demonstrated that compositional and recursive syntax can emerge from

holistic, non-recursive communication through purely cultural processes. Both authors

attribute this emergent linguistic structure to the bottleneck on cultural transmission,

which forces language to be generalisable.

Armed with this basic result, we might ask two further questions. Firstly, is the trans-

mission bottleneck alone sufficient to lead to the emergence of compositional language,

or are there some particular learner biases which must also be in place? Secondly, how

do changes in the severity of the bottleneck impact on the structure of the evolving lan-

guages? In Sections 5.1.1 and 5.1.2 below I present other Expression/Induction models

which shed some light on these two issues. Finally, in Section 5.1.3 I describe a model

by Brighton which introduces another factor which impacts on the cultural evolution of

compositionality — the structure of the meaning space.

5.1.1 Varying the learner model

No direct within-model manipulation of learner biases have been carried out. However,

a cross-model comparison yields some insight into the types of learning biases required

to support the cultural evolution of linguistic structure. Kirby and Batali’s initial findings

have been replicated both with connectionist and symbolic models of learners.

Kirby & Hurford (2002) present an ILM based around a feedforward neural network

model. Their network maps from input signals to output meanings. Meanings and sig-

nals are modelled by binary patterns of activation over output and input nodes in the

network. Individuals observe meaning-signal pairs and, based on this observed produc-

tion behaviour, acquire their reception competence, which in turn determines their own
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production competence. This is therefore the classic obverter neural network paradigm.

Production and reception in the network proceed by processes which are essentially iden-

tical to those described for obverter networks in Chapter 3.

Kirby & Hurford report that, given a certain level of bottleneck on cultural transmission

(as discussed in the next Section), perfectly compositional systems emerge, where the

value of a particular bit in the meaning is expressed by the value of a particular bit of the

signal. Their results support the earlier finding that a bottleneck on cultural transmission

leads to the emergence of a compositional mapping between meanings and signals, and

demonstrate that this phenomenon is not specific to the symbolic models used by Kirby

and Batali.

Hare & Elman (1995) also use a feedforward network model of a learner in an early ILM

dealing with morphological change. However, Hare & Elman’s network follows the imi-

tator architecture, and as discussed in Chapter 3, Section 3.5.3, this network architecture,

with the associated many-to-one bias, probably leads to the lossof linguistic structure.

The comparison of this result with that of Kirby & Hurford (2002) demonstrates that the

differences in the learning biases associated with the obverter and imitator networks may

be significant when considering the cultural evolution of linguistic structure.

Hurford (2000) describes a symbolic model of a learner which is based on Kirby’s (2002)

context free grammar-inducing agent, but has a rather stronger bias towards composi-

tionality. The main difference between Kirby’s model and Hurford’s is that, in the latter,

structural generalisations can be formed on the basis of singleexposures to structured

meaning signal pairs. In Kirby’s model, several such exposures are required. Hurford’s

results support Kirby’s findings on the impact of the transmission bottleneck on linguistic

structure. This is perhaps not surprising, given the strengthening of the agents’ induc-

tive bias. However, Hurford also experimentally varies the frequency with which agents

apply their strong inductive bias — rather than making structural generalisations with

every observation, learners in the modified experiment make such generalisations only

25% of the time, with most learning episodes simply involving memorisation. Under

these circumstances, Hurford finds that the population’s language, based on an analysis

of produced meaning-signal pairs, appears to be completely compositional. However,

examination of the agents’ internal rule systems reveals that individual agents are in fact

producing utterances in a partially compositional, partially holistic fashion. While this

type of experimental variation of learning bias is desirable, it is not clear that the infre-

quent application of a strong, appropriate bias is the same as the constant application of

a weak or inappropriate bias.
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5.1.2 Varying the transmission bottleneck

Kirby & Hurford (2002) use their obverter network ILM to investigate the impact of

various severities of transmission bottleneck. When the bottleneck is very severe (20

exposures to utterances produced for randomly selected meanings from the space of 256

possible meanings) no stable systems emerge. When there is virtually no bottleneck

(2000 exposures) stable holistic vocabularies emerge. However, when the bottleneck is

at some intermediate level (50 exposures) perfectly compositional systems emerge. The

severity of transmission bottleneck clearly plays a role in shaping the emergent linguistic

system in this model.

Both Kirby (2001) (using a model of a learner similar to that described in Kirby (2002))

and Hurford (2000) (discussed above) present results which indirectly indicate the ef-

fects of bottleneck severity on linguistic evolution. In both these models, certain mean-

ings occur with disproportionately high frequency. Variation in frequency of particular

meanings is equivalent to varying the bottleneck on the cultural transmission of different

meaning-signal pairs. Given a fixed number of exposures, assuming uniform frequency

distributions over meanings, we can calculate the probability of a learner observing a par-

ticular meaning-signal pair, with this probability being equal for all meaning-form pairs.

However, if one meaning is disproportionately frequent then learners are more likely to

observe an utterance being produced for that meaning — the frequent meaning is more

likely to pass through the bottleneck than the less frequent meanings. Kirby (2001) and

Hurford (2000) both report that more frequent meanings are more likely to be expressed

in a non-compositional manner. This suggests that we should expect an increase in bot-

tleneck size to lead to a reduced pressure for compositionality.

Finally, Brighton (2002) presents results for several levels of bottleneck severity. I will

discuss his results in the next Section.

5.1.3 Varying the structure of the meaning space

A recent paper by Henry Brighton (Brighton 2002) addresses the impact of transmission

bottleneck and meaning space structure on the relative stability of holistic and compo-

sitional language. Brighton adopts a mathematical modelling approach, and restricts

himself to examining stability, rather than a full-blown emergence model.

Brighton models meanings as points in an F -dimensional space where each dimension

has V discrete values. F and V therefore define the structure of a meaning space — high

F and V give a highly structured meaning space, with the possibility of a large number of
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fine-grained semantic distinctions, whereas low F and V give a meaning space capable

of only a few distinctions.

Brighton compares the stability of perfectly compositional and completely holistic com-

munication systems over a single generation of cultural transmission. This allows us

to predict the likely outcome of a multi-iteration ILM — over cultural time, highly sta-

ble systems will persist whereas unstable systems will disappear or change radically.

Brighton varies both the structure of the meaning space and the severity of the trans-

mission bottleneck, to investigate how these factors impact on the relative stability of

compositional and holistic language.

Brighton assumes the strongest possible capacity to generalise. A learner faced with a

completely holistic language cannot make any generalisations — by definition, in a holis-

tic language there is no way to reconstruct a signal which you have not seen paired with

a meaning, due to the arbitrary associations between meanings and signals. A learner

of a holistic language simply has to memorise observed meaning-signal mappings. In

contrast, a learner confronted with a perfectly compositional can generalise, due to the

structure in the system of meaning-signal mappings. Brighton assumes that a learner who

has observed some subset of a perfectly compositional language will be able to express a

meaning if it has observed all the feature values that make up that meaning, paired with

signal substrings — in other words, if they know how to express each part of the meaning

individually, they know how to express the whole meaning in a compositional manner.

If an individual (who has either memorised some portion of a holistic language or learned

from some subset of a compositional language) is called upon to express a meaning

they have not observed being expressed and cannot generalise to, they have two options.

Firstly, they could simply not express. Alternatively, they could produce some random

signal. In either case, any association between meaning and signal that was present in

the previous individual’s hypothesis will be lost — part of the meaning-signal mapping

will change. A shortfall in expressivity therefore results in instability over cultural time.

Brighton uses mathematical techniques to compare relative expressivity (and therefore

relative stability) of a learner exposed to some subset of a holistic or compositional lan-

guage. Where these two languages have equal stability we should expect them to emerge

with equal frequency over cultural time. When compositional languages are more stable

than holistic languages we should expect them to emerge more frequently, and persist for

longer, than holistic languages, and vice versa.

Brighton reports two main results:
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1. The stability advantage of compositional language is at a maximum when learners

only observe a small subset of the language of their cultural parents. Holistic lan-

guages will not persist over time when the bottleneck on cultural transmission is

tight. In contrast, compositional languages are generalisable, due to their structure,

and remain relatively stable even when a learner only observes a small subset of

the language of the previous generation.

2. A large stability advantage for compositional language only occurs when the mean-

ing space exhibits a certain degree of structure, suggesting that structure in the

conceptual space of language learners is a requirement for the evolution of compo-

sitionality. In such meaning spaces, distinct meanings tend to share feature values.

A compositional system in such a meaning space will be highly generalisable —

the signal associated with a meaning can be deduced from observation of other

meanings paired with signals, due to the shared feature values. However, if the

meaning space is too highly structured the compositional language has little stabil-

ity advantage, as few distinct meanings will share feature values and the advantage

of generalisation is lost.

This first result is a verification of the results reported by Kirby, Batali and others, out-

lined in the previous Section. The second result is a novel one, and indicates a possible

precondition for the cultural evolution of compositionality.

5.2 An Iterated Learning Model

Where are we now, based on the review? We have seen that learning bias, bottleneck, and

meaning-space structure can all impact on the cultural evolution of compositionality. The

ILM outlined in this Section is an extension of the associative network ILM described in

Chapter 3 and is designed to allow investigation into the importance and interaction of

these three factors. This ILM is also described in Smith et al. (forthcoming) and Smith

et al. (submitted).

5.2.1 Languages and communication

The model of a structured language is based on the model of unstructured communica-

tion systems outlined in Chapter 3, Section 3.2. A language L consists of a production

function p (m), mapping from meanings m to signals s, and a reception function r (s),

mapping from signals s to meanings m. m and s are selected such that m 2 M and

s 2 S where M =
n
m1; m2 : : :mjMj

o
and S =

n
s1; s2 : : : sjSj

o
.
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In the model of unstructured communication systems each m 2 M and each s 2 S

is a distinct atomic unit. In the model of structured languages, each m 2 M is a vector

drawn from an F -dimensional space, where each dimension has V possible values. More

formally, F and V define a meaning-space M:

M = f(f1 f2 : : : fF ) : 1 � fi � V and 1 � i � Fg

We can therefore define a distance measure between two meaningsmi andmj ,HD (mi; mj).

This is simply the Hamming distance between the two meanings, the number of features

for which mi and mj have different values.

In the simulations outlined in Chapters 3 and 4, the set of meanings agents were required

to produce utterances for was equivalent to the meaning space M. However, this need

not be the case. I will introduce a new term, the environment, E , appealing to the notion

that the agents’ external environment provides the situations which they are required to

produce signals for. The meanings in E constitute a subsetof M.

Each signal s 2 S is a string of characters of length 1 to l, l � lmax, where the characters

are drawn from the alphabet �. lmax and � define a signal space S:

S = fw1w2 : : : wl : wi 2 � and 1 � l � lmaxg

We can define a distance measure between two signals si and sj , LD (si; sj). LD is

the Levenstein (string edit) distance between those two signals and gives the minimum

number of deletions, insertions or substitutions required to convert s i into sj .

In previous Chapters I defined measures of communicative accuracy, and measured the

change in communicative accuracy within populations over time. However, in the models

outlined in this chapter I will consider the case where the population at each generation

consists of a single individual. The concept of communication therefore becomes essen-

tially meaningless, given that individuals have no-one to communicate with. It would

be possible to measure inter-generational communicative accuracy by similar techniques

to those used to measure intra-population communicative accuracy in previous Chapters.

However, I will focus instead on the evolution of linguistic structure, and postpone the

consideration of communication until Chapter 6, where the model outlined in this Chap-

ter is extended to deal with larger populations.
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5.2.2 Communicative agents

Communicative agents in the model must be capable of representing such communication

systems, modelling production and reception functions of the type outlined above and

modifying their behaviour based on observations of systems of the type outlined above.

The associative network model outlined in Chapter 3 is used as a basis for the model

of a communicative agent. The basic associative network model is altered to allow the

manipulation of structured meanings and signals. The most fundamental changes are in

the processes of production and reception, while the process of learning remains largely

unchanged.

5.2.2.1 Representation

Agents are modelled using networks consisting of two sets of nodes NM and NS and

a set of weighted bidirectional connections W , which connect every node in NM with

every node in NS .

What do these nodes represent? In the associative network outlined in Chapter 3, mean-

ings and signals are discrete atomic items, therefore each node represented a particular

meaning or signal. However, in the case of structured languages each distinct meaning

or signal has structure, some of which may be shared with other meanings or signals.

In order to represent systems of this type, it is necessary to introduce two new pieces of

terminology — the notion of componentsof meanings and signals, and analysesof mean-

ings and signals. I will define components now, and postpone the definition of analyses

until the section on production and reception.

As summarised above, each meaning is a vector in F -dimensional space where each

dimension has V values. Componentsof meanings are (possibly partially specified) vec-

tors, with each feature of the component either having the same value as the meaning, or

a wildcard. More formally, if cm is a component of meaning m, then the value of the jth

feature of cm is:

cm [j] =

8<
: m [j] for specified features

� for unspecified features

where � represents a wildcard. Similarly, components of signals of length l are (possibly

partially specified) strings of length l. I impose the additional constraint that a component

must have a minimum of one specified position. For example, the components of the

meaning represented by the vector (1 2) are (1 2), (1 �) and (� 2), but not (1 3) (value

of feature 2 doesn’ t match) or (� �) (no specified features). Similarly, the components of

202



Sa Sb Saa Sab Sba Sbb Sa� S�a Sb� S�b

M
(1
1
)

M
(1
2
)

M
(2
1
)

M
(2
2
)

M
(1
�
)

M
(�
1
)

M
(2
�
)

M
(�
2
)

Figure 5.1: A network where F = V = 2, lmax = 2, � = fa; bg. Large filled circles represent
nodes with activation of 1, large empty circles represent nodes with activation of 0. The pattern of
activation over NM therefore represents the meaning components (2 1), (2 �) and (� 1), which
all happen to be components of the meaning (2 1). The pattern of activation over NS represents
the signal components a, bb and b�.

the signal represented by the string bd are bd, b� and �d, but not e� (first character doesn’ t

match), �� (no specified characters) or a (not of correct length).

Each node Mi in NM represents a component of a meaning, and there is a single node

in NM for each component of every possible meaning. Similarly, each node Si in NS

represents a component of a signal and there is a single node in NS for each component

of every possible signal. In order to represent the meaning component cm the activation,

aMcm , of node Mcm is set to one. In order to represent the signal component cs, aScs is

set to 1. This representational scheme is illustrated in Figure 5.1. Note that, unlike in the

associative network model outlined in Chapter 3, there is no restriction that only a single

node in NM and NS can be active.

5.2.2.2 Learning

During a learning event, a learner observes a meaning-signal pair hm; si. The activations

of the nodes corresponding to all possible components of m and all possible components

of s are set to 1. The activations of all other nodes are set to 0. The weights of the
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connections inW are adjusted according to some weight-update rule W where, as before,

W is specified as a 4-tuple (� �  Æ), where �, �,  and Æ take integer values in the range

[�1; 1]. The storage process is illustrated in Figure 5.2.

5.2.2.3 Production and reception

An analysisof a meaning or signal is an ordered set of components which fully specifies

that meaning or signal. More formally, an analysis of a meaning m is a set of components

fc1m; c
2
m; : : : c

n
mg that satisfies two conditions:

1. If cim [j] = �, ckm [j] 6= � for some choice of k 6= i

2. If cim [j] 6= �, ckm [j] = � for any choice of k 6= i

The first condition states that an analysis may not consist of a set of components which

all leave a particular feature unspecified — an analysis fully specifies a meaning. The

second states that an analysis may not consist of a set of components where more than

one component specifies the value of a particular feature — analyses do not contain

redundant components. Valid analyses of signals are similarly defined.

During the process of producing utterances, agents are prompted with a meaning and

required to produce a meaning-signal pair. Production proceeds via a winner-take-all

process. In order to retrieve a signal si 2 S based on an input meaning mi 2 M

every possible signal sj 2 S is evaluated with respect to mi. For each of these possible

meaning-signal pairs hmi; sji, every possible analysis of mi is evaluated with respect to

every possible analysis of sj . The evaluation of a meaning analysis-signal analysis pair

yields a score g. The meaning-signal pair which yields the analysis pair with the highest

g is returned as the network’s production for the given meaning. The score for a meaning

analysis (which consists of a set of meaning components) paired with a signal analysis (a

set of signal components) is given by:

g
�n
c1m; c

2
m : : : cnm

o
;
n
c1s; c

2
s : : : c

n
s

o�
=

nX
i=1

!
�
cim
�
� wcim;c

i
s

where n is the number of components in the analysis of meaning and signal, wcim;c
i
s

gives

the weight of the connection between the nodes representing the ith component of the

meaning analysis and the ith component of the signal analysis and ! (x) is a weight-

ing function which gives the non-wildcard proportion of x. The production process is

illustrated in Figure 5.3.
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Figure 5.2: Learning of the meaning-signal pair h(2 1) ; bai using the weight-update rule W = (a b c d). In (a), the nodes in NM and

NS have been set to the patterns of activation representing the components of (2 1) and ba. All connections have weight 0. In (b) the result
of the application of the learning process is shown — all connections now have weights of a, b, c or d, depending on the activations of the
nodes they connect.
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Figure 5.3: Evaluation of two meaning analysis-signal analysis pairs, encoded as patterns of activation over NM . In (a) the pair

hf(2 �) ; (� 1)g ; fb�; �agi is evaluated by taking the connection weights wM(2�);Sb� and wM(�1);S�a (highlighted in grey) and calculating g.

g (f(2�) ; (�1)g ; fb�; �ag) = 1. In (b) this process is repeated for the pair hf(2 �) ; (� 1)g ; f�a; b�gi, yielding g (f(2�) ; (�1)g ; f�a; b�g) =

1:5.

206



(2 1 3)

(2 1 3)

(b)
(2 1 3)

(2 * *) (* 1 3)

(c)
(2 1 3)

(2 * *) (* 1 *) (* * 3)
* * c

(d)
(2 1 3)

(2 * *) (* 1 *) (* * 3)
b * * * * cb a c b * c * a * * a *

(a)

b * * * a *

Figure 5.4: Parse trees corresponding to four of the possible 169 analyses pairs of the meaning-
signal pair h(2 1 3) ; baci. (a) gives the parse tree for the analysis pair hf(2 1 3)g ; fbacgi. There
is a single node in the tree, which is labelled with the single component from both meaning and
signal analysis. (b) gives the parse tree for the analysis pair hf(2 � �) ; (� 1 3)g ; fb � c; �a�gi.
The left daughter node is labelled with the 1st component of both analyses, and the right
daughter node is labelled with the 2nd component of both analyses. (c) and (d) give
the parse trees for the analyses pairs hf(2 � �) ; (� 1 �) ; (� � 3)g ; f� � c; �a�; b � �gi and
hf(2 � �) ; (� 1 �) ; (� � 3)g ; f� � c; b � �; �a�gi respectively. These differ in the order of the
second and third components of the signal, which leads to different interpretations of the seman-
tics of string-initial b and medial a.

How is this process to be interpreted? A meaning analysis-signal analysis pair can be

interpreted as a parse tree where each terminal node of the tree is labelled with both a

component of meaning and a component of signal. The ith node of the tree is labelled by

the ith component of the meaning analysis and the ith component of the signal analysis.

This yields the fairly natural interpretation that the ith component of the meaning analysis

is conveyed by the ith component of the signal analysis. This is illustrated in Figure 5.4.

Given this interpretation, we can justify the simplifying assumption implicit in the g mea-

sure above that meaning analysis-signal analysis pairs consist of a meaning analysis and a

signal analysis with the same number of components. We can make a further simplifying

assumption during production and reception that, in the case where two or more meaning

analysis-signal analysis pairs would produce equivalent trees, only one is evaluated. For

example, hf(1 �) ; (� 2)g ; fa�; �bgi and hf(� 2) ; (1 �)g ; f�b; a�; gi produce equivalent

trees, therefore there is no need to evaluate both.

5.2.3 The Iterated Learning Model

In previous Chapters, I presented ILMs with fairly large population sizes (100). Here

we will look at the simplest possible case, where the population consists of a single

individual at any one time. That individual produces some observable behaviour and

then is removed. This observable behaviour is then observed and learned from by a new

individual, and the process iterates.

Initialisation Create a population of one agent using the weight-update rule W and

possessing communication system L.
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Iteration

1. Generate a set of meaning-signal pairs for the single agent in the population by

applying the network production process to every meaning m 2 E .

2. Remove the current agent.

3. Create a new population consisting of a single agent with connection weights of 0

who uses weight-update rule W .

4. The new agent receives e exposures to the observable behaviour produced by the

preceding agent. During each of these e exposures the new agent observes a sin-

gle meaning-signal pairand updates their connection weights according to the

observed meaning-signal pair and their weight-update rule W .

5. Return to 1.

One key difference should be noted between this ILM and the ILMs outlined in Chapter

3. In previous ILMs each of the e exposures consisted of the observation of the complete

set of meaning-signal pairs produced by a particular agent — if e = 3 then the learner

observes three completesets of meaning-signal pairs. In this ILM, each of the e exposures

consists of the singleobservation of a singlemeaning-signal pair. There is therefore a

potential bottleneck (as defined by Kirby) on cultural transmission — learners are not

guaranteed to make observations of every meaning in the environment, and therefore

may subsequently be required to produce a signal for a meaning which they themselves

have not observed paired with a signal. We can calculate the expected coveragefor a

given E and e, c (E ; e) (Equation taken from Brighton (2002)):

c (E ; e) = 1�

 
1�

1

jEj

!e

c (E ; e) gives the expected proportion of the meanings in E that will be observed given

e random selections of meanings from E , and therefore the severity of the bottleneck

on cultural transmission. As e ! 1, c ! 1 and the bottleneck virtually disappears.

However, there will still be a (possibly remote) chance that an individual will be called

upon to produce a meaning for a signal that they themselves have not observed. It is

impossible to remove the bottleneck completely by increasing e. I will therefore replace

step 4 in the iteration algorithm given above with one of two options:

4 (no bottleneck) The new agent receives e = jEj exposures to the observable behaviour

produced by the preceding agent. During each of these exposures the new agent

observes a single meaning-signal pair and updates their connection weights ac-

cording to the observed meaning-signal pair and their weight-update rule W . Each
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m 2 E is selected in turn, therefore the learner observes the full set of observable

behaviour produced by the preceding agent.

4 (bottleneck) The new agent receives e exposures to the observable behaviour pro-

duced by the preceding agent. During each of these exposures the new agent ob-

serves a single, randomly selected, meaning-signal pair and updates their connec-

tion weights according to the observed meaning-signal pair and their weight-update

rule W . The agent will therefore observe approximately jEj �c (E ; e) distinct mean-

ings, paired with their corresponding signals.

5.2.4 Environments

As discussed in Section 5.2.1, a distinction has been made between the meaning space

M and the environment E , the set of meanings for which agents are required to produce

signals. In Brighton’s model, described in Section 5.1, meanings in the environment are

selected at random from the meaning space — E is random subset of M. However,

it is not necessarily the case that meanings in the environment should be selected at

random from the space of possible meanings. I will introduce a notion of environment

structure, in contrast to Brighton’s notion of meaning space structure. In an unstructured

environment, meanings in E are selected at random fromM. In a structuredenvironment,

meanings in the environment are drawn from a hypercube subset of the space of possible

meanings.

In addition to this notion of environment structure, we can define a measure of environ-

ment density. This is simply the proportion of the space of possible meanings which are

contained in E , and can be defined as p (E):

p (E) =
jEj

jMj
=
jEj

V F

Low p corresponds to low density, and high p corresponds to high density.

Figure 5.5 shows three unstructured environments, of various densities. Figure 5.6 shows

three structured environments, of various densities1.
1Recall that values within a feature are unorganised. Therefore, structured environments are not simply

smallerthan unstructured environments — each structured environment could be rearranged so as to appear
to more fully fill the meaning space. It is the degree of sharing of feature values which defines environment
structure, not apparent closeness.
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(a) (b) (c) (d)

Figure 5.5: Unstructured environments. F and V define a meaning space M. For F = 3 and
V = 5 the meaning space can be visualised as a cube, as in (a). The three dimensions of the cube
each correspond to the three feature values. The five subdivisions on each dimension correspond
to the five values for each feature. Each point in this cube corresponds to a particular meaning.
(b) is a sparse, unstructured environment (p = 0:096), where the meanings in E are highlighted in
grey. (c) is a medium density, unstructured environment (p = 0:248). (d) is a dense, unstructured
environment (p = 0:504).

(a) (b) (c) (d)

Figure 5.6: Structured environments. (a) is the meaning space. (b) is a sparse, structured en-
vironment (p = 0:096). (c) is a medium density, structured environment (p = 0:248). (d) is a
dense, structured environment (p = 0:504).

5.2.5 Measuring compositionality

In Chapter 1 compositionality, one of the fundamental design features of language, was

defined in fairly loose, impressionistic terms — in a compositional language the meaning

of an expression is a function of the meanings of its parts and the way in which they are

combined. In contrast, in a non-compositional (or holistic) system, the meaning of an

expression is not dependent on the meaning of its parts. In Chapter 2 this impressionistic

definition was applied to the computational models of Kirby and Batali, who demonstrate

that compositional languages can emerge through cultural processes — in the final, stable

emergent systems in these models, the meaning of expressions depends on the meanings

of subparts of those expressions (syntactic subtrees in Kirby’s model, sub-exemplars in

Batali’s model) and the way in which those subparts are combined. I will define two

measures of compositionality here, both drawing on slightly different interpretations of

the informal definition given above.

Compositionality is a property that can be observed in externalized language, without

knowing the language-user internal manipulations which lead to the produced language.

In this sense, a compositional language is a mapping between meanings and signals
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which preserves neighbourhood relationships — neighbouring meanings will share struc-

ture, and that shared structure in meaning space will map to shared structure in the signal

space. For example, the sentences John walkedand Mary walkedhave parts of an un-

derlying semantic representation in common (the notion of someone having carried out

the act of walking at some point in the past) and will be near one another in semantic

representational space. This shared semantic structure leads to shared signal structure

(the inflected verb walked) — the relationship between the two sentences in semantic

and signal space is preserved by the compositional mapping from meanings to signals.

A holistic language is one which does not preserve such relationships — as the structure

of signals does not reflect the structure of the underlying meaning, shared structure in

meaning space will not necessarily result in shared signal structure.

The external compositionality measure which I describe here captures this notion, and

is based on the measure developed in Brighton (2000) for Euclidean meaning and sig-

nal spaces. The measure of external compositionality is simply the degree of correlation

between the distance between pairs of meanings and the distance between the corre-

sponding pairs of signals. If shared meaning structure leads to shared signal structure

then there will be a positive correlation between the distance between pairs of meanings

and the distance between the corresponding pairs of signals. If shared structure does not

necessarily lead to shared signal structure then there will be no correlation. This mea-

surement will be referred to as external compositionality, or e-compositionality, given

that it refers to the agent-external, observable behaviour resulting from production.

In order to evaluate the e-compositionality of an agent’s communication system, the pro-

duction process is applied to every m 2 E to produce the setO, the observable meaning-

signal pairs produced by that agent. In order to measure the degree of external composi-

tionality we measure the degree to which the distances between all the possible pairs of

meanings correlates with the distances between their associated pairs of signals. More

formally, we first take all possible pairs of meanings hmi; mj 6=ii, where mi 2 E and

mj 2 E . We then find the signals these meanings map to in the set of observable meaning-

signal pairs O, hsi; sji. This will give us a set of n meaning-meaning pairs and a set of n

signal-signal pairs. Let �mn = HD (mi; mj) be the Hamming distance between the two

meanings in the nth pair of meanings and �sn = LD (si; sj) be the Levenstein distance

between the nth pair of signals. Furthermore, let �m =
P

n

i=1
�mn

n
be the average inter-

meaning Hamming distance and �s =
P

n

i=1
�sn

n
be the average inter-signal Levenstein

distance. We can then compute the Pearson correlation coefficient for the distance pairs

hmn; sni, which gives the e-compositionality of a set of observable behaviour, E (O):
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E (O) =

Pn
i=1

�
�mi ��m

� �
�si ��s

�
s�Pn

i=1

�
�mi ��m

�2Pn
i=1

�
�si ��s

�2�

E (O) � 1 for a compositional system and E (O) � 0 for a holistic system.

The e-compositionality measure makes no reference to the agent-internal representations

which lead to the observable behaviour that an agent produces. This is something of a

shortcoming, as can be illustrated by two simple thought experiments. Firstly, imagine a

speaker of a language, say English, who produces what appear to be entirely grammatical,

normal sentences of English. However, under a suitably sophisticated set of experimen-

tal conditions it is revealed that this speaker of English has in fact simply memorised

hundreds of thousands of unanalysed sentences of English, paired with their meanings,

in a massive lexicon. While from their external behaviour we might conclude that the

meaning of an expression for this speaker was a function of the meaning of its parts,

this would not be the case — for this speaker, complete meanings are stored paired with

complete sentences, and those sentences as a whole stand for the whole meaning. The

imaginary speaker is in fact producing English as a holistic system, with no real, internal

compositional knowledge. It has been suggested (Wray & Perkins 2000) that much of

language used for social interaction is in fact processed in this way. However, it would

be undesirable to say that our imaginary speaker possesses a compositional knowledge of

English, even if their external behaviour appears to comply to a compositional analysis.

As a second thought experiment, imagine a speaker who has a thorough knowledge of

several hundred thousand languages. Each time this individual speaks, they choose a

language from their massive arsenal at random, and produce their utterance in that lan-

guage. Internally, this imaginary speaker is behaving compositionality for each utterance

they produce — just like a native speaker of whichever language they happen to be using,

the meaning of their utterance is a function of the meaning of the parts of that utterance

and the way those parts are combined. However, to an external observer, their language

would appear to be non-compositional — even closely related meanings would be com-

municated by radically different expressions, with no obvious structure-preserving map-

ping between meanings and signals.

Our second measure of compositionality, which I will term internal compositionality,

or i-compositionality, addresses these deficiencies of the e-compositionality measure by
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quantifying the degree to which utterances are constructed by the combination of agent-

internal representations.

During production or reception the set of possible meaning analysis-signal analysis pairs

are evaluated, with the meaning-signal pair which yields the analysis pair with the highest

g being returned as the network’s production or reception behaviour. In order to evaluate

the i-compositionality of an agent’s communication system, the production process is

applied to every m 2 E to produce the set A, the set of meaning analysis-signal analysis

pairs which yield the highest g for each meaning. The i-compositionality of a set of

meaning analysis-signal analysis pairs A, I (A), is:

I (A) =
k=jAjX
k=1

1

jAj
i (Ak)

where i (Ak) is the i-compositionality of the kth meaning analysis-signal analysis pair

ham; asi, and is given by:

i (ham; asi) =
jamj � 1

min (lmax; F )� 1

i (ham; asi) = 0 when the meaning analysis and signal analysis consist of a single com-

ponent, and i (ham; asi) = 1 where each analysis consists of the maximum number of

components, which is constrained by the smaller of the maximum string length and the

dimensionality of the meaning space. I (A) = 0 for an i-holistic mapping, and 1 for a

perfectly i-compositional language.

5.3 The impact of transmission bottleneck and environment structure

I will begin by presenting results for an ILM where every agent uses the weight-update

rule W = (1 � 1 � 1 0). The agents in the initial generation of each ILM have con-

nection weights of 0, and therefore use the maximum entropy system where every mean-

ing analysis-signal analysis pair occurs with equal probability — the initial language

L is random. The meaning space (F = 3 and V = 5) and six environments illus-

trated in Figures 5.5 and 5.6 were used. The signal space is given by lmax = 3, � =

fa; b; c; d; e; f; g; h; i; jg.

5.3.1 Linguistic evolution in the absence of a bottleneck

Runs of the ILM were carried out, using the no-bottleneck variant of step 4 — each

individual observes the full set of observable behaviour produced by the preceding agent.
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Figure 5.7: I-compositionality of initial and final, stable systems in sparse environments, when
there is no bottleneck on cultural transmission. The initial systems are partially i-compositional.
The final systems are less i-compositional, although highly i-compositional systems (circled) do
occur with very low frequency when the environment is structured.

1000 runs were carried out for each of the six environments. Each run was allowed to

proceed to a stable state, where parent and child produce identical observable behaviour.

At this point, in the absence of a bottleneck on cultural transmission, further change is

impossible. Figures 5.7 and 5.8 give the distributions of systems with respect to I (A) and

E (O), for the 1000 runs of the ILM with the sparse unstructured and sparse structured

environments2.

In Figure 5.7, values of I (Ainitial) are distributed around 0.6, while values for I (Afinal)

are typically lower. This is due to the random behaviour of the initial agents — each

meaning analysis-signal analysis pair occurs with equal probability, and given that there

are more multi-component analyses pairs than single-component analyses pairs, the ini-

tial random behaviour scores highly in terms of internal compositionality. The final stable

systems tend to have lower internal compositionality. In structured environments, the i-

compositionality of the final systems tends to be around 0. In unstructured environments,
2The plotting style requires some justification. The measures of i-compositionality and e-

compositionality are real numbers. We are interested in the frequency of systems exhibiting a given degree
of compositionality. Such information is typically conveyed using a histogram or frequency polygon. I
have chosen to use a histogram, given the problems with edge effects arising from using a frequency poly-
gon. Bins of width 0.05 are used for all results plotted here. The y-axis gives relative, rather than absolute
frequency — the relative frequency is simply absolute frequency divided by the absolute frequency of the
most frequent value. The most frequent value therefore has a relative frequency of 1.
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Figure 5.8: E-compositionality of initial and final, stable systems in sparse environments, when
there is no bottleneck on transmission. The initial systems have low e-compositionality. The final
systems are also of low or medium e-compositionality. Highly e-compositional systems (circled)
occur infrequently, and only when the environment is structured.

final i-compositionality tends to be somewhat higher. Highly i-compositional systems

occur very infrequently and only where the environment is structured.

In Figure 5.8, values of E (Oinitial) are distributed around 0, indicating that the initial,

random systems are not highly e-compositional. As with the internal compositionality

measure, the final stable systems tend not to be highly compositional according to the

external measure, with unstructured environments leading to a slightly higher level of

compositionality. Highly e-compositional systems occurring infrequently and only when

the environment is structured.

The i-compositionality measure has the somewhat undesirable property of treating the

random initial behaviour as partially compositional. However, for the stable states the

internal and external measures are equivalent — for the data in Figures 5.7 and 5.8,

there is a high degree of correlation between I (Afinal) and E (Ofinal) (r = 0:842,

p < 0:001). This reflects the fact that agents produce an e-compositional language in an

i-compositional manner, and similarly produce an e-holistic system in an i-holistic man-

ner — i-compositional internal representation leads to e-compositional language. For the

remaining results I will focus on the external compositionality measure, and unless other-

wise indicated, “compositional” will mean “e-compositional” . The internal measure will

be returned to below in Section 5.4.
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Figure 5.9: E-compositionality of initial and final, stable systems in medium density environ-
ments, when there is no bottleneck on transmission. The initial systems and the vast majority of
the final systems have low e-compositionality. Partially e-compositional final systems (circled)
occur with very low frequency, and only when the environment is unstructured.

Figures 5.9 and 5.10 give the distributions of systems with respect to E (O), for 1000

runs of the ILM with the medium and dense environments.

Comparison of Figures 5.8, 5.9 and 5.10 shows that, as environment density increases

the frequency of final non-compositional systems increases. In the sparse environments,

partially compositional systems do occur, and are more frequent in the unstructured en-

vironment. Highly compositional systems occur with very low frequency in the sparse,

structured environment. Partially e-compositional systems occur with very low frequency

in the medium, unstructured environment. In the dense environments all systems are non-

compositional, regardless of the degree of environment structure.

These results suggest three questions. Firstly, why are highly compositional systems so

infrequent? Previous results (e.g. Kirby (2002), Brighton (2002)) lead us to expect that,

in the absence of a bottleneck on cultural transmission, compositional and holistic sys-

tems will be equally stable. Given that the initial random systems are holistic we would

expect these systems to remain stable over time. This is what happens in dense environ-

ments, or medium density, structured environments. The emergence of partially or highly

compositional systems in low density environments, or medium density unstructured en-

vironments, is therefore somewhat surprising, which leads us on to the second and third

questions.
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Figure 5.10: E-compositionality of initial and final, stable systems in dense environments,
when there is no bottleneck on transmission. Both the initial and final systems have low e-
compositionality.

Secondly, why does environment density impact on the compositionality of the emergent

systems? Figure 5.11 plots the values of E (Oinitial) against E (Ofinal) for the simulation

runs in the sparse, structured environment. As can be seen from the Figure, the runs can

be split into three groups:

� runs where E (Oinitial) = E (Ofinal) (group (a) in the Figure).

� runs where E (Oinitial) 6= E (Ofinal), where E (Ofinal) is below 0.9 (group (b) in

the Figure).

� runs where E (Oinitial) 6= E (Ofinal), where E (Ofinal) is close to 1 (group (c) in

the Figure).

All environments exhibit runs falling into groups (a) and (b). Only when the environment

is sparse and structured do group (c) points occur, representing runs which converge on

highly compositional languages. Is E (Ofinal) related to E (Oinitial)? Table 5.1 gives the

mean and standard deviations of the initial values of E (Oinitial), categorised according

to which group they fall into.

As can be seen from the first column of the Table, runs in all environments have a mean

value of E (Oinitial) of approximately 0. However, these initial values are much more

tightly distributed around the mean in the more densely filled environments. The second

column gives the mean E (Oinitial) for simulation runs where E (Oinitial) = E (Ofinal).
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Figure 5.11: Initial e-compositionality against final e-compositionality for runs in the sparse
structured environment. Each point represents a single run. The runs can be separated into three
groups. Points labelled as (a) have the same initial and final e-compositionality. For points la-
belled as (b) the e-compositionality of the initial and final systems is different, but the final system
is not highly e-compositional. Points labelled (c) represent runs where the final language is highly
e-compositional.

Initial e-compositionality by group
Environment all a b c

sp, us � = 0:0013, � = 0:1246 � = �0:0512 � = 0:0160 NA
sp, s � = �0:0029, � = 0:1246 � = �0:0136 � = 0:0536 � = 0:1603
m, us � = �0:0004, � = 0:0470 � = �0:0047 � = 0:0209 NA
m, s � = �0:0011, � = 0:0457 � = �0:0017 � = 0:0306 NA
d, us � = 0:0002, � = 0:0221 � = 0:0002 � = �0:0009 NA
d, s � = �0:0011, � = 0:0232 � = �0:0010 � = �0:0040 NA

Table 5.1: Sensitivity to initial conditions. The table gives the mean (�) and standard deviation
(�) of the e-compositionality of the initial systems in the various environments (sp = sparse, m =
medium, d = dense, us = unstructured, s = structured), broken down by the three groups identified
in Figure 5.11. Standard deviation is given once only, as � for each subgroup is approximately the
same as that for all groups combined. The mean for group c points is higher than that for group b
points, which is generally higher than that for group a points. As environment density increases,
the initial values are clustered more tightly around the mean.
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These are somewhat lower than the overall mean, and are lower than the meanE (Oinitial)

for simulation runs which move away from initial value (excluding the values for the

dense environments, which buck the overall trend). Also, for the group b runs in sparse

and medium environments, the mean value of E (Oinitial) is lower for unstructured envi-

ronments than for structured environments. Finally, the mean E (Oinitial) for simulation

runs which converge on highly compositional languages is higher still.

These results suggest that there is a degree of sensitivity to the compositionality of the ini-

tial, random system. Where this initial mapping exhibits compositional tendencies, yield-

ing E (Oinitial) above the mean, there is an increased likelihood of the system moving,

over iterated learning events, towards more compositional languages. The compositional

tendencies of the initial system spread to other parts of the system over time, resulting

in an increase in compositionality. However, this progression is not guaranteed — not

all simulation runs where E (Oinitial) is above the mean eventually converge on more

compositional systems. For the more densely-filled environments, partially or highly

compositional systems emerge infrequently due to the fact that the initial systems tend

to be clustered more tightly around the non-compositional mean. When the environment

contains few meanings the initial system may, by chance, exhibit some compositional

tendencies. However, when the environment contains a large number of meanings such

tendencies are likely to be drowned out by the majority non-compositional mapping.

Thirdly, why does environment structure impact on the e-compositionality of systems at

the lower densities? This is related to the previous question. At lower densities, as dis-

cussed above, compositional tendencies in the initial system spread, over time, to other

parts of the system. In structured environments, distinct meanings tend to have feature

values in common with a large number of other meanings. In unstructured environments

distinct meanings have feature values in common with few other meanings. If the initial

random system has a tendency to express a given feature value with a certain substring

then this can spread to cover all meanings involving that feature value — the system

becomes consistent with respect to that feature value, which can have knock-on conse-

quences for other values at that feature and other features. In structured environments the

potential for spread of the substring associated with a particular feature value is wider

than is the case in unstructured environments, given that more meanings will share that

feature value. Any initial compositional tendency will therefore spread more widely in

structured environments, with more possible follow-on consequences, resulting in the

more frequent emergence of highly compositional languages.

However, while shared feature values allow the possibility of the spread of composition-

ality, they also inhibit it — in a structured environment, any compositional tendency in
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the initial random mapping has to cover a large number of meanings which share feature

values. If only some of these meanings share a character for a particular feature value,

then the other meanings, which do not share the character, are likely to outweigh the

slight compositional tendency. In contrast, in unstructured environments fewer mean-

ings share feature values, therefore the initial random system has to be less ‘ lucky’ in

the assignment of characters to feature values. This is reflected in the fact that the mean

E (Oinitial) has to be higher in structured environments before E (Ofinal) moves away

from E (Oinitial), and also in the fact that the average E (Ofinal) in unstructured envi-

ronments is higher (see Figure 5.8). In structured environments, the initial compositional

tendency has to be strong to escape the attraction of the overall non-compositional map-

ping, but once this attraction has been escaped highly compositional systems can emerge.

In contrast, in unstructured environments the attraction of the initial non-compositional

mapping is weaker, due to the reduced degree of feature-value sharing, but the potential

spread of compositionality is reduced.

5.3.2 Linguistic evolution in the presence of a bottleneck

The simulation results outlined in the previous Section show that, in the absence of a bot-

tleneck on cultural transmission, highly compositional languages emerge infrequently.

Their emergence is dependent on the density and structure of the environment, and

there is a degree of sensitivity to the compositionality of the original, random system

of meaning-signal mappings. It is now time to investigate how a transmission bottleneck

impacts on the compositionality of the emergent systems.

To this end, runs of the ILM were carried out, with step 4 of the iteration algorithm

being replaced by the bottleneck condition — each individual observes e meaning-signal

pairs, randomly selected from the set of observable behaviour produced by the preceding

agent. e will be experimentally varied. Selection of a value of e depends on the desired

degree of coverage c (E ; e), but also on the number of distinct feature values included

in the meanings in E and the rate of seeing distinct feature values with respect to the

rate of seeing distinct meanings. For example, in the sparse unstructured environment

(see Figure 5.5 a) there are 12 distinct meanings, and 15 distinct feature values (values

1,2,3,4 and 5 for each feature). In the case where e < 12 in this environment it is

therefore impossible for a learner to observe all possible feature values paired with a

(sub)signal. This will have consequences for the stability of the communication systems

through the bottleneck. Consequently, as a simplifying rule of thumb we will not consider

the case where e < 12. This rules out simulation runs in the sparse environments where

c (E ; e) < 0:65.
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100 runs of the ILM were carried out for:

� the sparse unstructured and structured environments given in Figures 5.5 (b) and

5.6 (b) with c = 0:8 (e = 19).

� the medium unstructured and structured environments in Figures 5.5 (c) and 5.6 (c)

with c = 0:4 (e = 16), c = 0:6 (e = 28) and c = 0:8 (e = 49).

� the dense unstructured and structured environments in Figures 5.5 (d) and 5.6 (d)

with c = 0:25 (e = 18), c = 0:4 (e = 32), c = 0:6 (e = 57) and c = 0:8 (e = 101)

The distribution of the initial and final systems for these runs in terms of e-compositionality

is given in Figures 5.12–5.19.

When there is a bottleneck on cultural transmission, the compositionality of the emer-

gent languages is far less sensitive to the compositionality of the initial meaning-signal

mappings. Consequently, 100 runs, rather than 1000 runs, were sufficient. While in the

absence of a bottleneck runs were allowed to proceed until a stable state was reached, in

the bottleneck condition runs were terminated after a fixed number of generations (200).

The random selection of meanings from the environment for which to produce utterances

means that, as with any stochastic system, a skewed distribution of meanings could lead

to the loss of structure. The results reported here accurately reflect the behaviour of the

system — allowing the runs to proceed for several hundred more generations gives a sim-

ilar distribution of languages. In other words, the distributionof systems is stable, while

individual languages may oscillate between varying levels of compositionality.

The main result apparent from these Figures is that, in the presence of a bottleneck, highly

compositional languages emerge with high frequency, and emerge most frequently when

the environment is structured. The nuances of this general result will be returned to

below. First, however, the main result must be explained.

Brighton’s (2002) mathematical model predicts that, in the presence of a bottleneck on

cultural transmission, compositional language will be more stable than holistic language.

The results from the computational model bear this out, but also show that it is possible

to move from an initially holistic system to a highly compositional system over time

— compositional languages can emerge from initially holistic communication through

purely cultural processes, provided there is a bottleneck on cultural transmission.

Why are compositional languages so strongly preferred when there is a bottleneck on

transmission? Holistic languages cannot persist in the presence of a bottleneck. The

meaning-signal pairs of a holistic language have to be observed to be reproduced. When
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Figure 5.12: Compositionality of initial and final languages in sparse environments, in the pres-
ence of a bottleneck on cultural transmission (c (E ; e) = 0:8). Highly compositional languages
are highly frequent, and are most frequent when the environment is structured.
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Figure 5.13: Compositionality of initial and final languages in medium density environments,
in the presence of a bottleneck on cultural transmission (c (E ; e) = 0:4). As in Figure 5.12,
highly compositional languages are highly frequent, and are most frequent when the environment
is structured.
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Figure 5.14: Compositionality of initial and final languages in medium density environments,
in the presence of a bottleneck on cultural transmission (c (E ; e) = 0:6). There is less disparity
between unstructured and structured environments.

0

0.5

1

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0−1.0 −0.9 −0.8 −0.7 −0.6 −0.5

E−Compositionality

E(O

E(O

E(O

initial)

final)

final)

medium, unstructured

medium, structured

R
el

at
iv

e 
F

re
qu

en
cy

Figure 5.15: Compositionality of initial and final languages in medium density environments, in
the presence of a bottleneck on cultural transmission (c (E ; e) = 0:8).
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Figure 5.16: Compositionality of initial and final languages in dense environments, in the pres-
ence of a bottleneck on cultural transmission (c (E ; e) = 0:25). While the majority of final lan-
guages are highly compositional, some partially compositional systems do exist when the envi-
ronment is unstructured.
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Figure 5.17: Compositionality of initial and final languages in dense environments, in the pres-
ence of a bottleneck on cultural transmission (c (E ; e) = 0:4).
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Figure 5.18: Compositionality of initial and final languages in dense environments, in the pres-
ence of a bottleneck on cultural transmission (c (E ; e) = 0:6).

0

0.5

1

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0−1.0 −0.9 −0.8 −0.7 −0.6 −0.5

E−Compositionality

E(O

E(O

E(O

initial)

final)

final)

dense, unstructured

dense, structured

R
el

at
iv

e 
F

re
qu

en
cy

Figure 5.19: Compositionality of initial and final languages in dense environments, in the pres-
ence of a bottleneck on cultural transmission (c (E ; e) = 0:8).
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a learner only observes a subset of the holistic language of the previous generation then

certain meaning-signal pairs will not be preserved — the learner, when called upon to

produce, will produce some other signal for that meaning, resulting in a change in the

language. In contrast, compositional languages are generalisable, due to their structure,

and remain relatively stable even when the learner observes a small subset of the language

of the previous generation. Over time, language adapts to the pressure to be generalisable.

Eventually, particularly when the environment is structured, the language becomes highly

compositional, highly generalisable and consequently highly stable.

In a structured environment the advantage of compositionality is at a maximum. In such

environments, meanings share feature values with several other meanings. A language

mapping these feature values to a signal substring is highly generalisable. When the en-

vironment is unstructured, meanings share feature values with few or no other meanings.

In the most extreme case, a meaning may have a value for a particular feature which

no other meaning has. The signal associated with that meaning cannot then be deduced

from observations of the signals associated with other meanings, and has to be observed

to be learned. Consequently, compositional language in an unstructured environment is

less stable through the transmission bottleneck. The resultant languages are a compro-

mise between the push towards compositionality introduced by the bottleneck and the

pull back towards randomness resulting from the possibility of not observing a particular

feature value paired with a subsignal.

The severity of transmission bottleneck, c (E ; e), does appear to have an impact on the

compositionality of the emergent languages — for example, comparison of Figure 5.13

with Figures 5.14 and 5.15 suggests that the difference between structured and unstruc-

tured environments is most pronounced when c is low. However, consideration of all

the results taken together suggests that variation in c alone may not explain the observed

patterns of behaviour. The results presented here can be split into two groups on gross

qualitative grounds:

1. Situations where highly compositional systems are highly frequent for both struc-

tured and unstructured environments, with emergent languages in structured en-

vironments tending to be slightly more compositional. This occurs in the medium

density environments for c (E ; e) = 0:6 or 0:8 (Figures 5.14 and 5.15), and in dense

environments for c (E ; e) = 0:4, 0:6 or 0:8 (Figures 5.17–5.19)

2. Situations where highly compositional systems emerge with high frequency in

structured environments, and the emergent systems in unstructured environments

exhibit a range of compositionality, from partial to high. The sparse environment
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runs where c (E ; e) = 0:8 (Figure 5.12) match this description, as do the results for

the medium density environment where c (E ; e) = 0:4 (Figure 5.13) and the dense

environment where c (E ; e) = 0:25 (Figure 5.16).

The general trend is that the difference between structured and unstructured environments

is at a maximum when c (E ; e) is low, and decreases as c (E ; e) increases. In the presence

of anybottleneck on cultural transmission (c < 1), there will be a pressure for composi-

tional language. There is pressure acting on languages to be generalisable from a subset,

discussed above. For high values of c, there will be little difference between structured

and unstructured environments. However, for low c a difference will emerge. When c

is low a learner will only see a small subset of the language of the previous generation.

Provided c is not too low, this is not a problem when the environment is structured —

a learner need only observe a few meanings to get an idea of the substring each feature

value should map to. However, in unstructured environments low c is more of a problem

— some meanings have feature values which are shared with few other meanings and

as a consequence the substrings associated with these feature values in a compositional

language are prone to being lost during transmission. The pressure for compositionality

is counteracted to some extent by randomness reintroduced at each generation to cover

feature values which have not been observed. This results in the emergence of partially

stable, partially compositional systems. When c gets very low this problem begins to af-

fect structured environments too. Eventually, when c gets low enough, no stable language

is possible, regardless of the degree of structure in the environment.

This explanation, based purely on c (E ; e), breaks down when confronted with the re-

sults for sparse environments, with high c (Figure 5.12). While the theory predicts little

difference between the compositionality of the languages in structured and unstructured

environments, the results show a large difference. The importance of environment struc-

ture is greaterthan the theory predicts for that level of c. The theory also fails somewhat

to account for the results for dense environments with c (E ; e) = 0:25. In this case the

theory predicts a wider disparity between structured and unstructured environments than

observed in the medium density environment where c (E ; e) = 0:4, given the lower value

of c. However, the structure of the environment in fact has slightly lessimpact.

A more satisfying analysis can be gained by adapting Brighton’s (2002) equations for

calculating the probability of seeing a particular feature value given a particular number

of exposures. After e observations a learner will have accumulated a set of observations

of values for the particular ith feature fi. Let us call this set of observations Ofi . Brighton
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gives the probability of a particular value v being in this set of observations, Pr (v 2 Ofi),

as:

Pr (v 2 Ofi) =
NX
x=1

(
x

N
�

 
eX

�=1

�
N � x

N

���1!
�

 
(V � 1)N�x

V N

!
�

 
N

x

!)

where there are N meanings (N = jEj) and V distinct values for the feature fi. x in this

equation represents the number of objects labelled with v, the feature value of interest.

The first two terms of the product
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give the probability of seeing at least 1 occurrence of v, given that there are x objects

labelled with v. The remainder of the equation simply sums over the probabilities of

labelling x out of N objects with v. This part of the equation is not required for our

analysis, given that the number of objects labelled with a particular feature vale is given

by the predefined environment. We can therefore simplify Brighton’s equation to:

Pr (v 2 Ofi) =
x

N
�

 
eX

�=1

�
N � x

N

���1!

where x is simply the number of meanings in the environment E which have value v for

feature fi. We can then calculate the probability of being able to express a particular

meaning m = (v1 v2 v3), where v1 is the value for f1 and so on, Pr (mjOf1; Of2; Of3):

Pr (mjOf1 ; Of2; Of3) = Pr (v1 2 Of1) � Pr (v2 2 Of2) � Pr (v3 2 Of3)

In other words, the probability of being able to express a given meaning composition-

ally is the product of the probabilities of having seen each feature value paired with a

subsignal. We can then average Pr (mjOf1 ; Of2; Of3) for all m 2 E , to give the average

probability of being able to produce an utterance compositionally. Table 5.2 compares

the values of Pr (m) (the value of Pr (mjOf1; Of2; Of3), averaged over all meanings in

E) for structured and unstructured environments, for various values of e.

The difference between values of Pr (m) for structured and unstructured environments

provide a useful measure of the relative stability advantage of compositional language in

structured environments over compositional language in unstructured environments. This
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Density e c Difference

sparse 19 0:8 6� 10�2

medium 16 0:4 9� 10�2

medium 28 0.6 9� 10�3

medium 49 0:8 2� 10�4

dense 18 0:25 4� 10�2

dense 32 0:4 2� 10�3

dense 57 0:6 1� 10�5

dense 101 0:8 2� 10�9

Table 5.2: Comparison of Pr (m) for structured and unstructured environments of various den-
sities, for various values of e. The Difference column gives Pr (m) for structured environments
minus Pr (m) for unstructured environments, and is a measure of the relative stability advantage
of compositional systems in the structured environment — the greater the difference, the greater
the stability advantage of compositionality in structured environments.

size of this value corresponds fairly well to the differences between the final systems in

structured and unstructured environments observable in Figures 5.12–5.19. For example,

the observable difference is greatest in Figure 5.12, followed by Figure 5.13, and these

two settings of environment density and e yield the largest and second-largest differences

in the Table.

5.3.3 Summary

To summarise the results presented so far, it has been shown that environment density,

environment structure, and bottleneck impact on the cultural evolution of compositional-

ity. In the absence of a bottleneck, highly compositional language is unlikely to evolve.

Highly compositional languages only evolve in structured environments, due to the in-

creased potential for spread of compositionality arising from the large number of shared

feature values between meanings. The emergence of such systems is highly sensitive to

the initial, random assignment of signals to meanings.

In the presence of a bottleneck on cultural transmission, highly compositional languages

reliably emerge from initially random, holistic mappings, in both structured and unstruc-

tured environments. This is due to the pressure on the evolving languages to be generalis-

able, introduced by the transmission bottleneck. Compositional languages emerge most

frequently in structured environments, as generalisations in such environments have a

higher yield than in unstructured environments. Finally, the advantage of compositional

language in structured environments over compositional language in unstructured envi-

ronments can be quantified by applying Brighton’s equations for the probability of ob-

serving feature values given a certain number of exposures. In structured environments,
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the high degree of shared structure between meanings increases the probability that the

subsignals paired with each feature value will have been seen after a small number of

observations.

5.4 Exploring the impact of learning bias

In the previous section the impact of environment structure and bottleneck on the cultural

evolution of compositional language was investigated. The learning bias of the associa-

tive network was kept constant for all these experiments — all results reported were for

the case where every network used the weight-update rule (1 � 1 � 1 0). In this Sec-

tion, I will investigate the impact of using different weight-update rules, with different

associated learning biases, while keeping the severity of the transmission bottleneck and

the degree of environment density and structure constant.

The investigations outlined in this Section will roughly follow the format of the experi-

ments outlined in Chapter 3, Section 3.4 — the ability of networks with various weight-

update rules to acquire, maintain and construct an optimal system will be explored in

Sections 5.4.1–5.4.3. In Section 5.5 I will describe the key properties of the learning bias

required to acquire, maintain and construct optimal compositional languages.

5.4.1 Acquisition of a compositional system

The first issue is to ascertain whether individual agents, in isolation, can acquire a per-

fectly compositional, unambiguous communication system. Such a language, L, was

constructed according to the feature value–character mapping given in Table 5.3. As

in the previous section, F = 3, V = 5, lmax = 3 and � = fa; b; c; d; e; f; g; h; i; jg.

The medium density, structured environment illustrated in Figure 5.6 (c) provided the set

of meanings E . With respect to this environment (or indeed any other), L is perfectly

e-compositional — E (L) = 1.

Agents using each of the 81 possible weight-update rules (�; �; ; Æ 2 [�1; 1]) were then

trained on L, by storing each meaning-signal pair in L in their network. The agents were

then evaluated to see if they a) successfully acquired the meaning-signal mapping in L

and b) would reproduce L in an i-compositional or i-holistic manner.

Agents were judged to have acquired the meaning-signal mapping if, for every hmi; sji 2

L, both:
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FeatureValue
1 2 3

1 j e h
2 h i f
3 a c e
4 b a d
5 e d b

Table 5.3: A feature value lookup table for a compositional language. The signal characters are
concatenated in the order of the feature values — for example, (1 1 1) would be expressed as jeh.

� Production of the signal associated with mi always3 resulted in sj being produced,

i.e. hmi; sji can be reproduced in production.

� and reception of sj always resulted in the interpretation mi, i.e. hmi; sji can be

reproduced in reception, meaning that the agent would communicate optimally

with itself or another agent using the same weight-update rule exposed to L.

18 of the 81 possible rules succeeded in the acquisition task, with the remaining 63

failing to reproduce the observed system. These 18 successful rules were classified as

[+maintainer, �constructor]4 in the simple associative network tests outlined in Chapter

3.

Note that there is both a degree of continuity with the previous classification — the

same 18 rules are separated out in both classifications — and a discontinuity — 31 rules

were able to acquire unambiguous systems in the previous classification, whereas in the

new classification only 18 can. Rules which were [+learner, �maintainer] in the earlier

categorisation5 are incapable of acquiring L. This is due to the fact that the learning

procedure for the structured communication systems requires that learners be able to

handle multiple active input nodes when learning — all components of a meaning and

signal are presented simultaneously to the learner. As discussed in Chapter 3, [+learner,

�maintainer] weight-update rules are biased in favour of many-to-one mappings, and

this bias, given the multiple active units present in each exposure, leads to an inability to

acquire L.
3As before, the term “always” is reduced to “ for every one of 1000 trials” .
4As in Chapter 4, I will avoid where possible specifying redundant features of weight-update rules —

[+maintainer] implies [+learner].
5Bear in mind that the terms +learner, +maintainer and so on are based on the classification given in

Chapter 3, and are shorthands for a set of restrictions on the relationship between the values of �, �, 
and Æ in the weight-update rules. While the mnemonic of +learner was quite transparent in Chapter 3,
it is less so here — certain weight-update rules which fit the pattern glossed as +learner cannot learn a
compositional system. However, these terms will be preserved, for reasons which will become obvious.
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Of those rules which were classified as capable of acquiring L, a further evaluation was

made as to whether they reproduced their acquired mapping in an i-compositional or

non-i-compositional manner. Agents using the 18 [+maintainer] rules were trained on

L, as before. They were then called upon to produce for each m 2 E to give a set of

meaning-signal pairs, with an associated underlying set of winning meaning analysis–

signal analysis pairs Ap. Similarly, they were prompted with each s used in L, to yield

a set of meaning analysis-signal analysis pairs Ar. Ap and Ar were evaluated according

to the internal compositionality measure given in Section 5.2.5. Weight-update rules

which yielded sets of analysis pairs where I (Ap) = I (Ar) = 1 were classified as [+ic-

preserver], otherwise they were classified as [�ic-preserver].

7 weight-update rules were classified as [+ic-preserver], of which 2 were classified as

[+constructor] and 5 were classified as [+maintainer,�constructor] in the previous clas-

sification. The remaining 11 rules (7 [+constructor] and 4 [+maintainer,�constructor])

were classified as [�ic-preserver].

5.4.2 Maintenance through a bottleneck

Next, maintenance tests, similar to those outlined for the associative network model in

Chapter 3, were carried out to assess the ability of the various weight-update rules to

maintain an optimal system. In Chapter 3 the maintenance tests assessed whether pop-

ulations of agents using the weight-update rules were able to acquire an optimal system

in the presence of noise, without a bottleneck. The maintenance test here measures the

ability of populations of agents using these weight-update rules to preserve the optimal

system through a bottleneck on cultural transmission.

Recall from the description of the ILM given in Section 5.2.3 above that the agents in

the initial population use some predefined communication system L. For the experi-

ments outlined in this section, the initial population’s set of weightsW were constructed

such that the p(m) of the initial L generates the unambiguous, perfectly e-compositional

meaning-signal pairs encoded in L, described above — in other words, the initial lan-

guage in these simulations is predefined and perfectly compositional. ILMs were run

with each of the 81 possible learning rules, with each learning receiving 28 exposures

to the communication system of the previous generation (e = 28, c (E ; e) = 0:6). Pop-

ulations were defined as having maintained a compositional system if E (O) and I (A)

remained above 0.95 for every generation of ten 100 generation runs.

No [�maintainer] rules succeeded in this task. All [+maintainer,�ic-preserver] weight-

update rules exhibited behaviour similar to run (a) in Figure 5.20, and failed to maintain
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Figure 5.20: Three characteristic patterns of behaviour in populations using the 81 weight-update
rules when attempting to maintain a perfectly compositional language. The population in run (a)
rapidly collapses from using the initial system to an i- and e-holistic system. This behaviour char-
acterises [+maintainer, �ic-preserver] rules. The population in run (b), which is using a weight-
update rule classified as [+maintainer, �constructor, +ic-preserver], loses the initial language,
although its final language is i-compositional. The population in run (c), which characterises
[+constructor, +ic-preserver] weight-update rules, maintains the perfectly compositional initial
language.

the perfectly compositional system. Of the seven [+maintainer, +ic-preserver] rules,

five behaved in a similar fashion to run (b) in Figure 5.20. Only two [+maintainer,

+ic-preserver] weight-update rules succeeded in maintaining a compositional system.

Populations using these two weight-update rules behaved like run (c) in Figure 5.20.

The five [+ic-preserver] rules which failed to maintain the perfectly compositional sys-

tem were of the [+maintainer,�constructor] classification, whereas the two [+ic-preserver]

rules which maintained the perfectly compositional system were of the [+constructor]

classification. The one-to-one bias associated with [+constructor] rules is clearly crucial

in maintaining a perfectly compositional system.

5.4.3 Construction through a bottleneck

Finally, the 81 weight-update rules were tested to see whether they could construct a

compositional system from an initially random, holistic system, in the presence of a

bottleneck on transmission.
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Figure 5.21: Three characteristic patterns of behaviour in populations using the 81 weight-update
rules when attempting to construct a compositional language. The population in run (a) con-
verges to an i- and e-holistic system. This behaviour characterises [+maintainer, �ic-preserver]
rules. The population in run (b), which is using a weight-update rule classified as [+maintainer,
�constructor, +ic-preserver] converges on a language which is i-compositional but e-holistic.
The population in run (c), which characterises the two [+constructor, +ic-preserver] weight-
update rules, constructs a language which is highly i- and e-compositional.

In the previous section the initial population’s communication system, L, was perfectly

compositional. In the ILMs outlined in this section the connection weights of every

individual in the initial population are set to 0, resulting in an initial L with maximum

entropy. As with the maintenance simulations outlined in the previous Section, each

learner receives 28 exposures to the communication system of the previous generation

(e = 28, c (E ; e) = 0:6). Populations were defined as having constructed a compositional

system if E (O) and I (A) rose above 0.95 in every one of ten 100 generation runs.

Perhaps unsurprisingly, only the two weight-update rules which were capable of main-

taining a preexisting optimal system were capable of constructing a compositional system

from random initial behaviour. As mentioned earlier, these rules have the [+constructor,

+ic-preserver] classification. Populations using these weight-update rules behaved in a

similar fashion to population (c) in Figure 5.21. The [+maintainer, �ic-preserver] and

[+maintainer, �constructor, +ic-preserver] weight-update rules were incapable of con-

structing an optimal system, and behaved similarly to population (a) and (b) respectively

in Figure 5.21.
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5.4.4 The classification hierarchy

The numbers of weight-update rules with the various complete classifications are given in

Table 5.4. Note that it is no longer possible to draw up a neat hierarchy of weight-update

rules — while the hierarchy relating the [�learner], [�maintainer] and [�constructor]

features persists, the [�ic-preserver] distinction cuts across this neat division, grouping

[+maintainer, �constructor] rules together with [+constructor] rules.

5.5 The key bias

What pattern of assignment of values to �, �,  and Æ results in some weight-update rules

being able to construct compositional languages from scratch, whereas other weight-

update rules cannot maintain or learn such a system? In Chapter 3 this type of question

was tackled by considering the connection weights in a small network before and after

exposure to a single meaning-signal pair. A similar strategy is pursued here. I will con-

sider the simple case where F = V = 2, lmax = 2, � = fp; qg. A network of appropriate

dimensions was trained on two meaning-signal pairs, h(1 1) ; ppi and h(1 2) ; pqi, using

the weight-update rule (a b c d). The connection weights in this network after observing

these two meaning-signal pairs are given in Figure 5.22.

5.5.1 An overview of the learning biases

In this Section I will focus on the g values for the various possible analyses in the network

as a whole, in fairly broad terms, returning in more detail to smaller parts of the network

in Section 5.5.2.

The g for a particular meaning analysis–signal analysis pair depends on one or two con-

nection weights from the network shown in Figure 5.22. Table 5.5 gives the g values for

various meaning analysis-signal analysis pairs. To simplify matters, only one possible

ordering of components in the signal is given in the Table. For example, there are three

possible analyses of the signal pp — fppg, fp�; �pg and f�p; p�g, but only the first two

are included in Table 5.5.

5.5.1.1 [+maintainer,�constructor,�ic-preserver] rules

We have already established that [+maintainer] rules are characterised by the restriction:

A weight-update rule is [+maintainer] if � > � ^ Æ � 
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Classification Number Acquire? Acquire i-compositionally? Maintain? Construct?

[�learner, �maintainer, �constructor, �ic-preserver] 50 no no no no
[+learner, �maintainer, �constructor, �ic-preserver] 13 no no no no
[+learner, +maintainer, �constructor, �ic-preserver] 4 yes no no no
[+learner, +maintainer, �constructor, +ic-preserver] 5 yes yes no no
[+learner, +maintainer, +constructor, �ic-preserver] 7 yes no no no
[+learner, +maintainer, +constructor, +ic-preserver] 2 yes yes yes yes

Table 5.4: The number of weight-update rules of each particular complete classification, from the sample of 81, and a summary of their
properties with respect to compositional languages. “Acquire?” indicates whether agents using rules with this classification can acquire a
perfectly compositional language. “Acquire i-compositionally?” indicates whether they can reproduce an acquired system in a perfectly i-
compositional manner. “Maintain?” indicates whether agents using a weight-update rule with this classification can maintain a perfectly
compositional language through a bottleneck, in the context of the ILM. “Construct?” indicates whether such agents can construct a highly
compositional system from random initial behaviour in the presence of a bottleneck, in the context of the ILM.
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Signal analysis
Meaning fpg fqg fppg fpqg fqpg fqqg fp�; �pg fp�; �qg fq�; �pg fq�; �qg

(1 1) b+ d b+ d a+ d b+ c b+ d b+ d 1
2 (a+ a+ a+ d) 1
2 (a+ a+ b+ c) 1
2 (a+ b+ b+ d) 1
2 (b+ b+ b+ c)

(1 2) b+ d b+ d b+ c a+ d b+ d b+ d 1
2 (a+ a+ b+ c) 1
2 (a+ a+ a+ d) 1
2 (b+ b+ b+ c) 1
2 (a+ b+ b+ d)

(2 1 ) d+ d d+ d c+ d c+ d d+ d d+ d 1
2 (a+ c+ d+ d) 1
2 (b+ c+ c+ c) 1
2 (a+ d+ d+ d) 1
2 (b+ c+ d+ d)

(2 2 ) d+ d d+ d c+ d c+ d d+ d d+ d 1
2 (b+ c+ c+ c) 1
2 (a+ c+ c+ d) 1
2 (b+ c+ d+ d) 1
2 (a+ d+ d+ d)

Table 5.5: The g values of various meaning analysis -signal analysis pairs in the network after storing h(1 1) ; ppi and h(1 2) ; pqi using
learning rule (a b c d). Meanings which have not been observed paired with a signal are given in italics. Note that only one ordering
of two-component signal analyses is given — there are in fact another 4 two-component signal analyses (f�p; p�g, f�q; p�g, f�p; q�g,

f�q; q�g), but these other analyses can be safely ignored for the purposes of this analysis.
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b+ d b+ d b+ c a+ d b+ d b+ d a+ c b+ c b+ d a+ d

d+ d d+ d c+ d c+ d d+ d d+ d c+ c c+ d d+ d c+ d

b+ d b+ d a+ d b+ c b+ d b+ d a+ c a+ d b+ d b+ c

b+ b b+ b a+ b a+ b b+ b b+ b a+ a a+ b b+ b a+ b

d+ d d+ d c+ d c+ d d+ d d+ d c+ c c+ d d+ d c+ d

d+ d d+ d c+ d c+ d d+ d d+ d c+ c c+ d d+ d c+ d

b+ d b+ d b+ c a+ d b+ d b+ d a+ c b+ c b+ d a+ d

b+ d b+ d a+ d b+ c b+ d b+ d a+ c a+ d b+ d b+ c

Figure 5.22: Connection weights after observing and learning the meaning-signal pairs
h(1 1) ; ppi and h(1 2) ; pqi using weight-update rule (a b c d).

Such rules are neutral with respect to one-to-one mappings between meanings and signals

(if Æ = ) or biased in favour of one-to-one mappings (if Æ > , which yields the

classification [+maintainer,+constructor]). Is there any pattern of assignment of values

to �, �,  and Æ which distinguishes these rules on the [� ic-preserver] feature? Yes.

A weight-update rule is [+maintainer,+ic-preserver] if

� > � ^ Æ �  ^ � > Æ

Why does this pattern of weight changes lead to the network exploiting the internal com-

positional representations? I will focus first on weight-update rules which are charac-

terised as [+maintainer,�constructor]. For these rules, Æ = . Table 5.6 gives the g

values for various analyses for [+maintainer, �constructor, �ic-preserver] rules.
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Tables 5.6 (a) and (b) highlight the relevant values of g for [+maintainer, �constructor,

�ic-preserver] rules. For these rules, � < Æ (as is the case in Table 5.6 (a)) or � = Æ (as

is the case in Table 5.6 (b)). In the former case, the networks are strongly biased against

compositional systems — the compositional representational capacities of the network

are not exploited due to the fact that Æ dominates �. In the latter case, the networks are

neutral with respect to compositionality — both one- and two-component analyses are

possible, due to the fact that � = Æ. Finally, Table 5.6 (c) highlights the relevant values

of g for [+maintainer,�constructor,+ic-preserver] rules. For these rules, � dominates Æ.

Consequently, analyses involving multiple components are preferred to those involving

single components, indicating a bias in favour of i-compositional systems.

These weight-update rules, as we might expect, are neutral with respect to the one-to-one

nature of the mapping between meanings and signals. For the meanings (2 1) and (2 2),

which have not been observed paired with any signal, there are several possible candidate

signals, including pp and pq, which have already been observed paired with a meaning.

5.5.1.2 [+constructor,�ic-preserver] rules

[+constructor] rules are characterised by the restriction:

A weight-update rule is [+constructor] if � > � ^ Æ > 

Such rules are biased in favour of one-to-one mappings between meanings and signals.

[+constructor, +ic-preserver] rules are characterised as:

A weight-update rule is [+constructor,+ic-preserver] if

� > � ^ Æ >  ^ � > Æ

Why does this pattern of weight changes lead to the network exploiting the internal com-

positional representations? Tables 5.7 (a) and (b) highlight the relevant values of g for

[+constructor,�ic-preserver] rules. For these rules, � < Æ (as is the case in Table 5.7

(a)) or � = Æ (as is the case in Table 5.7 (b)). The parallels with the [+maintainer,

�constructor, �ic-preserver] rules are clear. In the case where � < Æ, the networks are

strongly biased against i-compositional systems — the compositional representational

capacities of the network are not exploited due to the fact that Æ dominates �. In the

case where � = Æ, the networks are neutral with respect to i-compositionality — both

one- and two-component analyses are possible. Finally, Table 5.7 (c) highlights the rel-

evant values of g for [+constructor,+ic-preserver] rules. For these rules, � dominates Æ.
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(a)
Signal analysis

Meaning fpg fqg fppg fpqg fqpg fqqg fp�; �pg fp�; �qg fq�; �pg fq�; �qg

(1 1) b+D b+D a+D b+D b+D b+D 1
2

(a+ a+ a+D) 1
2

(a+ a+ b+D) 1
2

(a+ b+ b+D) 1
2

(b+ b+ b+D)

(1 2) b+D b+D b+D a+D b+D b+D 1
2

(a+ a+ b+D) 1
2

(a+ a+ a+D) 1
2

(b+ b+ b+D) 1
2

(a+ b+ b+D)

(2 1 ) D+D D+D D+D D+D D+D D+D

1
2

(a+D +D +D) 1
2

(b+D +D +D) 1
2

(a+D +D +D) 1
2

(b+D +D +D)

(2 2 ) D+D D+D D+D D+D D+D D+D 1
2

(b+D +D +D) 1
2

(a+D +D +D) 1
2

(b+D +D +D) 1
2

(a+D +D +D)

(b)
Signal analysis

Meaning fpg fqg fppg fpqg fqpg fqqg fp�; �pg fp�; �qg fq�; �pg fq�; �qg

(1 1) b+D b+D a+D b+D b+D b+D 1
2

(a+ a+ a+D) 1
2

(a+ a+ b+D) 1
2

(a+ b+ b+D) 1
2

(b+ b+ b+D)

(1 2) b+D b+D b+D a+D b+D b+D 1
2

(a+ a+ b+D) 1
2

(a+ a+ a+D) 1
2

(b+ b+ b+D) 1
2

(a+ b+ b+D)

(2 1 ) D+D D+D D+D D+D D+D D+D 1
2

(a+D +D +D) 1
2

(b+D +D +D) 1
2

(a+D +D +D) 1
2

(b+D +D +D)

(2 2 ) D+D D+D D+D D+D D+D D+D 1
2

(b+D +D +D) 1
2

(a+D +D +D) 1
2

(b+D +D +D) 1
2

(a+D +D +D)

(c)
Signal analysis

Meaning fpg fqg fppg fpqg fqpg fqqg fp�; �pg fp�; �qg fq�; �pg fq�; �qg

(1 1) b+D b+D a+D b+D b+D b+D 1
2

(a+ a+ a+D) 1
2

(a+ a+ b+D) 1
2

(a+ b+ b+D) 1
2

(b+ b+ b+D)

(1 2) b+D b+D b+D a+D b+D b+D 1
2

(a+ a+ b+D) 1
2

(a+ a+ a+D) 1
2

(b+ b+ b+D) 1
2

(a+ b+ b+D)

(2 1 ) D +D D +D D +D D +D D +D D +D 1
2

(a+D +D +D) 1
2

(b+D +D +D) 1
2

(a+D +D +D) 1
2

(b+D +D +D)

(2 2 ) D+D D+D D+D D+D D+D D+D 1
2

(b+D +D +D) 1
2

(a+D +D +D) 1
2

(b+D +D +D) 1
2

(a+D +D +D)

Table 5.6: The g values for meaning analysis–signal analysis pairs in the network after training on two meaning-signal pairs using the weight-update
rule (a b c d). This table focuses on [+maintainer, �constructor, �ic-preserver] rules, for which c = d = D and a > b. The highest g values in
each row are highlighted in grey. Meanings which have not been observed paired with a signal are given in italics. (a) The [+maintainer, �constructor,

�ic-preserver] rule where D > a. The observed meaning-signal mappings can be reproduced. Only the one-component analyses are used, indicating
a bias against i-compositionality. Meanings which have not been observed map to any single-component analysis with equal probability, indicating no
bias against many-to-one meaning-signal mappings. (b) The [+maintainer,�constructor,�ic-preserver] rule where a = D. The observed meaning-signal
mappings can be reproduced, with both one-component and two-component analyses being equally probable. This indicates neutrality with respect to i-
compositionality. The non-observed meanings map to both one- and two-component analyses, again with no bias against many-to-one mappings. (c) The
[+maintainer,�constructor,+ic-preserver] rule where a > D. The observed meaning-signal pairs are reproduced using two-component analyses, indicating
a bias in favour of i-compositionality. Signals for the unobserved meanings are also produced using two-component analyses, but once again many-to-one
mappings are not avoided.
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Consequently, analyses involving multiple components are preferred to those involving

single components, indicating a bias in favour of i-compositional systems.

These weight-update rules are also biased in favour of one-to-one mappings between

meanings and signals. This is reflected in the possible productions for the meanings (2 1)

and (2 2), which have not been observed paired with any signal. For the [+constructor,�ic-

preserver] rules there are several candidate signals. However, the signals pp and pq are

ruled out, indicating a bias against many-to-one mappings between meanings and signals.

For the [+constructor,+ic-preserver] weight-update rules, there is a single candidate sig-

nal for each of the non-observed meanings — an unambiguous, compositional system

is constructed based on the exposure to the two meaning-signal pairs. This arises from

the network’s one-to-one bias. This highlights the need for the alphabet to be larger than

the number of values for each feature (j�j > V ), as is the case in all the simulation re-

sults reported earlier in this Chapter. If this is not the case, then the one-to-one bias of

[+constructor, +ic-preserver] agents allows them to reliably reconstruct the signal char-

acter associated with feature values they have not actually seen, provided that they have

seen all other values for that feature. When j�j > V this cannot be done reliably.

5.5.2 The two parts of the bias

The maintenance or construction of a compositional language through a bottleneck in

a population of networks requires two elements. Firstly, the networks must be able

to make generalisations from observed meaning-signal pairs to meanings which have

not been observed. This requires that the compositional representational capacity of the

networks is exploited — signals must be produced using multi-component analyses, in

an internally-compositional fashion. If the networks consistently produce using single-

component analyses, in an internally-holistic fashion, then generalisation from seen to

unseen meanings is impossible.

In addition to this, there must be a principled system of mapping from feature values

of meanings to signal characters. If, for example, a network produces utterances using

multi-component analyses, but every distinct feature value maps onto the same signal

character then an e-compositional system will not be constructed or maintained — the

resulting, highly ambiguous system will not preserve neighbourhood relationships when

mapping between meanings and signals.

The learning biases of the weight-update rules can be characterised along these two dis-

tinct dimensions — a bias in favour of (or against) exploiting internally compositional

representations, and a bias in favour of (or against) a principled system of mappings from
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(a) Signal analysis
Meaning fpg fqg fppg fpqg fqpg fqqg fp�; �pg fp�; �qg fq�; �pg fq�; �qg

(1 1) b+ d b+ d a+d b+ c b+ d b+ d 1
2

(a+ a+ a+ d) 1
2

(a+ a+ b+ c) 1
2

(a+ b+ b+ d) 1
2

(b+ b+ b+ c)

(1 2) b+ d b+ d b+ c a+d b+ d b+ d 1
2

(a+ a+ b+ c) 1
2

(a+ a+ a+ d) 1
2

(b+ b+ b+ c) 1
2

(a+ b+ b+ d)

(2 1 ) d+d d+d c+ d c+ d d+d d+d

1
2

(a+ c+ d+ d) 1
2

(b+ c+ c+ c) 1
2

(a+ d+ d+ d) 1
2

(b+ c+ d+ d)

(2 2 ) d+d d+d c+ d c+ d d+d d+d 1
2

(b+ c+ c+ c) 1
2

(a+ c+ c+ d) 1
2

(b+ c+ d+ d) 1
2

(a+ d+ d+ d)

(b) Signal analysis
Meaning fpg fqg fppg fpqg fqpg fqqg fp�; �pg fp�; �qg fq�; �pg fq�; �qg

(1 1) b+ d b+ d a+d b+ c b+ d b+ d 1
2

(a+ a+ a+ d) 1
2

(a+ a+ b+ c) 1
2

(a+ b+ b+ d) 1
2

(b+ b+ b+ c)

(1 2) b+ d b+ d b+ c a+d b+ d b+ d 1
2

(a+ a+ b+ c) 1
2

(a+ a+ a+ d) 1
2

(b+ b+ b+ c) 1
2

(a+ b+ b+ d)

(2 1 ) d+d d+d c+ d c+ d d+d d+d

1
2

(a+ c+ d+ d) 1
2

(b+ c+ c+ c) 1
2

(a+ d+ d+ d) 1
2

(b+ c+ d+ d)

(2 2 ) d+d d+d c+ d c+ d d+d d+d 1
2

(b+ c+ c+ c) 1
2

(a+ c+ c+ d) 1
2

(b+ c+ d+ d) 1
2

(a+ d+ d+ d)

(c) Signal analysis
Meaning fpg fqg fppg fpqg fqpg fqqg fp�; �pg fp�; �qg fq�; �pg fq�; �qg

(1 1) b+ d b+ d a+d b+ c b+ d b+ d 1
2

(a+ a+ a+ d) 1
2

(a+ a+ b+ c) 1
2

(a+ b+ b+ d) 1
2

(b+ b+ b+ c)

(1 2) b+ d b+ d b+ c a+d b+ d b+ d 1
2

(a+ a+ b+ c) 1
2

(a+ a+ a+ d) 1
2

(b+ b+ b+ c) 1
2

(a+ b+ b+ d)

(2 1 ) d+ d d+ d c+ d c+ d d+ d d+ d 1
2

(a+ c+ d+ d) 1
2

(b+ c+ c+ c) 1
2

(a+ d+ d+ d) 1
2

(b+ c+ d+ d)

(2 2 ) d+d d+d c+ d c+ d d+d d+d 1
2

(b+ c+ c+ c) 1
2

(a+ c+ c+ d) 1
2

(b+ c+ d+ d) 1
2

(a+ d+ d+ d)

Table 5.7: The g values for meaning analysis–signal analysis pairs in the network after training on two meaning-signal pairs using the weight-update
rule (a b c d). This table focuses on [+constructor,�ic-preserver] rules, for which a > b and d > c. (a) The [+constructor,�ic-preserver] rule where

d > a. The observed meaning-signal mappings can be reproduced. Only the one-component analyses are used, indicating a bias against i-compositionality.
Meanings which have not been observed map to signals which have not been observed paired with any meaning, indicating a bias in favour of one-to-one
mappings. (b) The [+constructor,�ic-preserver] rule where d = a. The observed meaning signal mappings can be reproduced, with both one-component
and two-component analyses being equally probable. This indicates neutrality with respect to i-compositionality. As with (a), non-observed meanings map
to non-observed signals, indicating a one-to-one bias. However, both one- and two-component analyses are possible. (c) The [+constructor,+ic-preserver]
rule where a > d. The observed meaning-signal pairs are reproduced using two-component analyses, indicating a bias in favour of i-compositionality. As
before, non-observed meanings map to non-observed signals, with only the two component analyses being used. The mapping is in fact perfectly one-to-one.
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Relationship Average I (A) Average I (Ap) Average I (Ar)
� > Æ 0.98 0.98 0.98
� = Æ 0.47 0.48 0.47
� < Æ 0.16 0.17 0.14

Table 5.8: Average internal compositionality of production and reception behaviour combined
(I (A)), production behaviour alone (I (Ap)) and reception behaviour alone (I (Ar)). Results are
for all 81 weight-update rules, organised according to the relationship between � and Æ

feature values to signal characters. Only when the correct biases for both aspects of the

problem are in place will compositional languages be maintained or constructed.

5.5.2.1 The internal compositionality bias

Comparison of Sections 5.5.1.1 and 5.5.1.2 reveals a common element to the rules which

are [+maintainer, �constructor, +ic-preserver]:

A weight-update rule is [+maintainer, +ic-preserver] if

� > � ^ Æ �  ^ � > Æ

The � > � ^ Æ �  : : : part of this constraint relates to the [+maintainer] bias, which is a

bias regarding the one-to-one nature of the mapping between meanings and signals. The

: : : � > Æ part dictates that the i-compositional representational capacity of the network

will be exploited. Both components of the bias are required in order to be classified

as [+maintainer, +ic-preserver], as the [+ic-preserver] classification requires that the

networks can reproduce an observed, unambiguous language. However, it is possible to

abstract away from the actual meaning-signal mapping acquired, and investigate whether

weight-update rules exploit the compositional representational capacity. This will reveal

whether, as hypothesised, � > Æ leads to the use of multi-component analyses.

The acquisition tests outlined in Section 5.4.1 were repeated for all 81 weight-update

rules. However, on this occasion the ability to reproduce the observed mapping was

ignored, and the internal compositionality of their production (I (Ap)) and reception

(I (Ar)) behaviour was measured. The results are summarised in Table 5.8.

This Table shows that the relationship between � and Æ largely determines i-compositionality

during production and reception. When � > Æ internal compositionality is high, indicat-

ing that the compositional representational capacities of the network are being exploited.

When � = Æ internal compositionality is at an intermediate level, indicating that both

the holistic and compositional representational capacities are used with approximately
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equal frequency. When � < Æ internal compositionality is low, indicating that holistic

representations are preferred. The results for � > Æ and � < Æ are less clear cut than

when the analysis is restricted to [+maintainer] rules, due to some of the more esoteric

weight-update rules. However, the main point still stands:

Networks will tend to behave in an i-compositional manner if � > Æ

5.5.2.2 The one-to-one bias

As discussed above in Sections 5.5.1.1 and 5.5.1.2, the biases of weight-update rules

identified in Chapter 3 carry over into the more complex model — [+maintainer,�constructor,

�ic-preserver] agents are neutral with respect to the one-to-one nature of the meaning-

signal mapping, whereas [+constructor, �ic-preserver] agents are biased in favour of

acquiring one-to-one mappings.

The relative values of � and Æ determine whether an agent produces or receives in

an internally-compositional manner. Parallel to this are the (�,�) and (Æ,) relation-

ships, which determines the bias with respect to the one-to-one quality of mappings. In

other words, the (�,�) and (Æ,) relationships determine whether internally-holistic and

internally-compositional mappings are one-to-one or not, then the (�,Æ) relationship de-

termines which of the internally-holistic or internally-compositional analyses is actually

used.

The learning biases with respect to holistic analyses and compositional analyses can

therefore be looked at separately. In the previous Sections connection weights in a net-

work exposed to two meaning-signal pairs were examined. In this Section it is sufficient

to look at a network, identical in structure to the network given in Figure 5.22, which

has been trained on the meaning-signal pair h(1 1) ; aai. The g values of interest for the

i-holistic analyses are summarised in Table 5.9 (a).

Table 5.9 (b) highlights the dominant connection weights for [+maintainer,�constructor,

�ic-preserver] weight-update rules. The observed meaning-signal pair can be reproduced

holistically. The other meanings map to every possible holistic analysis with equal prob-

ability, including the already-observed signal pp. This indicates neutrality with respect

to the one-to-one nature of the meaning-signal mapping, and is an identical result to that

reported in Chapter 3 for the simpler associative network model.

Table 5.9 (c) highlights the dominant connection weights in a network using a [+constructor,

�ic-preserver] weight-update rule. The observed meaning-signal pair h(1 1) ; aai can be
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(a)
Signal

Meaning Seen? p q pp pq qp qq
(1 1) yes b b a b b b
(1 2) no d d c d d d
(2 1) no d d c d d d
(2 2) no d d c d d d

(b)
Signal

Meaning Seen? p q pp pq qp qq

(1 1) yes b b a b b b

(1 2) no D D D D D D
(2 1) no D D D D D D
(2 2) no D D D D D D

(c)
Signal

Meaning Seen? p q pp pq qp qq

(1 1) yes b b a b b b

(1 2) no d d c d d d
(2 1) no d d c d d d
(2 2) no d d c d d d

Table 5.9: (a) The g values for i-holistic meaning analysis–signal analysis pairs after learning
the meaning–signal pair h(1 1) ; ppi using the weight-update rule (a b c d). (b) The g values for
a network using a [+maintainer, �constructor, �ic-preserver] weight-update rule. In such rules
a > b and c = d = D. The highest g value in each row is highlighted in grey. The observed
meaning–signal pair can be reproduced, but there is no bias against many-to-one mappings from
meanings to signals. (c) The g values for a network using a [+constructor, �ic-preserver] weight-
update rule. In such rules a > b and d > c. The observed meaning–signal pair can be reproduced,
and there is a bias against many-to-one mappings from meanings to signals — signal pp is avoided
for all meanings apart from (1 1).
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reproduced. The other meanings map to p, q, pq, qp or qq with equal probability — pp

is avoided. The results for the associative network model outlined in Chapter 3 still hold

in the more complex model — [+constructor] agents are biased in favour of acquiring

one-to-one mappings.

[�maintainer] weight-update rules, as discussed in Chapter 3, either cannot acquire ob-

served holistic meaning-signal mappings (in the case of [�learner, �maintainer] rules)

or can acquire such systems but are biased in favour of many-to-one mappings between

meanings and signals (in the case of [+learner, �maintainer] rules). In the context of the

i-holistic analyses part of structured networks, this has the consequence that networks

using such rules either:

� cannot reliably reproduce the mapping from (1 1) to pp or

� can reliably reproduce this mapping, but prefer to produce pp for all unobserved

meanings.

In either case, an e-compositional system cannot be maintained or constructed.

Table 5.10 (a) gives the weights of the connections in the network between partially-

specified components of meaning (organised according to the feature value which is

specified) and partially-specified signal components (once again, different orderings are

ignored — the subsignals given in the Table refer to signal components where the spec-

ified character is in the same position in the signal as the specified feature value — for

example, row 1 column 1 of the Table gives the connection weight between f(1 �)g and

fp�g).

Table 5.10 (b) highlights the dominant connection weights in the relevant portion of

the network after learning using a [+maintainer, �constructor, �ic-preserver] weight-

update rule. The observed pairings of (1 �) with p� and (� 1) with �p can be reproduced.

Meaning components which have not been observed paired with any signal map to both

possible signal substrings with equal probability — there is no bias against having a

many-to-one mappings from feature values to signal substrings.

Table 5.10 (c) shows the dominant connection weights in a network trained on the meaning-

signal pair h(1 1) ; aai using a [+constructor,�ic-preserver] weight-update rule. As with

the [+maintainer,�constructor,�ic-preserver] rule outlined above, the observed feature

value-subsignal pairs can be reproduced. Unlike the [+maintainer, �constructor, �ic-

preserver] rules, use of a [+constructor, �ic-preserver] weight-update rule results in a

one-to-one mapping between feature values and subsignals — the subsignal q is preferred
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(a)
Subsignal

Feature Value Seen? p q
1 1 yes a b
1 2 no c d
2 1 yes a b
2 2 no c d

(b)
Subsignal

Feature Value Seen? p q

1 1 yes a b
1 2 no D D
2 1 yes a b
2 2 no D D

(c)
Subsignal

Feature Value Seen? p q

1 1 yes a b
1 2 no c d
2 1 yes a b
2 2 no c d

Table 5.10: (a) The g values for meaning component–signal component pairs after learning
the meaning–signal pair h(1 1) ; ppi using the weight-update rule (a b c d). As before, alterna-
tive orderings of signal components can be safely ignored — it is assumed that the value of
the nth feature maps on to the nth character in the signal. (b) The g values for a network us-
ing a [+maintainer, �constructor, �ic-preserver] weight-update rule. In such rules a > b and
c = d = D. The observed feature value–signal character pairs can be reproduced, but there is
no bias against many-to-one mappings from feature values to signal characters. (c) The g values
for a network using a [+constructor, �ic-preserver] weight-update rule. In such rules a > b and
d > c. The observed feature value–signal character pairs can be reproduced, and there is a bias
against many-to-one mappings from feature values to signal characters — signal character p is
reserved for feature value 1.
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to p for unseen feature values. This bias results in the preferential acquisition of perfectly

compositional, perfectly one-to-one mappings for networks using [+constructor, +ic-

preserver] weight-update rules.

[�maintainer] weight-update rules, as discussed above, either cannot acquire observed

holistic meaning-signal mappings (in the case of [�learner, �maintainer] rules) or can

acquire such systems but are biased in favour of many-to-one mappings between mean-

ings and signals (in the case of [+learner, �maintainer] rules). In the context of compo-

sitional analyses, this has the consequence that networks using such rules either:

� cannot reliably reproduce the mapping from (1 �) to p� and (� 1) to �p or

� can reliably reproduce this mapping, but prefer to produce p� and �p for (2 �) and

(� 2).

In either case, an e-compositional language cannot be maintained or constructed — if

observed meaning-signal mappings cannot be reproduced then no stable language is pos-

sible, and if many-to-one mappings are preferred then the only stable language is highly

ambiguous and therefore not e-compositional.

5.5.3 The bias in other models

These two biases, in favour of exploiting compositional representations and in favour of

one-to-one mappings between elements of meaning and elements of signals, are evident

in other models of the cultural evolution of linguistic structure.

Learners in the ILM described in Kirby (2002) extract meaningful, recurring chunks from

the utterances they observe wherever possible — they are biased in favour of acquiring

internally compositional representations. They are also biased towards exploiting such

meaningful chunks as much as possible during invention of signals — if an individual

cannot express a whole meaning directly from its grammar then it invents a random

signal for those subparts of the meaning which are not covered by the grammar, rather

than inventing a random signal for the meaning as a whole.

In addition to this bias in favour of internally compositional representations, Kirby’s

learners are biased against synonyms and homonyms. Unlike in the associative network

model, these biases act as pre- and post-learning filters, rather than applying during the

learning process itself. However, the net effect is the same. Kirby’s learners will not

incorporate an observed utterance into their grammar if that utterance consists of a string

which is already generable by the rules of their existing grammar — they have a global

248



bias against acquiring homonymous utterances. The net effect of this bias, in combina-

tion with the chunking process, will be to prevent learners from acquiring homonymous

lexical items.

The bias of Kirby’s agents against synonyms is rather less direct. During production,

agents conduct a depth-first search through their grammars to find a combination of rules

which allow them to express a given meaning. Consequently, when repeatedly called

upon to express a meaning, they will reliably do so using the same signal — even if their

grammar allows the possibility of utterance-level synonymy, their production behaviour

will not be synonymous. This bias also leads to a bias against synonymy below the level

of the whole utterance — if an individual has several ways of expressing the same atomic

element of meaning they will, all other things being equal, express this atomic meaning

consistently with a single element of the signal.

Batali’s (2002) exemplar-based learners are similarly biased. Recall that Batali’s learners

induce a set of exemplars, where each exemplar has an associated cost. Exemplars which

are used during learning have their costs reduced. This means that exemplars which en-

code small meaningful chunks will be used frequently during learning (as small elements

of meaning and small parts of signals are more likely to recur in observed linguistic be-

haviour), will have their costs reduced rapidly and consequently will be even more likely

to be used in future learning events. This has the effect of biasing learners to extract ex-

emplars which associate small elements of meaning with parts of signals, and recombine

these exemplars during learning, production and reception — Batali’s agents are biased

in favour of acquiring internally compositional representations.

Batali’s scheme for manipulating exemplar costs also builds in biases against synonymy

and homonymy. The bias against homonymy during learning is fairly explicit — af-

ter each learning event, learners search through their set of exemplars and increase the

costs of exemplars which have a common signal but different meanings — homonymous

exemplars are penalised, and therefore less likely to be used.

The bias against synonymy is less direct. Consider the case where there are two possible

ways of expressing a given meaning, both with equal costs. During production of an

utterance, the agent will be neutral with respect to these two variants, and will select one

randomly. Another agent will learn from that production, and may reuse that exemplar

when speaking to the agent who produced the utterance. The original agent may then

learn based on that production (given the negotiation framework, agents can learn from

individuals who they themselves have taught), in which case the exemplar they used in

the first place will have its cost reduced. This exemplar will then be used more frequently
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than its synonymous alternative. The reduction in costs leads to the reinforcement of one

way of expressing each meaning, leading to the elimination of synonymy.

As a final example from the symbolic models of grammar induction, the learners used

in Hurford (2000) are biased in favour of using internally compositional representations.

As discussed in Section 5.1, Hurford’s learners are strongly biased towards acquiring

compositional rules — they can acquire such rules on the basis of a single observation,

and also invent in a compositional manner. Hurford also includes a direct bias against

synonymy, operating at the production level — if an individual has several ways of ex-

pressing a meaning, it uses the expression it acquired first. This production bias will

lead to the rapid elimination of synonymy in the population’s language. The bias of Hur-

ford’s learners with respect to homonymy is less clear. There is no obvious bias against

homonymy built into the learning model — unlike Kirby and Batali’s models, there is

no prohibition on acquiring homonymous utterances. However, homonymy is perhaps

less of a problem in Hurford’s model due to the extremely large character alphabet avail-

able to his agents. While Kirby and Batali use the 26 letters of the alphabet, Hurford’s

agents have access to 2000 distinct ‘syllables’ , which are combined to form utterances.

The probability of homonymous utterances occurring by chance is therefore very low. I

would anticipate that, assuming there is no hidden bias against homonymy in Hurford’s

learning model, a smaller syllable inventory would lead to the more frequent emergence

of homonyms in his model, with a concomitant loss of e-compositionality in the emergent

systems.

Finally, the learners in Brighton’s (2002) model are biased to exploit internally compo-

sitional representations as much as possible — when acquiring a compositional system,

they require a single observation of a feature value (paired with a signal substring) to

be able to express that element of meaning. Biases with respect to homonymy and syn-

onymy are not really relevant in Brighton’s model — he assumes that such features are

not present in the system presented to learners, and is not concerned with how they might

be introduced due to misacquisition or invention.

Biases against homonymy and synonymy also determine the behaviour of ILMs involv-

ing neural network learners. Batali (1998) and Kirby & Hurford (2002) use feedforward

networks with the obverter architecture. As discussed in Chapter 3, Section 3.5.2, this

network architecture leads to a bias in favour of one-to-one mappings between whole

meanings and whole signals. This bias also applies at the level of individual parts of

meanings and parts of signals. Parts of meanings are represented by individual output

nodes in these networks, and parts of signals are either represented by patterns of acti-

vation over the input nodes (in Batali’s (1998) model) or as individual input nodes (in
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Kirby & Hurford’s (2002) model). In either case, the obverter network architecture leads

to a pressure for one-to-one mappings between individual input nodes, or patterns over

groups of such nodes, and individual output nodes — many-to-one mappings are unsta-

ble, whereas one-to-many mappings are unlearnable.

In contrast, Hare & Elman (1995) use an imitator feedforward network architecture. As

discussed in Chapter 3, Section 3.5.3, this choice of network architecture leads to the

loss, rather than emergence, of linguistic structure. This is a consequence of the many-

to-one bias inherent in the imitator architecture, which applies at both the level of whole

meanings and signals and at the level of subparts of meanings and signals.

The bias with respect to internally compositional representations of these networks is not

clear — there is a continuum running from internally holistic to internally compositional

representations. However, the well-established ability of feedforward networks to ex-

tract regularities from observed input-output mappings and generalise to unseen inputs

using these regularities suggests a bias in favour of internally compositional representa-

tions. Indeed, this bias may form a general requirement for learning devices which can

generalise.

5.5.4 Summary

In order to acquire, maintain and construct a compositional language, two components of

learning bias must be in place. Firstly, learners must be biased towards using internally

compositional representations. Secondly, they must be biased towards acquiring one-to-

one mappings from feature values to signal substrings — they must prefer each distinct

part of a meaning to be expressed by a distinct, unambiguous part of the signal. These

two components of the necessary learning bias are found to be present in most other

models where cultural evolution leads to the emergence of linguistic structure.

5.6 One-to-one biases and the acquisition of linguistic structure

In Chapter 3 I discussed evidence from vocabulary acquisition research that suggests that

children are biased in favour of one-to-one mappings between meanings and words. This

type of bias, as demonstrated by the computational models outlined in Chapter 3, will

result in the emergence of functional communication through purely cultural processes.

In this Chapter we have seen that a one-to-one bias, in combination with a tendency to

exploit internally-compositional representations and a bottleneck on transmission, leads
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to the cultural emergence of compositional language. In this Section I will argue that hu-

man language learners bring one-to-one biases to the acquisition of linguistic structure,

as well as to the acquisition of unstructured lexical items. I will have less to say about the

tendency of humans to exploit internally compositional representations — this capacity

is fairly uncontroversially present in humans, and may form the basis for most learning

capacities in most species. Most, if not all, models of learning assume that neural ar-

chitecture is biased to exploit similarity structures in the environment (Rosenblatt 1958).

The computational models outlined earlier in the Chapter suggest that the application of

these two learning biases will lead to the cultural emergence of a communication system

with some of the characteristic structure of human language.

There is in fact a large body of evidence that children, when acquiring morphological

and syntactic systems, are biased in favour of acquiring one-to-one mappings. I will first

present a general overview of this argument, which is based on work by Dan Slobin and

John Haiman. I will then present more specific empirical and theoretical arguments that

these one-to-one biases apply both on the sub-word level, in the acquisition of morpho-

logical systems, and on the super-word level, in the acquisition of syntactic structures.

5.6.1 One-to-one biases in general: clarity and isomorphism

On the general level, under the guise of the maxim “be clear” , Slobin (e.g. Slobin (1973),

Slobin (1977), Slobin (1985)) suggests that children “strive to maintain a one-to-one

mapping between underlying semantic structures and surface forms” (Slobin 1977:186).

For Slobin, this bias on the part of learners is evident during language acquisition. He

gives several examples, both from morphology and syntax. Italian children go through

a phase of never omitting optional pronouns, thereby preserving the argument which ap-

pears in the underlying semantic representation. Similarly, English-speaking children

avoid zero-morphemes in inflectional paradigms, and as a result over-generalise in irreg-

ular cases. Slavic-speaking children use an inflectional suffix for each grammatical case,

even when some cases are supposed to remain unmarked in certain genders, thereby

maintaining an overt realisation of case. English-speaking children go through a period

of avoiding contracting auxiliaries, preferring the more analytic “ I will not” to “ I won’ t” .

Slobin also claims that systems which conform to the one-to-one bias are easier to ac-

quire. In Serbo-Croat relative clause formation, the surface form preserves the underlying

semantic representation fairly clearly, the only changes necessary being insertion of a rel-

ative pronoun and the deletion of a repeated object. The same could be said to be true in

English — “ I lost the ball which Henry bought” corresponds reasonably closely with the
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(presumed) underlying semantic representation 9x (ball (x)) ^ lost (me; x) ^ bought (henry; x)).

In contrast, in Turkish the relationship between the relative clause and the underlying

semantic representation is highly opaque. Slobin claims that the lack of a one-to-one,

structure-preserving mapping between meaning and surface form in the Turkish system

explains why Turkish children do not reliably acquire the system until the age of five,

whereas Serbo-Croat speaking children master the one-to-one mapping by the age of

two.

Slobin also gives evidence, again from Turkish and Serbo-Croat, that language-learners

are biased against many-to-one, homonymous mappings when acquiring morphological

systems and systems conforming to these biases are easier to learn. In Turkish, the agglu-

tinating inflectional morphology system is very regular — each acoustically-salient suffix

bears one element of the meaning (e.g. person, number, case) of the word. In contrast the

Serbo-Croat inflectional system is “a classic Indo-European synthetic muddle . . . there are

many irregularities, a great deal of homonymy, and scattered zero morphemes” (Slobin

1977:191). The Turkish morphological system conforms more closely to the one-to-one

mapping principle than the Serbo-Croat system. Slobin suggests that this explains why

the entire Turkish morphological system is mastered well before the age of two, whereas

the Serbo-Croat system is not mastered until around age five — morphological systems

which conform closely to learner biases are easier to acquire than systems exhibiting

numerous many-to-one mappings.

John Haiman (e.g. Haiman (1980), Haiman (1985)) pursues a similar line of argument to

Slobin, under the banner of isomorphism. According to Haiman, isomorphism, “whose

existence is universally (though often implicitly) recognized in practice, is that of a one-

to-one correspondence between the signans and the signatum, whether this be a sin-

gle word or a grammatical construction . . . such a bi-unique correspondence must exist”

(Haiman 1980:515). Whereas Slobin is keen to emphasise the importance of the one-to-

one bias and its implications for learnability, Haiman is less concerned with why one-to-

one mappings are preferred and more concerned with defending the idea and identifying

when it can be overridden. The majority of Haiman (1980) is devoted to a fairly de-

tailed account of specific conditions under which this bias can be overridden, based on

an intricate analysis of the systematically homonymous medial verb morphology in Hua,

a language of Papua New Guinea. However, Haiman does provide some more general

defences against classic attacks on theories proposing a one-to-one bias in syntax acqui-

sition:
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“ In the realm of syntax, the Katz-Postal hypothesis (Katz & Postal 1964)

that transformations do not change meaning has entailed a commitment to

the belief that both neutralization (many deep structures, one surface struc-

ture) and diversification (many surface structures, one deep structure) must

exist. Recently, this view has come under attack from two fronts . . . First, it

is claimed that different surface structures invariably docorrespond to differ-

ent meanings, however fine-grained [there is no syntactic synonymy]. . . . A

somewhat different approach has been taken in the study of neutralization

[syntactic homonymy]. Syntactic targets, or structurally ambiguous forms,

do exist, and in one sense are violations of isomorphic bi-unique correspon-

dence. But there is another sense in which they are not violations, and it is in

this sense that neutralization itself is iconic [reflecting underlying semantic

similarity]” (Haiman 1980:517).

Some theoretical arguments against the syntactic equivalent of synonymy will be outlined

below. Haiman’s second point is that distinct deep structures sharing a single surface

structure is a reflection of underlying shared semantic structure. He gives several exam-

ples, two of which I will outline briefly here. Firstly, he highlights the case of the modal

auxiliaries in English, which are all similar morphologically and syntactically, and are

similar semantically, conveying the idea of futurity or potentiality. His second example

is based on the semantic similarities between relative clauses and cleft clauses, such as

“That’s the room that I found it in” (relative clause) and “ It’s Max’s room that I found it

in” (cleft). Haiman claims that relatives and clefts are similar cross-linguistically, reflect-

ing a shared element of meaning.

5.6.2 One-to-one biases in morphology

Mańczak (1980) presents a set of “ laws of analogical evolution” for morphological change,

the first of which is that “ [t]he number of morphemes having the same meaning more

often diminishes than increases” (Mańczak 1980:284) — paradigms tend to lose syn-

onymous morphemes. Mańczak bases his laws on a survey of historical grammars and

etymological dictionaries, and his laws (including the first law) have had some statistical

verification.

McMahon (1994) presents an account of the change of the inflectional system in English,

which I have also mentioned briefly in connection with Hare & Elman (1995). In modern

English, plurality is generally marked with the suffix -s. The system in Old English

was rather more complex, and plurality was bound up in inflections which also marked

254



gender and case. McMahon argues that the -s suffix was reinterpreted as the marker for

the plural and possessive in certain paradigms. “Analogical extension next stepped in,

gradually generalising the new /s/ plural marker to many nouns . . . which had never used

/s/ to mark the plural in any case” (McMahon 1994:72) — multiple ways of expressing

the plural were replaced by a single dominant strategy, and furthermore, as predicted by

Slobin, this suffix singled plurality only, rather than a bundle of features.

McMahon’s account is one of historical change, and is only implicitly based on an acqui-

sition bias in learners in favour of regular, one-to-one morphological paradigms. Venne-

mann (1978) presents several pieces of empirical evidence which suggest that, for chil-

dren acquiring language, “ [s]uppletion is undesirable, uniformity of linguistic symbol-

ization is desirable: Both roots and grammatical markers should be unique and constant”

(Vennemann 1978:259).

It has long been acknowledged that, as alluded to earlier in discussion of Slobin’s general

argument, children learning English go through a phase of over-generalising the regular

past tense form to words which should correctly be marked in an irregular fashion or not

at all — for example, “goed” rather than “went” or “keeped” rather than “kept” (Brown

1973). This indicates a preference for a uniform system of markers of tense. This type

of over-generalisation is of course not unique to English. Vennemann presents several

examples of similar phenomena in other languages. I will summarise his examples from

Russian, which shows a preference by learners for uniform roots, and Spanish, which

shows a preference for uniform stems.

Russian marks nouns for one of three genders and one of six cases. The Russian paradigm

for three cases of interest and the three genders can be summarised as:

Masculine Neuter Feminine

Nominative null -o -a

Accusative null -o -u

Instrumental -om -om -oy

There are additional complications in that masculine nouns are further subdivided into

animate and inanimate classes, which follow slightly different inflectional paradigms.

However, that need not concern us here. Vennemann reports that Russian children typi-

cally generalise from the feminine to mark the Accusative case in every noun class with

the -u suffix, leading to a uniform marker of the Accusative and getting rid of the homony-

mous -o and null suffixes. It could be argued that this is due to a frequency effect —

according to Vennemann, 70% of the forms a child sees will be of the feminine gender,
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partly because diminutives are feminine. However, children learning Russian also gen-

eralise the -om marker of instrumental case, originating outside the feminine, across all

noun classes. This is later replaced by the -oy suffix from the feminine, again across all

classes, before the final system is settled on. This acquisition behaviour indicates the

presence of a learning bias in favour of a one-to-one mapping from aspects of morpho-

logical meaning (case) to surface realisations of those markers.

Vennemann’s second example concerns a learner preference for uniform roots. Span-

ish underwent a process known as “velar softening” , whereby [k] changed to [s] and [g]

changed to [x] prior to [i] or [e]. This change should have led to the partial paradigm:

’mark’ ’ pay’

Indicative mar[k]amos par[g]amos

Subjunctive �mar[s]emos �par[x]emos

However, the attested paradigm is in fact:

’mark’ ’ pay’

Indicative mar[k]amos par[g]amos

Subjunctive mar[k]emos par[g]emos

Vennemann argues that velar softening did not take place in the subjunctive paradigm

due to a learner preference for uniformity of roots — during the process of change, where

both alternatives were presumably available, children preferentially acquired the second

paradigm, which has a one-to-one mapping from meanings to roots.

These accounts of morphology acquisition are completely compatible with my model

of one-to-one biases — learners prefer mappings where elements of meaning map, in a

one-to-one fashion, onto morphemes, sub-parts of words.

5.6.3 One-to-one biases in syntax

There is also a body of evidence that one-to-one biases apply to the acquisition of gram-

matical systems, which is compatible with my account of one-to-one biases, in particular

the work by Slobin and Wanner & Gleitman on mappings from meanings to function

words. There is also a body of theoretical work which assumes a more global one-to-one

bias, between complete deep structures and surface structures.
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Slobin (1985) reports on two examples from French of children exhibiting a preference

for explicit one-to-one mappings between grammatical functions and grammatical con-

structions. The first case is based on data from a single child. In the adult system in

French, the preposition “de” is used for both partitive and possessive uses. When the

preposition occurs with a masculine complement NP the preposition and the article from

the NP are contracted. With feminine NPs the preposition and article are not contracted.

This contraction proceeds regardless of the partitive/possessive distinction:

Masculine Feminine

Partitive J’ai du pain Y’a de la neige

I have some bread There is some snow

Possessive le chapeau du monsieur le soulier de la dame

the man’s hat the woman’s shoe

The child discussed by Slobin mistakes the contraction device for an explicit marker of

the partitive use of the preposition and produces:

Masculine Feminine

Partitive J’ai du pain *Y’a da neige

Possessive *le chapeau de le monsieur le soulier de la dame

This appears to be a case of a child expecting a one-to-one correspondence between

a semantic distinction (partitive versus possessive) and an aspect of the surface form,

where in fact this correspondence does not exist in the target language.

Slobin’s second, more general, example from French concerns the use of “que” and “qui” .

In the adult French system, “qui” functions as a relative pronoun, used for relative clauses

where the pronoun is the subject of the verb in the relative clause (for example, “L’homme

qui a tué le chien” , glossed in English as “The man who killed the dog” ). “que” is

also used as a relative pronoun, for relative clauses where the relativizer is the object of

the verb in the relative clause (for example, “L’homme quenous avons vu” , glossed as

“The man who(m) we saw” ), and also as a complementizer (for example, “Je pense que

l’homme est mort” , glossed as “ I think that the man is dead” ). Slobin outlines two general

stages in the typical acquisition of these function words in French. In the first stage, “que”

is acquired and used for both complementizer and relativizer. In the second stage, the

child acquires “qui” and uses this exclusively for relatives, with “que” used exclusively

as a complementizer (resulting in production of the ungrammatical �“L’homme qui nous

avons vu” ). This deviation from the adult system on the part of the child appears to be a
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consequence of a preference for a clear, one-to-one mapping from grammatical functions

to grammatical function words.

Wanner & Gleitman (1982) make a similar point to Slobin, arguing that in general chil-

dren find it difficult to acquire systems which mark negation morphologically. They at-

tribute this to a preference for explicit one-to-one mappings from grammatical functions

to grammatical function words, rather than polyfunctional morphemes.

Turning to syntactic theory, it can be noted that formal studies of learnability tend to make

an assumption, equivalent to the Contrast or ME principles, that for any underlying repre-

sentation there is at most one surface structure — one-to-many mappings from structured

semantic representations to structured signals are ruled out, or dispreferred, by learners.

Wexler & Culicover (1980) make the strong form of this assumption — their Uniqueness

principle states that every deep structure has a single possible surface structure. Pinker

(1984) makes a weaker statement, that the bias against one-to-many mappings can be

overridden given sufficient evidence. In both cases, the Uniqueness principle is given as

a necessary method for children to solve the “no negative evidence problem” , an aspect

of the poverty of the stimulus. Given this principle, as soon as a child hears a particular

surface structure it can rule out all transformations that would have generated a different

surface structure for the underlying semantic representation.

Theories based around isomorphism, the assumption of a preference for one-to-one map-

ping between meanings and words or grammatical structures, are typically seen (not least

by the proponents of such theories) as antagonistic to the generative tradition in linguis-

tics. Newmeyer (1998), however, rightly points out that most generative theories, starting

with Chomsky’s (1965) standard theory, assume that syntactic structure and propositional

content are intimately related at deep structure — deep structure determines both surface

syntactic structure and semantic interpretation. In earlier versions of the classical gen-

erative paradigm, movement operations deriving surface structure from deep structure

can presumably perturb the isomorphism of meaning and syntactic structure. Later the-

ories (e.g. Chomsky (1995)) abandon the distinction between deep structure and surface

structure — there is a single derivation to a level of Logical Form and at some point dur-

ing that derivation (Spell Out) phonological form is stripped out to provide the input to

the phonological system. While the semantic and phonological interpretation processes

may also conceal some underlying isomorphism, the main point is that generative theo-

ries typically assume an intimate, roughly isomorphic relationship between meaning and

signal.
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The projection principle, one of the basic assumptions of generative syntax, also suggests

that semantic and syntactic structures should be closely related. The projection principle

states that lexical information is represented syntactically — the syntactic properties of

lexical items project up through the syntax, and determine, in conjunction with structural

restrictions, the syntactic structure of sentences. The syntactic properties of lexical items

are frequently related to their semantic properties — for example, the argument structure

and theta-role assignments of lexical items are dependent on the semantic properties of

those items, and have consequences for the surface forms of sentences involving those

items. There is therefore a general assumption in syntactic theory that semantics and

surface forms are closely related and dependent on the same underlying information.

Langacker (1977), in a paper on grammatical change through reanalysis, bases much of

his argument around a notion of “ transparency” :

“ the ideal or optimal linguistic code, other things being equal, will be one in

which every surface unit . . . will have associated with it a clear, salient, and

reasonably consistent meaning or function, and every semantic element in

a sentence will be associated with a distinct and recognizable surface form.

Languages are thus optimal along this parameter to the extent that they show

a one-to-one correspondence between units of expression and units of form,

and languages should therefore tend to change towards this situation rather

than away from it” (Langacker 1977:110)

Langacker sees this pressure acting in direct opposition to two other tendencies, a pref-

erence for signal simplicity, or economy of production, and code simplicity, a preference

for fewer fixed expressions which have to be memorised (for example, lexical items —

see the Langacker quote in Chapter 3, Section 3.6.2). While Langacker clearly sees sig-

nal simplicity as a real-time preference by speakers, and code simplicity as a preference

by learners, he is less explicit on the source of the transparency preference. However, this

preference, as we have seen in this Chapter, can naturally be expressed as a preference

by learners, in the form of a bias in favour of one-to-one mappings between elements of

meaning and elements of signal.

My final example of an appeal to one-to-one biases will come from Bever & Langendoen

(1971). Bever & Langendoen are concerned with how pressures acting on language

use and language learning effect linguistic evolution. As such, their aims are highly

compatible with this thesis and one quote from their paper would be equally at home in

most recent papers on computational modelling approaches to linguistic evolution: “ the
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linguistic future is highly constrained by the structural and behavioral systems implicit

in the linguistic present. One consequence of this is that certain universals of language,

which appear to be aspects of synchronic ‘ linguistic structure’ have sources in the ways

in which language is learned and used” (Bever & Langendoen 1971:451–452).

Bever & Langendoen’s argument is based around an analysis of changes in the way in

which relative clauses are formed between Old English and modern English. As the in-

flectional system of Old English changed, overt relativizers on relative clauses became

obligatory in certain contexts. Bever & Langendoen argue that the overt relativizers be-

came obligatory in order to solve ambiguity introduced by the loss of inflections — “ the

loss of inflections created certain perceptually ambiguous constructions which were ruled

out of the language by the changes in relative clause formation . . . one cannot require of

a language that it never generates a sentence which violates a perceptual generalization,

only that the internal organization of actually uttered sentences be perceptually recov-

erable in general” (Bever & Langendoen 1971:444–445). Bever & Langendoen assume

that the change in the OE inflectional system was a consequence of a combination of pres-

sures for signal simplicity and a learner tendency to regularize inflectional paradigms (as

discussed above). In contrast, they claim that the restructuring of relative clauses was a

consequence of language use, based on concerns of perceptual ambiguity and processing

difficulty. However, these two distinct pressures can be unified if we assume, as I have

done here, that learners bring a one-to-one bias to the acquisition of all levels of linguistic

structure — while simultaneously normalising morphological paradigms, a bias against

structural ambiguity (many-to-one mappings from meanings to structures) lead learners

to reinterpret, restructure, and restrict the structure of relative clauses.

There therefore appears to be a bias, applying at all levels of language acquisition, in

favour of one-to-one mappings between meanings and signals. The simulation results

outlined in this Chapter show that without such a bias compositional structure cannot

emerge through cultural processes, or be maintained in the presence of a bottleneck on

cultural transmission. However, given such a bias compositional structure can emerge,

but only in the presence of a bottleneck on cultural transmission.

5.7 Summary of the Chapter

In this Chapter I have shown that compositional language reliably emerges when there

is a bottleneck on cultural transmission, the environment is structured and learners are

appropriately biased. The transmission bottleneck forces languages to be generalisable,

and the generalizability of languages is maximised when the environment is structured.
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The appropriate learning bias consists of two components — a bias to exploit internally

compositional representations, and a bias to map each element of meaning to a single,

unambiguous element of the signal. This first part of the bias may be a general property

of learning — learning exploits regularities in the environment. I have presented evi-

dence that the second element of the bias, a preference for one-to-one mappings between

elements of semantic representations and elements of surface form, applies during chil-

dren’s acquisition of morphology and syntax — humans possess the learning bias which

can lead, through cultural processes, to compositionality.
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CHAPTER 6

The evolution of compositionality in populations

In the previous Chapter the cultural evolution of compositionality was investigated in

the context of a single individual learning their communication system from a single

cultural parent, and transmitting their system to another single individual. In such a

context the notion of communication has no place, as solitary individuals have no-one to

communicate with. It is also meaningless to study genetic transmission in such a context,

as a population consisting of a single individual will be genetically homogeneous by

definition.

In this Chapter I will investigate the transmission of structured communication systems in

the context of populationsof individuals. Do the findings outlined in the previous Chapter

hold in the context of cultural transmission within populations? What consequences

does this have for communication within such populations? And how does the dual

transmission of communication systems by cultural transmission and weight-update rules

by genetic transmission impact on the population’s communicative behaviour?

A review of population-level ILMs and EILMs which deal with the evolution of struc-

tured communication is carried out in Section 6.1. This review suggests that the ILM

and EILM approaches can be extended to a consideration of linguistic evolutions in pop-

ulations. However, they also highlight the fact that studies of the evolution of learning

bias have typically been restricted to parameter-setting models of learning, or variants

thereof. In Section 6.2 I discuss methods of measuring communicative accuracy among

populations of individuals using the type of languages discussed in the previous Chapter.

In Section 6.3 I go on to describe an extension of the ILM from the previous Chapter to

non-trivial population sizes. Finally, in Section 6.4, I expand this model to a full Evo-

lutionary Iterated Learning simulation, and outline results pertaining to the evolution of

learning biases which support communicatively optimal, compositional language.
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6.1 Models of the evolution of linguistic structure in populations

Iterated Learning Models of the cultural evolution of structured communication in popu-

lations do exist, and are discussed in Section 6.1.1. The population approach also leads

fairly naturally to the use of Evolutionary Iterated Learning Models, and examples of

these models are discussed in Section 6.1.2.

6.1.1 Cultural evolution in populations

I have discussed three models which demonstrate that the repeated expression and in-

duction of linguistic form within a population can lead to the emergence of structured

systems of meaning-signal mappings. Two models by John Batali (Batali (1998), de-

scribed in Section 2.3.3.4 of Chapter 2, and Batali (2002), discussed in Section 2.3.6.2 of

Chapter 2) demonstrate that morphological and syntactic structure can emerge in popula-

tions. However, as discussed earlier, the Negotiation Model framework makes it difficult

to isolate the relative importance of learning bias and transmission bottleneck in shap-

ing linguistic behaviour in these populations. Hurford (2000), covered in Section 5.1

of Chapter 5, demonstrates that recursively compositional language can emerge in small

populations (Hurford uses a population size of 5) in a gradual ILM population model.

Similarly, Kirby (2000) demonstrates that compositional language can emerge in small

populations through purely cultural processes. Kirby’s (2000) model is an earlier version

of the model described in Kirby (2002). A gradual turnover ILM is used, with a simple,

non-embedding semantics and a stochastic grammar inducer.

Parameter-setting models of language acquisition have also been used in population-level

ILMs. Niyogi & Berwick (1997), using a mathematical model, consider the spread of lin-

guistic variants in populations through Iterated Learning. In Niyogi & Berwick’s model,

there are two competing linguistic variants, L1 and L2, which differ with respect to the

setting of a particular parameter1. Learners sample the languages of the adult popu-

lation and decide, using a parameter-setting procedure known as the Trigger Learning

Algorithm (Gibson & Wexler 1994), on which variant to acquire. Niyogi & Berwick

demonstrate that, if one language, say L1, produces triggers which are consistent with

both L1 and L2, while L2 produces triggers which are only consistent with L2, then L2

will come to dominate the population.
1Niyogi & Berwick’s model need not be interpreted as a parameter-setting model — we could take

the two linguistic variants to represent linguistic systems which differ arbitrarily from one another. How-
ever, the single parameter interpretation is the most natural one, given their use of the Trigger Learning
Algorithm.
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Briscoe (2000a) (discussed in Section 2.3.5.2, Chapter 2) and Kirby (1999) (described in

Section 2.3.3.2, Chapter 2) present models which are similar to that of Niyogi & Berwick,

which demonstrate the convergence of populations on shared parameter settings. This

convergence is driven by a frequency-dependent bias in Briscoe’s model, whereas a direct

bias in favour of parsability drives populations in Kirby’s model to a parameter setting

which is yields optimally parsable utterances.

6.1.2 Gene-culture coevolution in populations

Parameter-setting approaches have also been used to model the co-evolution of languages

and parameter-setting language acquisition devices. Kirby & Hurford (1997) describe an

extension to Turkel’s (2002) model of the evolution of co-ordination. As in Turkel’s

model, each individual’s genotype consists of a string of 1s and 0s (representing invio-

lable principles) and ?s (representing settable parameters). An individual’s mature phe-

notype is a string of 1s and 0s, with all genotype ?s being set to either 1 or 0. Unlike

in Turkel’s model, Kirby & Hurford use a generational EILM, with the setting of pa-

rameters in an individual’s mature phenotype being determined by cultural transmission.

Immature individuals receive a number of trigger utterances from mature individuals in

the previous generation. Triggers specify the setting of a single parameter (as either 1 or

0), and mature individuals produce triggers consistent with their own grammar. Learners

then set the values of ?s in their phenotype according to observed triggers and a learning

procedure based on the Trigger Learning Algorithm. Mature individuals breed according

to communicative success. Communicative success between two individuals is depen-

dent on the number of matching settings they share in their mature phenotypes, but also

on the ‘parsability’ of the utterances they produce — an arbitrary subset of the set of

possible mature phenotypes were considered to produce more parsable utterances.

Kirby & Hurford report that, under these conditions, maximally functional (parsable)

grammars do not emerge — the simulated populations converge on mature phenotypes

which do not produce maximally parsable utterances. Not only does the population con-

verge culturally on suboptimal grammars, but they nativize those suboptimal grammars

— the Baldwin effect leads to the emergence of disfunctional, inviolable principles which

prevent learners in the population from acquiring an optimal system. Kirby & Hurford

attribute this to the overriding pressure for learners to learn the language of their commu-

nity, regardless of whether it is optimally parsable or not.
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In a second set of experiments, Kirby & Hurford introduce selection for parsability on

cultural transmission. With a certain small probability, learners preferentially retain pa-

rameter settings which yield higher parsability over settings which yield lower parsability.

Learners are therefore directly biased in favour of acquiring optimal parameter settings.

Under this revised setup, the simulated populations converge on optimal grammars, and

nativize those optimal grammars via the Baldwin effect.

Briscoe (2000b) presents an extension of his Iterated Learning Model (Briscoe (2000a),

discussed above), which also demonstrates the role of the Baldwin effect in the na-

tivization of linguistic structure, with languages which minimise working memory load

and therefore improve parsability being preferentially nativized. His model shows that

Kirby & Hurford’s (1997) second result still stands under more realistic assumptions

about grammars, parsability and population dynamics — more parsable and learnable

languages emerge culturally, and the LADs of learners evolve a default setting which

matches the dominant language in the population.

A paper by Martin Nowak and colleagues is of particular relevance to this Chapter, and

merits discussion in detail. Nowak et al. (2000) compare the fitnesses of individuals pur-

suing two possible learning strategies — holistic learners and compositional learners. In

their model, events consist of an action and an object acted upon. Nowak et al.vary the

number of possible objects and actions, and also the possible combinations of objects

with actions — for example, events involving action 1 and object 1 may occur with a cer-

tain frequency, whereas events involving action 1 and object 2 may never occur. Nowak

et al.’s model of events is therefore equivalent to (and formed the basis for) my model of

meaning spaces and environments — their event space corresponds to a two-dimensional

meaning space, with V for each dimension given by the number of possible objects and

actions, and their event rate matrix(which specifies which action-object combinations

may occur) is equivalent to an environment in my model.

Nowak et al. assume there are two possible types of learners — holistic learners, who

attempt to learn a single word for each event, and compositional learners, who learn sep-

arate words for actions and objects and then combine those words to form descriptions

of events. Nowak et al. calculate the equilibrium frequency of words in populations con-

sisting solely of holistic or compositional learners, calculate the levels of communicative

accuracy associated with these word frequencies and compare these values across popu-

lations.

In populations of holistic learners, the frequency of individuals who use a word Wij to

refer to an event Eij is given by x (Wij). Nowak et al. assume a generational ILM
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where each individual receives b exposures to the linguistic behaviour of the previous

generation. During each of these exposures, a holistic learner successfully learns a word

with probability q. � (Eij) gives the frequency of occurrence of event Eij . After a single

generation, the frequency of word Wij to refer to event Eij is given by:

x0 (Wij) = R (Wij) � x (Wij) � (1� x (Wij))� x (Wij)

where x0 (Wij) is the proportion of individuals who know the word after transmission,

x (Wij) is the frequency of individuals who know the word prior to transmission and

R (Wij) is the reproductive rate of the word, and is given by:

R (Wij) = bq� (Eij)

In other words, the reproductive rate of word Wij is the product of the number of ex-

posures each individual receives (b), the probability of learning that word after a sin-

gle exposure (q) and the probability that you hear someone talking about the event Eij

(� (Eij)). In the population equation, the change in the proportion of people who know

the word depends on this reproductive rate and the cultural variance in the population

(x (Wij) � (1� x (Wij))). The term . . .�x (Wij) simply keeps the population size con-

stant.

Given this equation, Nowak et al. go on to calculate the equilibrium frequency of in-

dividuals who know word Wij for event Eij — the frequency which, possibly infinitely

many, iterated learning events will lead to, assuming that the word has a reproductive rate

of greater than 1. This quantity, x� (Wij), is given by:

x� (Wij) = 1�
1

R (Wij)

In other words, the equilibrium frequency of Wij will depend on its reproductive rate.

If the reproductive rate of a word is very high then virtually everyone in the popula-

tion will know the word. As all events which actually occur are assumed to occur with

equal frequency, the key factors in determining R (Wij) are number of exposures b and

learnability q.
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The communicative accuracy, and therefore fitness, of a population of such holistic learn-

ers at equilibrium is simply the probability that any two individuals will know the word

for an event, summed over all possible events:

Fholistic =
X
i;j

ij � [x
� (Wij)]

2

where ij is 1 if event Eij is allowed by the event rate matrix (environment) and 0 oth-

erwise. Note two things about this measurement. Firstly, it is implicit in this measure

that there is only ever one word for each event in the population — the measure is not

summed over all possible words for each event. Secondly, it is also implicit that each

event is associated with a unique word — words for one event are never confused with

words for other events.

Nowak et al. go through a similar processes for calculating word frequencies in popula-

tions of compositional learners. Compositional learners learn separate words for objects

Oi and actionsAj of eventsEij . The word associated with objectOi is Ni (a noun), while

the word associated with action Aj is Vj (a verb). The assumption is made that learners

spend half their time learning nouns and half their time learning verbs. The reproductive

rates of Ni and Vj are given by:

R (Ni) = (b=2) qc� (Ei)

R (Vj) = (b=2) qc� (Ej)

where qc is the probability of learning a noun or verb after a single exposure (taken to be

lower than q), � (Ei) gives the frequency of events involving object Oi and � (Ej) gives

the frequency of events involving action Aj . These equations are clearly variants of the

holistic learner equations. The equilibrium frequency of individuals who know both N i

and Vj is given by:

x� (NiVj) =
(1� 1=R (Ni)) � (1� 1=R (Vj))

1� 1= (R (Ni) +R (Vj))

This leads to a communicative accuracy at equilibrium of:

Fcompositional =
X
i;j

ij � [x
� (NiVj)]

2
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In other words, as for the holistic learners, communicative accuracy depends on the prob-

ability of two individuals being able to make a signal for each event, multiplied by the

probability of that event occurring.

Based on these equations, Nowak et al. go on to identify the conditions under which

compositional learners will be preferred to holistic learners — the circumstances under

which Fcompositional > Fholistic. To do this they make several more assumptions. Firstly,

they assume that there are n objects and n actions — there are as many objects as actions.

This yields n2 possible events. Suppose some fraction p of these events occur (for exam-

ple, if p = 0:5 then only half of all possible combinations of objects and actions actually

occur in the environment), and further assume that these events are distributed randomly

through the space of possible events. Under these conditions, compositional learners will

be preferred when:

n >
3q

pqs

In other words, there is a critical value for the number of objects and actions that must

be exceeded before compositional learners are favoured. Nowak et al. give the following

illustrative example. If nouns and verbs are twice as hard to memorise as holistic words

(qc = q=2) and if one third of all possible events actually occur in the environment

(p = 1=3), then n must be greater than 18 before compositional learners are favoured.

This is an interesting result, and Nowak et al. successfully demonstrate that mathemat-

ical techniques can be fruitfully applied to the investigation of the evolution of learning

apparatus underlying language. However, several criticisms of their model can be made.

Firstly, as noted above, they assume that the relationship between events and words,

or nouns and objects, or actions and verbs, is perfectly one-to-one. As we have seen

throughout this thesis, arriving at this situation is far from straightforward. Secondly,

they also rule out any gene-culture coevolution — they calculate the communicative ac-

curacy of genetically homogeneous populations at equilibrium, then compare across pop-

ulations. The situation is likely to be more complex in heterogeneous populations, and

more complex still in heterogeneous populations undergoing selection for communica-

tive success. Finally, they assume that events are randomly scattered in the event matrix

— as we saw in Chapter 5, a non-random sampling from the space of possible meanings

can have consequences for cultural evolution in populations, and therefore might have

implications for gene-culture coevolution.
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6.2 Languages, communication and communicative agents

The model of structured languages is identical to that used in the previous Chapter. A

language L consists of a production function p (m), mapping from meaningsm to signals

s, and a reception function r (s), mapping from signals s to meanings m. Each m 2 M

is a vector drawn from an F -dimensional space, where each dimension has V possible

values, and each signal s 2 S is a string of characters of length 1 to lmax, where the

characters are drawn from the alphabet �.

We can calculate the communicative accuracy of two individuals in exactly the same way

as that outlined in Chapter 3, Section 3.2. If p(m) is converted to a probabilistic function

p(sjjmi), which gives the probability of producing signal sj given meaning mi, and r(s)

is similarly viewed as a probabilistic function r(mijsj) then the communicative accuracy

of a producer P with production function p(sjm) signalling to a receiverR with reception

function r(mjs), averaged over all meanings, is:

ca (P;R) =

Pi=jMj
i=1

Pj=jSj
j=1 p (sjjmi) � r (mijsj)

jMj

In a population possessing an optimal communication system ca(P;R) = 1 for any

choice of P and R.

Note that, given the distance function between meanings given in Chapter 5, based around

Hamming distance, it would be possible to have a communicative accuracy measurement

which awarded partial credit for getting a proportion of the meaning across to the receiver.

This is the approach taken in Batali (1998) and Batali (2002). In this case ca (P;R)would

be defined as:

ca (P;R) =

Pi=jMj
i=1

Pj=jSj
j=1

Pk=jMj
k=1 p (sjjmi) � r (mkjsj) � sim (mi; mk)

jMj

where sim (mi; mk) gives the degree of similarity between two meanings, and is defined

as:

sim (mi; mk) =
(F �HD (mi; mk))

F
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For the moment I will persevere with the all-or-nothing measurement. However, in Sec-

tion 6.4, I will return to the partial payoff measure when considering the dual-transmission

of compositional systems.

The model of a communicative agent is identical to that used in the preceding Chapter

— each individual is modelled by an associative network capable of manipulating map-

pings between structured meanings and structured signals, and each individual acquires

its system based on observation and the application of a weight-update rule W , specified

by the 4-tuple (� �  Æ).

6.3 Cultural evolution in populations

The simulations described in Chapter 5 demonstrate that, in populations consisting of

a single individual, the cultural transmission of meaning-signal mappings leads to the

emergence of compositional language. This is dependent on learners being biased in an

appropriate fashion, the presence of a bottleneck on cultural transmission, and a degree

of structure in the environment. Do these results scale up when we consider populations

which consist of more than one individual at any one time?

This question can be addressed using a gradual population turnover ILM. The model of

languages, communication and communicative agents is as given above in Section 6.2.

The initialisation and iteration processes are given below.

Initialisation Create a population of N agents2, each using the weight-update rule W

and having an initial set of connection weightsW , where each w 2 W has a weight of 0.

Iteration

1. Select an agent at random from the population and remove it.

2. For every remaining member of the population, generate a set of meaning-signal

pairs by applying the network production process to every m 2 E .

3. Create a new agent with connection weights of 0 who uses weight-update rule W .
2N = 20 for all ILMs outlined in this Section. In previous Chapters N = 100 was typically used.

However, the more complex models of communication and communicative agents increases the computa-
tional cost of each cohort. In the gradual population turnover model computational complexity is constant
with respect to population size, as each cohort involves replacing a single individual. However, larger
populations take longer to converge on a shared system. N = 20 reduces this factor, while still allowing
meaningful population-level dynamics.
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4. The new agent receives e exposures to the population’s observable behaviour and

updates their connection weights according to the observed meaning-signal pairs

and their weight-update rule W . See below for more detail.

5. The new agent joins the population. Return to 1.

Each pass through the iteration process will be termed a cohort, and as with other ILMs

there is no genetic diversity within the population and no selection based on communica-

tive ability.

Step 4 of the iteration process offers some complications. In the ILM outlined in Chapter

3, each of the e exposures consists of exposure to the complete set of observable be-

haviour generated by a single, randomly selected individual. In the model outlined in

Chapter 5, each of the e exposures consisted of an exposure to a single meaning-signal

pair produced by the individual’s single cultural parent, and the exposures were either se-

lected exhaustively from the environment E (in the no-bottleneck condition) or randomly

(in the bottleneck condition).

In this model, neither of these methods of transmission is entirely suitable. If each of

the e exposures consisted of exposure to the complete set of observable behaviour gener-

ated by a single, randomly selected individual then we immediately rule out a bottleneck

on cultural transmission. If each of the e exposures consists of an exposure to a sin-

gle meaning-signal pair produced by a single cultural parent, then convergence within

the population will occur only by chance — true, non-random convergence requires that

individuals sample the behaviour of several individuals. It is therefore necessary to in-

troduce a new parameter � , which is the number of cultural parents an individual has.

Two versions of step 4 of the iteration process will be defined, one for the no-bottleneck

condition and one for the bottleneck condition.

4 (No-bottleneck) The new agent selects � cultural parents3 at random from the popu-

lation. The new agent receives e = jEj exposures to the communicative behaviour

produced by those � parents. During each of these e exposures the new agent

observes the meaning-signal pairs produced by each parent for a single meaning

m 2 E and updates their connection weights according to the observed meaning-

signal pairs and their weight-update rule W . Each m 2 E is selected in turn, there-

fore the learner observes the full set of observable behaviour produced by each of

the � parents.
3� = 3 for all simulation runs reported here. This means that each individual will observe the behaviour

of three individuals, which was the case for the associative network ILM discussed in Chapter 3.
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4 (Bottleneck) The new agent selects � cultural parents at random from the popula-

tion. The new agent receives e exposures to the communicative behaviour pro-

duced by those � parents. During each of these e exposures the new agent observes

the meaning-signal pairs produced by each parent for a single, randomly selected,

meaning and updates their connection weights according to the observed meaning-

signal pairs and their weight-update rule W . The agent will therefore observe ap-

proximately jEj � c (E ; e) distinct meanings, paired with the corresponding signals

produced by each of the � parents.

The no-bottleneck version leads, as will be discussed in Section 6.3.1, to the emergence

of shared stable communication systems. However, the bottleneck version as given above

does not. This appears to be due to the high level of variability in the behaviour observed

by learners during the early stages of a simulation run. The bottleneck version of step

4 is therefore revised as follows. Each agent selects � individuals at random from the

population, where � is randomly selected from the range [1; � ]. The agent then selects �

cultural parents at random with replacement from among these � individuals — in other

words, learners are exposed to the same size of data set regardless of the number of

distinct cultural parents they have, but the data set can contain the behaviour of between

1 and � individuals. Each individual therefore receives � exposures to each meaning, as

in the bottleneck version of step 4 given above. However, these exposures will be to the

behaviour of at most � distinct individuals. Alternatively, given that � = 3 for all runs

reported here, they will have 2 distinct cultural parents and observe one of them twice, or

have a single cultural parent and observe that individual’s behaviour three times4.

I will consider an ILM where every agent uses the weight-update ruleW = (1 � 1 � 1 0).

As shown in Chapter 5, this is one of the two [+constructor, +ic-preserver] rules. For

the results described in Sections 6.3.1 and 6.3.2, F = 3, V = 5, lmax = 3 and � =

fa; b; c; d; e; f; g; h; i; jg. The initial agents have connection weights of 0, and therefore

use the maximum entropy system where every meaning analysis-signal analysis pair oc-

curs with equal probability. This is the same experimental setup as for the ILM described

in Section 5.3, the only difference being the scaling up to larger populations.
4As part of my current research project, I am working on an extension to Kirby’s (2002) model of the

evolution of recursive syntax. One part of the project involves scaling this model up from populations
consisting of a single individual to larger populations. Interestingly, a similar problem is encountered with
Kirby’s model — the set of cultural parents for each individual must be fairly tightly constrained, otherwise
stable systems of meaning-signal mappings never emerge.
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6.3.1 Linguistic evolution in the absence of a bottleneck

Runs of the ILM described above were carried out, using the no-bottleneck variant of step

4 — each individual observes the complete set of behaviour of � = 3 members of the

population. 100 runs5 of the ILM were carried out for each of the sparse environments

shown in Figures 5.5 and 5.6 in Chapter 5. 50 runs of the ILM were carried out for

each of the medium density environments shown in Figures 5.5 and 5.6 in Chapter 5.

As in Chapter 5, the e-compositionality of the emergent languages (averaged over all

members of the population) is the key measure of linguistic structure. The population’s

communicative accuracy is also measured, to establish whether the emergent languages

are functional and shared by all members of the population. Communicative accuracy

is estimated by evaluating every individual’s average communicative accuracy as both

producer and receiver with two randomly selected partners according to the all-or-nothing

measure ca(P;R) given in Section 6.2, averaging over all individuals in the population.

Runs were allowed to proceed to a stable state, where the population exhibits no linguistic

diversity.

In all simulations runs in each environment the populations converge upon an optimal

shared communication system which yields ca(P;R) = 1 for any choice of P and R.

This is as expected, given the one-to-one learning bias associated with the weight-update

rule used by learners in these populations. Figures 6.1 and 6.2 plot the compositionality

of the initial and final, stable systems for the sparse and medium-density environments.

The results for the medium-density environment are similar to those shown in Figure 5.9

in Chapter 5 (for the same environments with an ILM involving isolated individuals).

The results for the sparse environments are rather different from the results from the

single-individual ILM. In the isolated individual ILM (see Figure 5.8), the majority of

runs converged on non-compositional systems. Partially compositional systems did oc-

cur, with their frequency being greatest when the environment was unstructured. Highly

compositional systems were very infrequent, and occurred only when the environment

was structured.

The results for the population ILM shown in Figure 6.1 show a much stronger tendency

towards compositionality. The majority of the final systems are not holistic. Partially

compositional systems occur with comparatively high frequency in both unstructured
51000 runs were carried out for the no-bottleneck condition of the single-individual ILM. A smaller

number of runs were carried out in the population ILM due to two factors: 1) the increased computational
memory requirements introduced by having 20, rather than 1, associative network in the population and 2)
the increased number of cohorts required for a population to reach a stable state.
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Figure 6.1: E-compositionality of initial and final, stable systems in sparse environments, when
there is no bottleneck on transmission. The initial systems have low e-compositionality. The final
systems are of partial or high e-compositionality. Highly e-compositional systems occur most
frequently when the environment is structured.

and structured environments. Perfectly compositional systems emerge with fairly high

frequency, but only when the environment is structured.

Why does the expansion to non-trivial population size lead to the more frequent emer-

gence of compositionality, but only in the sparse environment? Recall from Chapter 5 that

[+constructor, +ic-preserver] agents are biased in favour of acquiring i-compositional

systems, and are further biased in favour of acquiring one-to-one mappings between fea-

ture values and signal substrings, which leads to a bias in favour of e-compositional lan-

guage. In the single-agent population case, this bias can lead to the emergence of highly

compositional language even in the absence of a bottleneck on cultural transmission, but

only if the initial, random language already exhibits slight compositional tendencies. In

the single-agent population case, learners are essentially stuck with the system of their

single cultural parent. Their learning bias has a reduced impact, due to the absence of

competing variants to select between (recall from B&R’s model given in Chapter 2 that

the rate of increase of the variant favoured by directly-biased transmission is dependent

on the degree of cultural variation present in the population).

In the population ILM, each individual has several cultural parents and therefore biased

acquisition potentially has a greater impact. An individual attempting to acquire two sys-

tems will be more influenced by the system which conforms more fully to their bias. In

the population ILM, this means that highly compositional systems will be preferred to
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Figure 6.2: E-compositionality of initial and final, stable systems in medium density environ-
ments, when there is no bottleneck on transmission. The initial systems and the vast majority of
the final systems have low e-compositionality. Partially e-compositional final systems occur with
very low frequency, and only when the environment is unstructured.

less compositional systems. This results, in sparse environments, in the frequent emer-

gence of highly compositional systems. The difference between unstructured and struc-

tured sparse environments is due, as discussed in Chapter 5, to the greater potential spread

of compositional mappings in the structured environment, due to the number of feature

values shared between meanings.

The fact that each learner has several cultural parents, and therefore several possible com-

munication systems to choose from, increases the force of the learner’s bias and results

in the emergence of systems which conform to that bias. However, this only happens in

sparse environments — in medium density environments, the final stable systems tend

overwhelmingly to be holistic, with partially compositional systems occurring very in-

frequently and only when the environment is unstructured. Why?

Recall from Chapter 5 that the compositionality of the final system in the single-individual

ILM is sensitive to the compositionality of the initial, random system. Where this initial

mapping exhibits compositional tendencies, yielding E (O initial) above the mean, there

is an increased likelihood of the system moving, over iterated learning events, towards

more compositional languages. The compositional tendencies of the initial system spread

to other parts of the system over time, resulting in an increase in compositionality. For the

more densely-filled environments, partially or highly compositional systems emerge in-

frequently due to the fact that the initial systems tend to be clustered more tightly around
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the non-compositional mean. When the environment contains few meanings the initial

system may, by chance, exhibit some compositional tendencies. However, when the en-

vironment contains a large number of meanings such tendencies are likely to be drowned

out by the majority non-compositional mapping.

In the population ILM, with medium density environments, the lack of compositional ten-

dencies in the early, random mappings of the population prevents highly compositional

systems from ever emerging. Even though each learner observes several individuals,

their set of cultural parents is essentially homogeneous with respect to compositionality

— each parent uses a non-compositional system (although not necessarily the same one).

This lack of cultural variation effectively nullifies the learner preference for composi-

tionality. In contrast, in sparse environments the initial random systems are more widely

distributed, and more likely to exhibit some compositional tendencies which the learner

bias can exploit.

Partially compositional systems do emerge with low frequency in medium density, un-

structured environments. This is due to the fact that, in such environments, fewer mean-

ings share feature values, therefore the initial random system is more likely to exhibit

slight compositional tendencies — the initial systems in unstructured environments has

to be less ‘ lucky’ in the assignment of characters to feature values. This can provide

some cultural variation among an individual’s cultural parents, allowing the learner bias

to have some effect.

6.3.2 Linguistic evolution in the presence of a bottleneck

The simulation results outlined in the previous Section show that, in the absence of a

bottleneck on cultural transmission, highly compositional languages can emerge in pop-

ulations. Their emergence is dependent on the density and structure of the environment,

and there is a degree of sensitivity to the compositionality of the original, random systems

of meaning-signal mappings. It is now time to investigate how a transmission bottleneck

impacts on the compositionality of emergent systems in populations.

To this end, runs of the ILM described above were carried out, using the bottleneck

variant of step 4 — each individual observes e meaning-signal pairs, randomly selected

from the set of behaviour produced by � � � = 3 different members of the population.

10 runs of the ILM were carried out for each of the sparse environments shown in Figures

5.5 and 5.6 in Chapter 5, with a bottleneck of c (E ; e) = 0:8 (e = 19) and 10 runs were

carried out for each of the medium density environments shown in Figures 5.5 and 5.6
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(a)

Density c (E ; e)
Proportion

compositional
Average E (Ofinal) Average ca (final)

sparse 0:8 0 0:59 0.51

medium 0:4 0 0:28 0.05
medium 0:5 0.2 0:47 0.26
medium 0:6 1.0 0:99 1.0

(b)

Density c (E ; e)
Proportion

compositional
Average E (Ofinal) Average ca (final)

sparse 0:8 1 1:0 1.0

medium 0:4 1 0:99 0.98
medium 0:5 1 0:99 0.99
medium 0:6 1 0:99 1.0

Table 6.1: Summary of results for the population ILM. (a) gives the proportion of runs con-
verging on a highly compositional system, the average e-compositionality of the final systems
and the average communicative accuracy yielded by the final systems for unstructuredenviron-
ments. Highly compositional, communicatively-optimal languages only reliably emerge in the
medium density when the bottleneck is wide. (b) gives the same measurements for runs of the
ILM in structuredenvironments. Highly compositional, communicatively-optimal languages al-
ways emerge when the environment is structured.

with bottlenecks of c (E ; e) = 0:4, 0:5 and 0:6 (e = 16, 21 and 28 respectively)6. Runs

were allowed to proceed for 5000 cohorts.

Table 6.1 summarises the results of these simulation runs, in terms of the proportion of

runs converging on a highly compositional system (E (Ofinal) > 0:95), and the average

final levels of e-compositionality and communicative accuracy. Figure 6.3 show com-

positionality and communicative accuracy against time in five representative runs of the

ILM.

As shown in the Table, environment structure has a significant impact on the composition-

ality of the emergent systems. In the unstructured environments, highly compositional,

communicatively-optimal systems only reliably emerge in the medium density environ-

ment with a relatively wide bottleneck (c (E ; e) = 0:6). In contrast, in the structured

environments, highly compositional, optimal systems alwaysemerge.
6This is obviously a significantly smaller number of runs than was carried out for the single-individual

ILM, and is due to the increased computational cost of population-level ILMs, as discussed above. Each
run of the population ILM with a medium density environment takes approximately 36 hours on a 2.5GHz
Pentium 4 processor.
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Figure 6.3: Plots of e-compositionality (top) and communicative accuracy (bottom) against time
in runs of the population ILM. (a) shows the progress of a simulation run in the sparse, structured
environment. (b) is an example of a convergent run in a medium density, structured environment.
(c) is a convergent run from a medium density, unstructured environment where c = 0:6. (d) is a
non-convergent run from the sparse, unstructured environment. (e) is a non-convergent run from
a medium density, unstructured environment with a tight bottleneck on transmission (c = 0:4).
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Learners in the population ILM observe and learn from the linguistic behaviour of be-

tween one and three cultural parents. If these cultural parents have strongly conflicting

languages, or if their languages are non-compositional, then the learner will tend to ar-

rive at a non-compositional or partially compositional system, depending on the number

of meanings in the environment (as discussed above, the e-compositionality of random

systems is sensitive to the number of meanings expressed in that system). If, on the other

hand, there is broad agreement in the linguistic behaviour of a learner’s cultural parents,

then the learner will converge on a system which is similar to that of its cultural parents,

and which exhibits a similar level of compositionality.

Stability and regularity at the individual level therefore form the basis for convergence in

the population. In structured environments, this individual-level stability emerges fairly

straightforwardly. Compositional languages have a strong advantage in such environ-

ments, due to their generalizability. When the environment is structured, individual mem-

bers of the population will converge fairly quickly on systems which are at least partially

compositional. These systems will then spread fairly rapidly through the population,

until the population converges on a communicatively optimal, compositional language.

This is reflected in the reliable emergence of compositional language in structured envi-

ronments, regardless of the degree of environment density or the severity of transmission

bottleneck. These results show that the ILM results from the previous Chapter can scale

up to the case where the population at any one time consists of more than one individual.

However, in unstructured environments stability at the individual level is rather more

difficult to achieve, due to the lack of shared feature values between meanings. This

problem can be overridden by a relatively wide bottleneck. For example, when learners

see 60% of the language of the previous generation, there is very little difference be-

tween structured and unstructured environments, as can be seen in the final distribution

of languages in Figure 5.14 in Chapter 5. The wide bottleneck allows individuals to reach

highly compositional, consistent systems. As shown in the Table, in the population ILM

these systems spread through the population — when the bottleneck is wide (c = 0:6),

highly compositional languages always emerge.

For the lower levels of bottleneck in the medium environments, and in the sparse envi-

ronment, the lack of structure in the environment is more problematic. As can be seen

from Figures 5.12 and 5.13 in Chapter 5, in the single individual ILMs, for tight bottle-

necks, unstructured environments lead to languages which are partially compositional,

and therefore only partially stable.

280



What consequences does this have in the multi-agent population model? Each learner ob-

serves and learns from the communicative behaviour of several other individuals. If these

individuals are using a partially compositional system then there will be some random-

ness in their linguistic behaviour — while a learner’s cultural parents may share some

part of the meaning-signal mapping, some of their behaviour will be random and there-

fore unlikely to be shared. This means that the learner will receive contradictory learning

input — each of their cultural parents will produce different signals for certain meanings.

As discussed above, this means that the learner’s bias and the number of meanings in

the environment become important. In the sparse environment, partially compositional

systems can still emerge — based on a set of conflicting observations, the learners tend

to arrive at a partially compositional system. The system never becomes perfectly com-

positional due to the bottleneck, which reintroduces instability.

However, in the medium density environments, such compositional systems never get off

the ground — as can be seen from the Table, highly compositional systems emerge in-

frequently in unstructured environments when the bottleneck is relatively tight (c = 0:4

or 0:5). In these circumstances, learners will be faced with a large set of contradic-

tory input. As a consequence, they will tend to acquire a non-compositional system —

as discussed above, given a large number of meanings, the majority non-compositional

mapping tends to drown out any weak compositional tendencies. As a consequence, par-

tially compositional systems do not emerge in unstructured environments — the system

of meaning-signal mappings remains random, with each individual’s system tending to

be rather different from the systems of other members of the population.

6.3.3 Summary

Communicatively optimal, compositional languages can emerge in populations through

purely cultural processes. When there is no bottleneck on cultural transmission, the fact

that learners make observations of several cultural parents increases the impact of their

learning bias, effectively allowing them to pick the system of meaning-signal mappings

which most closely matches their bias. This leads to the emergence of compositional

languages with reasonably high frequency, although only when the environment is sparse

and structured — in the absence of a bottleneck, the results are sensitive both to the

compositionality of the early systems and to the potential for spread of compositionality.

In the presence of a bottleneck, highly compositional systems emerge with high fre-

quency when the environment is structured. However, when the environment is unstruc-

tured such systems only emerge when the bottleneck is relatively wide. Convergence on
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a compositional language first requires a degree of stability at the individual level. This is

straightforwardly achieved when the environment is structured, due to the high potential

for generalisation. In unstructured environments, this stability can be achieved when the

bottleneck on transmission is not too tight. However, when the bottleneck is tight indi-

vidual members of the population never arrive at stable systems, and as a consequence

the population never converges on a shared language.

6.4 The evolution of learning biases for compositional language

We have established that compositional language can evolve through cultural processes in

a population, provided that learners have the appropriate learning bias (of the [+constructor,

+ic-preserver] classification). The final question is to investigate whether this learning

bias can evolve through natural selection for communicative success. The simulation re-

sults described in Chapter 4 suggest that one-to-one biases for vocabulary acquisition are

unlikely to evolve specifically for their communicative function, due to the time delay

between the emergence of such a bias and a communicative payoff for individuals pos-

sessing it. This should make us skeptical as to whether such a bias can evolve for the

acquisition of a (potentially) structured system of meaning-signal mappings.

The model of languages and communication is as described in Section 6.2. As discussed

in that Section, there are two possible methods of evaluating communicative accuracy

between two individuals — one which counts a communicative episode as a success only

if speaker and hearer arrive at exactly the same meaning, and one which gives partial

credit for speaker and hearer arriving at partially overlapping meanings. I will investigate

both alternatives here.

6.4.1 Genotypes, phenotypes and reproduction

The model of a phenotype communicative agent is as described in Section 6.2 — an

associative network capable of representing structured meaning-signal mappings, with

an initial set of connection weights W and a weight-update rule W .

As in the EILM for the simple associative network outlined in Chapter 4, Section 4.5, I

will assume that an individual’s weight-update rule W is genetically-encoded. A geno-

type is specified by the 4-tuple (a� a� a aÆ) where ax is an allele drawn from the set

f�1; 0; 1g. The process of mapping from a genotype to a phenotype involves converting

such a 4-locus chromosome into a hW;W i phenotype. Each weight-update rule W is

specified by a 4-tuple (� �  Æ). During genotype-phenotype mapping � is set to the
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value of allele a�, � is set to the value of allele a� and so on. The genotype therefore

specifies the phenotype’s weight-update rule. All wi;j 2 W are set to 0 — every agent

has all their initial connection weights set to 0.

To recap, there are 81 possible genotypes, which encode the 81 possible weight-update

rules discussed in Chapter 5, Section 5.4. These 81 weight-update rules can be split into

four classifications:

� 63 are classified as [�maintainer], and are therefore unable to acquire an e-compositional

language.

� 11 are classified as [+maintainer, �constructor, �ic-preserver], and are able to ac-

quire an e-compositional language, but represent it in an internally-holistic fashion.

� 5 are classified as [+maintainer, �constructor, +ic-preserver], and are able to ac-

quire an e-compositional language, but unable to maintain such a language in the

presence of a bottleneck.

� 2 are classified as [+constructor, +ic-preserver], and are able to acquire, maintain

and construct an e-compositional language.

Individuals inherit their genes from their parents. As in earlier EILMs, organisms are

haploid but sexual recombination (involving crossover, in an identical fashion to that

outlined for the previous EILMs) is used. Newly-formed genotypes are also subject to

mutation.7

6.4.2 The EILM

A gradual EILM is used — at each cohort, a single individual is selectively removed

from the population, the remaining members of the population breed according to com-

municative success to produce a new individual, and that new individual acquires its

communication system based on observations of the population’s behaviour.

Initialisation Create a population of N agents8. Each initial agent has a random geno-

type, with the allele at each locus selected randomly from the range of possible alleles.

Each initial individual’s phenotype is determined by their genotype and the genotype-

phenotype mapping.
7Point mutations occur on the newly-formed genotype with probability pm (pm = 0:04

lg
for all simula-

tions outlined in this section, where lg is the length of the genome.) Mutation involves replacing the allele
ai at the mutated locus with another allele aj 6=i, where aj is selected from the set of possible alleles.

8N = 50 for all simulations outlined in this section.
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Iteration

1. Select an individual from the population according to the death procedure outlined

below and remove it.

2. For every remaining member of the population, generate a set of meaning-signal

pairs by applying the network production process to every meaning m in the envi-

ronment E .

3. Create a new agent. The new agent inherits their genotype from their parents, who

are selected from the population according to the reproduction procedure outlined

below.

4. The new agent selects � individuals at random from the population, where � is ran-

domly selected from the range [1; � ]. The agent then selects � cultural parents at

random from among these � individuals9. The new agent receives e exposures to

the communicative behaviour produced by those cultural parents. During each of

these e exposures10 the new agent observes the meaning-signal pairs produced by

each parent for a single, randomly selected meaning and updates their connection

weights according to the observed meaning-signal pairs and their weight-update

rule W . The agent will therefore observe approximately jEj �c (E ; e) distinct mean-

ings, paired with their corresponding signals produced by each of the � parents.

5. The new agent joins the population. Return to 1.

As with the EILM outlined in Chapter 4, Section 4.5, tournament selection is used to

determine reproduction and death. During each tournament T individuals 11 are selected

from the population at random and evaluated. Each individual is scored according to their

average communicative accuracy (according to one of the two measures) when acting as

both producer and receiver with two randomly selected partners. During selection to

decide death, the individual with the lowest communicative accuracy from among the T

selected individuals ‘wins’ the tournament and is removed from the population. During

selection to decide reproduction, the individual with the highest communicative accuracy

wins the tournament and reproduces.

Note from the iteration procedure that each agent observes a subset of the language of its

cultural parents — there is a bottleneck on cultural transmission.
9� = 3 for the runs outlined here.

10e = 24 for all EILMs outlined in this section, which yields a bottleneck of c (E ; e) = 0:6 with respect
to the environment described below — each learner observes approximately 60% of the language of its
cultural parents.

11As in the simple associative network EILM, T = 3.
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6.4.3 The environment

As discussed above with reference to the population ILM, the associative network model

is computationally expensive, both in terms of memory and CPU cycles, particularly

when used in the context of a population. This is largely due to the large size of the

associative network, and the large number of analysis pairs which have to be evaluated

during production and reception.

These problems can be alleviated by reducing the number of feature values (V ) and the

size of the character inventory (j�j). To this end, for all EILMs outlined in this Section

F = 3, V = 3, lmax = 3, � = fa; b; c; d; e; fg.

This selection of F and V means that the environments used in Chapters 5 and Section

6.3 of this Chapter can no longer be used, due to the changed space of possible meanings

M. Instead, an environment is used where E = M — every possible meaning in the

meaning space is present in the environment. This allows us to simplify away from the

structured-unstructured distinction with respect to environments.

The change in environment, number of exposures (e = 24 is used in the EILM) and

also the change in the population size (N = 20 in the population ILM, whereas N =

50 in the population EILM) compared to Section 6.3 makes it necessary to rerun the

ILM with the new environment and population size. Ten runs of the ILM were carried

out, using a [+constructor, +ic-preserver] weight-update rule. All runs converged on a

communicatively optimal, highly compositional (E (O) � 0:95) language, with the mean

time to convergence being 3680 cohorts, although half of the runs converged on a stable

system within 2000 cohorts. These runs are plotted in Figure 6.4. This demonstrates that,

as before, given the appropriate learning bias, communicatively optimal, compositional

language can emerge through cultural processes given this experimental setup.

6.4.4 A negative result

Ten runs of the EILM were carried out, using the all-or-nothing evaluation of commu-

nicative accuracy given in Section 6.2 — a communicative episode was only considered

a success if speaker and hearer arrived at exactly the same meaning. Runs were allowed

to proceed for 10000 cohorts. None of these runs converged on a communicatively-

optimal or compositional communication system — all runs remained stuck with a ran-

dom, e-holistic communication system, which yields chance levels of communicative

accuracy. All populations became fixated on genotypes which encoded [�maintainer]

weight-update rules.
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Figure 6.4: Communicative accuracy against time in the ILM with the parameter setting which
will be used for the EILM. Communicative accuracy was evaluated according to the all-or-nothing
measure. All runs converge on an optimal system, although time to convergence varies consider-
ably from run to run.

These results are unsurprising. We saw in Chapter 4 that appropriate learning biases are

unlikely to evolve, given the time-lag between the emergence of such biases and a payoff

to individuals possessing them. The evolutionary task for the populations here is much

harder — only two of the 81 genotypes are any use (as opposed to nine of 81 in the

associative network EILM in Chapter 4) and cultural convergence, even given the correct

learning bias, is potentially somewhat slow.

6.4.5 A positive result: the evolution of learning biases for compositional language

A further ten runs of the EILM were carried out, using the partial credit evaluation of

communicative accuracy given in Section 6.2 — individuals receive a payoff from com-

munication which is proportional to the similarity between the meaning the speaker was

attempting to convey and the meaning the hearer arrives at.

Figures 6.5 and 6.6 show the progress of a simulation run where the population con-

structs a communicatively optimal, compositional language. This is a typical example of

a successful run. Five of the ten EILM runs were successful in this respect — learning
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Figure 6.5: The evolution of learning bias leading to communicatively optimal, compositional
language. Proportions of various groups of genotypes are given ([�m] stands for [�maintainer],
[�c] stands for [�constructor], [�ic-p] stands for [�ic-preserver]). The population’s commu-
nicative accuracy and compositionality reach maximal values with 2000 cohorts. The popu-
lation comes to be dominated by [+constructor, +ic-preserver] weight-update rules, although
[+maintainer, �constructor, +ic-preserver] weight-update rules do drift in and out after 2000
cohorts.

biases supporting the cultural evolution of a compositional language emerge 50% of the

time. Figure 6.7 shows the relationships between the population’s average communica-

tive accuracy, e-compositionality and the proportion of individuals in the population with

weight-update rules encoding [+constructor, +ic-preserver] weight-update rules. There

is a clear relationship — as the number of [+constructor, +ic-preserver] individuals in

the population increases, so too does compositionality and, latterly, communicative ac-

curacy.

In Chapter 4, we saw that the evolution of one-to-one biases for vocabulary acquisition

consisted of three stages — an initial stage of drift, a stage of selection for the appropri-

ate learning biases, then a further stage of drift. This same three-stage process is evident
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Figure 6.6: The first 2000 cohorts of the simulation run in Figure 6.5. At about 900 cohorts
the population is dominated by [+maintainer, �constructor, �ic-preserver] individuals. There
are also a small number of [+constructor, +ic-preserver] individuals present. The numbers of
the [+constructor, +ic-preserver] individuals increases sharply from 900 cohorts, and as a con-
sequence the communicative accuracy and e-compositionality of the population’s language in-
creases to maximum values.

in runs where learning biases supporting communicatively optimal, compositional lan-

guage emerge. Figures 6.8–6.11 plot the relative communicative accuracies (rcas) for

four classes of genotypes in this run. As can be seen from these Figures, the first 2000

cohorts of the simulation run consists of a stage of drift, followed by a stage of selection.

The initial drift stage lasts from 0 to 900 cohorts. During this time the rca of all four

classes of genotypes remains around 1, indicating that no genotype is associated with

above-average levels of communicative accuracy. Access to breeding in the population is

random for this time. Genetic drift results in an increase in the numbers of [+maintainer,

�ic-preserver] individuals (incapable of constructing an optimal system through a bot-

tleneck), and later an increase in the number of [+constructor, +ic-preserver] individuals

(capable of constructing such a system).
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Figure 6.7: The relationship between communicative accuracy, e-compositionality and propor-
tion of [+constructor, +ic-preserver] individuals in the successful run.

The mini peak of [+constructor, +ic-preserver] individuals results in the beginnings of

a communicatively useful, partially compositional system of meaning-signal mappings.

Consequently, individuals with such genotypes, who are capable of acquiring and con-

tributing to the construction of such a system, receive a communicative payoff — rca

for these genotypes rises above 1, they receive disproportionate access to breeding roles

and their numbers increase sharply in the population. rca for other genotypes (partic-

ularly [+maintainer, �ic-preserver] genotypes, which form a significant proportion of

the population up until 900 cohorts) drops below 1, and their numbers decrease sharply.

Individuals with genotypes which make them capable of acquiring and constructing an

optimal, compositional language are selected for, to the detriment of other genotypes.

This selection proceeds until the population consists entirely of [+constructor, +ic-

preserver] individuals. Shortly after, compositionality and communicative accuracy reach

maximum levels — the population converges on a communicatively optimal, composi-

tional language. A second period of drift then ensues. During this period, as can be

seen in Figure 6.5, [+maintainer,�constructor, +ic-preserver] individuals are introduced
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Figure 6.8: The relative communicative accuracy of individuals with [+constructor, +ic-
preserver] weight-update rules. This value fluctuates around 1, and is clearly above one for the
period from 900 to 1200 cohorts, at which point the numbers of such individuals increase sharply.
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Figure 6.9: The relative communicative accuracy of individuals with [+maintainer,
�constructor, +ic-preserver] weight-update rules. These individuals are not present in signifi-
cant numbers in the early stages of the run.
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Figure 6.10: The relative communicative accuracy of individuals with [+maintainer,
�constructor, �ic-preserver] weight-update rules. The numbers of these individuals increases
from 200 to 600 cohorts. However, the fact that their rca remains at 1 suggests that this in-
crease is due to drift. Their numbers drop sharply from 900 cohorts, at which point the num-
ber of [+constructor, +ic-preserver] individuals increases sharply. The rca of [+maintainer,
�constructor, �ic-preserver] drops below 1 around this point.
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Figure 6.11: The relative communicative accuracy of individuals with [�maintainer] weight-
update rules. Their numbers decline from 200 to 700 cohorts. The fact that their rca remains
around 1 at this point suggests that this is due to drift.
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into the population, and their numbers fluctuate randomly, although generally remain-

ing fairly low. We saw in Chapter 5 that individuals using [+maintainer, �constructor,

+ic-preserver] cannot maintain an optimal compositional system in a single-agent ILM.

However, in a mixed population with [+constructor, +ic-preserver] individuals, given a

reasonably wide bottleneck on transmission, such individuals can maintain the optimal

system, provided their numbers do not get too great. Consequently, drift allows them

to enter the population. At around 7500 cohorts they make up 50% of the population.

At this point, they begin to lose the optimal system, the population’s overall commu-

nicative accuracy drops somewhat, and the [+maintainer, �constructor, +ic-preserver]

individuals are selected against until their numbers drop to lower levels.

The successful runs of the EILM therefore exhibit the same three-stage process of drift-

selection-drift that we saw in Chapter 4, although the second period of drift is somewhat

more constrained. The emergence of the optimal learning bias is therefore dependent on

an initial period of drift. In the EILM in Chapter 4 this resulted in a very low number

of runs converging on optimal system. In this EILM 50% of runs converge on optimal

systems. Why?

The partial-credit measurement of communicative accuracy plays an important role — if

the all-or-nothing measurement is used, optimal systems never emerge. The partial-credit

measurement reduces the time it takes individuals with [+constructor, +ic-preserver]

weight-update rules to get some communicative payoff, and therefore reduces the pe-

riod of vulnerability to drift. Individuals who learn using [+constructor, +ic-preserver]

weight-update rules will not necessarily arrive at the same overall system of meaning-

signal mappings, but they may, based on commonalities in the observable behaviour they

learn from, arrive at a shared system of mappings from one or two feature values to sig-

nal substrings. In the all-or-nothing measurement of communicative accuracy, there is no

reward for this — the whole meaning must be correct. However, under the partial-credit

scheme, these individuals will receive some small communicative payoff, and therefore

be more likely to breed and add more [+constructor, +ic-preserver] individuals to the

population. The partial-credit measurement of communicative accuracy smoothes the

fitness landscape, making the evolution of appropriate learning biases more straightfor-

ward.

A second reason that appropriate learning biases evolve so rapidly is due to the speed

of cultural convergence in the EILM — the population moves from random levels of

communicative accuracy to optimal levels in around 300 cohorts. As discussed in Chapter

4, speed of cultural convergence plays an important role in the EILM, with a reduction in
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the time to cultural convergence leading to less sensitivity to drift and consequently more

frequent genetic convergence.

The fact that the population in the EILM converges so quickly appears to be at odds

with the results from the ILM discussed in Section 6.4.3 above — in a pure ILM, con-

vergence takes on the order of thousands, rather than hundreds, of generations. There

are two factors that can explain this disparity. Firstly, in the EILM there is (weak) natu-

ral selection of cultural variants, which weeds out systems of meaning-signal mappings

which offer below-average communicative accuracy. Secondly, and more importantly, in

the ILM the initial system is completely random. In the EILM, at the point where the

construction of the optimal system takes off, the population’s communication system is

not entirely random — 1000 cohorts of ‘preparatory’ cultural evolution have occurred

in the population. This preparatory stage ensures that new individuals entering the pop-

ulation will observe and learn from linguistic behaviour which has common elements.

These common elements will be tend to be picked out by [+constructor, +ic-preserver]

individuals, who will consequently share some subset of the system of meaning-signal

mappings with other [+constructor, +ic-preserver] individuals, thereby reducing the time

to cultural convergence.

6.4.6 Summary

Learning biases which lead to the evolution of communicatively optimal, compositional

language can evolve through natural selection acting on genetic transmission. However,

this only occurs when the partial-credit measurement of communicative accuracy is used.

This measurement ensures that individuals with appropriate learning biases receive a

fitness payoff fairly rapidly.

Even with the partial-credit measurement scheme, learning biases for compositionality

only emerge 50% of the time. This is due to a dependence on genetic drift — as seen in

Chapter 4, successful runs exhibit a drift-selection-drift pattern, where the initial period

of drift is required to provide appropriate genotypes in sufficient numbers for cultural

evolution to get underway. In the structured model of communication, there is less de-

pendence on this initial period of drift, due to the partial-credit evaluation function and

the rapid cultural convergence observed in the population. However, the fact remains that

this initial period of drift is necessary — there is no immediate advantage in being biased

to acquire a communicatively optimal, compositional language in a population which has

no established communication system.
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6.5 Discussion

What can the results from the Evolutionary Iterated Learning Model tell us about the

evolution of language acquisition biases in humans? Much of the discussion relating to

the evolution of vocabulary acquisition biases given in Chapter 4 remains pertinent. We

can either draw a positive conclusion, and argue that these results show that human-like

learning biases canevolve through natural selection, or we can take a negative position

and argue that these results show that learning biases in humans must have arisen by

(initially) non-adaptive mechanisms.

The negative conclusion remains the strongest one — despite the comparatively high

level of success in the EILM using the partial-credit communicative accuracy evaluation,

the point remains that the evolution of one-to-one biases requires an initial, fortuitous pe-

riod of genetic drift. The natural conclusion to draw from this is that some mechanisms

other than natural selection for communication must have provided appropriate geno-

types in sufficient numbers to allow the cultural construction process to get underway.

As discussed in Chapter 4, perhaps this one-to-one property was an incidental feature of

some learning apparatus which evolved for some other purpose (i.e. the one-to-one bias

is a spandrel). Alternatively, the appropriate learning bias may have evolved for some

other function, then been pressed into service for communication.

These results do suggest an interesting alteration to the positive interpretation, however.

Comparison of the EILM results in this chapter and those in Chapter 4 show that one-to-

one learning biases are more likely to evolve when the communication system is poten-

tially structured, given the partial credit fitness function. This suggests that an appropri-

ate learning bias is more likely to evolve for the acquisition of a structured language than

an unstructured language — the possibility of regularities in subparts of the meaning-

signal mapping smoothes the fitness landscape and simplifies the evolutionary problem.

In other words, if we accept the positive interpretation, the models in this Chapter and

Chapter 4 show that evolution is more likely to go the whole hog and evolve a learning

bias for language, rather than evolving a learning bias for unstructured vocabulary then

later elaborating this bias.

6.6 Summary of the Chapter

In the first part of this Chapter I demonstrated that compositional language can emerge

in populations of linguistic individuals through cultural processes, given a bottleneck on

cultural transmission, a structured environment and the appropriate learning bias. I then
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went on to show that this learning bias can evolve under natural selection for communi-

cation. However, the evolution of this bias is dependent on an initial period of genetic

drift — there is no immediate advantage to individuals possessing the appropriate bias

in a population with no established communication system. The results and discussion

from Chapter 4 therefore pertain to the evolution of learning biases for structured com-

munication — such biases may best be explained as a spandrel or exapted trait.
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CHAPTER 7

Conclusions

I began this thesis by highlighting three features which, in combination, make language

unique among the communication systems of the natural world — language is the only

communication system which is culturally transmitted and symbolic and compositional.

Theories of the evolution of language must explain the origins of these three distinctive

features of language.

A recurring theme of this thesis has been to explain the latter two hallmarks of language

in terms of the first — to explain the conventionalised symbolic vocabulary and compo-

sitional structure of language as features which arise during the cultural transmission of

language. Pressures acting on language during cultural transmission result in the emer-

gence of conventionalised symbolic vocabulary and compositional linguistic structure,

through the adaptation of the linguistic system to the medium of cultural transmission.

A feature of this thesis has been the extensive reference to, and use of, formal models

— as discussed towards the end of Chapter 1, theories of language evolution typically

appeal to the interactions between several complex adaptive systems, and our intuitions

about the behaviour of these kinds of systems are notoriously poor. Formal modelling

techniques, such as those I have outlined here, allow us to investigate the outcomes of

complex adaptive processes, and, by experimentation, to uncover underlying regularities

and determinants of the behaviour of such systems. This kind of experimentation has al-

lowed me to identify what I consider to be the two key determinants of linguistic structure

— a bottleneck on cultural transmission and a one-to-one bias in language learners.

Can other features of language be explained as a consequence of pressures acting on lan-

guage during cultural transmission? The comparison of design features of language and

other communication systems carried out in Chapter 1 suggests that duality of patterning,
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whereby a small number of meaningless elements (phonemes) are combined to form a

large number of meaningful elements (words), may be a fourth unique characteristic of

language. Duality of patterning seems to be a prime candidate for explanation by this kind

of cultural adaptation account. We can envisage a scenario under which agents produce

sequences of articulatory gestures, initially without any underlying system of phonemic

coding, which are reinterpreted over cultural time as sequences of gestures represent-

ing underlying phonemic representations. Formal models have demonstrated that, for

vowel systems at least, this kind of cultural self-organisation can lead to the emergence

of phonemic coding systems, via reinforcement learning (e.g. de Boer (2000), de Boer

(2001)) or a coupling of sensory and motor systems (Oudeyer 2002).

These models of the emergence of phoneme systems need to be extended to explain

the combination of phonemes to form words. However, the initial results of de Boer

and Oudeyer, in conjunction with the research on symbolicism, compositionality and

recursion reviewed and described in this thesis, suggest that cultural processes may offer

a powerful and general explanation for most of the hallmarks of human language.

In Chapter 2 I introduced Boyd & Richerson’s (1985) general model of cultural transmis-

sion, and discussed more language-specific treatments of cultural processes. There are

three main issues in treating language as a culturally transmitted system. The first is to

identify the units of cultural replication. It may be the case that there is no true replica-

tion in a cultural system — the cycle from E-language to I-language means that there is

no direct replication of either E-language or I-language. The second problem is identify-

ing the cultural traits of interest. Given that the formation of I-language is dependent on

observation of E-language, and the production of E-language is dependent on an under-

lying I-language, both (or neither) external and internal language may be considered as

culturally transmitted traits.

I have followed Boyd & Richerson’s assumption, implicit in Boyd & Richerson (1985)

and explicit in Boyd & Richerson (2000), that we can ignore such issues, at least until we

have established the usefulness of cultural approaches to explaining the human behaviour

of interest. As Boyd & Richerson put it,

“ [i]f the application of Darwinian thinking to understanding cultural change

depended on the existence of replicators, we would be in trouble. Fortu-

nately, culture need not be closely analogous to genes. Ideas must be gene-

like to the extent that they are somehow capable of carrying the cultural in-

formation necessary to give rise to cumulative evolution of complex cultural

patterns that differentiate human groups . . . this can be accomplished by a
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most ungene like, replicatorless process of error-prone phenotypic imitation.

All that is really required is that culture constitutes a system maintaining

heritable variation” (Boyd & Richerson 2000:158).

In other words, we can ignore the precise mechanisms underlying cultural transmission,

provided that we accept that cultural transmission, or cultural heritability, is possible in

some sense. The Darwinian theory of evolution by natural selection was conceived, and

broadly accepted, in spite of the lack of a precise understanding of the units underlying

biological heritability, or the units of biological replication. Theories of cultural evolution

should be allowed similar leeway, at least for the time being.

The third problem of modelling the cultural transmission of language concerns the na-

ture of the primary linguistic data available to learners. I have assumed throughout this

thesis that learners observe meaning-signal pairs produced by other members of their lin-

guistic community. I have further assumed that the mental representations corresponding

to meanings are shared within a population and, in the case of the models of structured

language discussed in Chapters 5 and 6, that these meanings are structured. My posi-

tion has been similar to that of Schoenemann in that I “ take for granted that there are

features of the real world which exist regardless of whether an organism perceives them

. . . [d]ifferent organisms will divide up the world differently, in accordance with their

unique evolved neural systems . . . [i]ncreasing semantic complexity [or meaning space

structure] therefore refers to an increase in the number of divisions of reality which a

particular organism is aware of” (Schoenemann 1999:318). Similarly, I take it that per-

ception of structure in the environment is a consequence of focusing on regularities in

the real world which exist regardless of whether organisms perceive them. This capac-

ity for structured semantic representations may form a preadaptation for language, or as

discussed below, may co-evolve with linguistic forms.

Under this set of assumptions, I have shown that cultural evolution can deliver up some

of the characteristic structure of language. But how safe are these assumptions?

As discussed in Chapter 2, there is some evidence that human infants can deduce the

meaning which should be associated with an utterance, through strategies such as inten-

tional inference (Baldwin 1991; Baldwin 1993a; Baldwin 1993b; Tomasello & Barton

1994; Tomasello et al.1996), and biases to attend to, for example, whole objects (Gen-

tner 1982; Macnamara 1982). However, I am not suggesting that this process is error

free. It has been argued that if this process wereerror free, and humans were effectively

telepathic, then there would be no need to produce utterances at all. I think this is per-

haps over-stating the case. We might accept that the process of identifying the referents
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of nouns like “book” or verbs like “ jump” were error-free, while simultaneously accept-

ing that the process of deducing the meaning associated with utterances such as “Last

Tuesday, my brother told me he was in love with a widow” would be error-prone — the

straightforward deduction of the meaning of simple terms might form a building block

for the acquisition of some language, which then allows the acquisition of more opaque

terms by syntactic context, more complex processes of deduction and so on. As a further

defence, it has been demonstrated that the basic Expression/Induction framework can

work even if we assume that the observation of meaning is error-prone (Hurford 1999)

— if we weaken the assumption that learners receive error-free meaning-signal pairs, the

whole E/I approach does not come crashing down.

Formal modelling approaches have been used to tackle the issue of language evolution in

the absence of explicit meaning transfer (e.g. Steels (1997), Steels (1998), Smith (2001a)

and Smith (forthcoming)). These demonstrate that stable communication systems can

emerge if we do not assume that learners are presented with meaning-signal pairs. In

these models, learners are instead presented with a signal and a set of objects in a sim-

plified world, where one feature of one of the objects is the referent of the signal. These

models have been broadly interpreted as showing that explicit meaning transfer is an

unnecessary assumption, and therefore should not be made. I would draw the opposite

conclusion: these models show that not too much rests on the assumption of explicit

meaning transfer, therefore we should make this assumption in the interests of simplicity.

However, these models are still extremely valuable in that they shed light on a second

issue related to the observation of meaning: how do members of a population converge

on a shared set of meanings, and how are these meanings structured?

Andrew Smith (Smith forthcoming) demonstrates that agents will only arrive at simi-

lar semantic representations through self-organisation if they 1) construct meanings in

an intelligent way, so that they discriminate objects in the world from other objects in

the world and 2) inhabit a world which is “clumpy” , such that objects cluster together

in object space, rather than being randomly distributed throughout the space of possible

objects. I have assumed that all members of a population have access to a set of shared

semantic representations. Smith shows that such shared semantic representations are es-

sential for successful communication within a population, if we assume an observational,

rather than reinforcement, learning paradigm. It is intriguing to note that Smith finds the

emergence of such shared semantic representations only where the world is clumpy, and

I find that compositional languages emerge most frequently when the shared semantic

representations are “clumpy” (i.e. occupying a structured subspace of the space of pos-

sible meanings). This suggests a scenario where a world exhibiting a certain limited and
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regular degree of variation in the objects it permits leads to the formation of shared se-

mantic representations in communicative agents, which in turn leads to the emergence of

a shared, compositional language.

The second half of Chapter 2 was spent outlining Boyd & Richerson’s taxonomy of

pressures operating on cultural transmission — natural selection of cultural variants,

guided variation, and biased transmission (which can be further subdivided into directly-

biased transmission, indirectly-biased transmission and frequency-dependent bias). As

discussed in that Chapter, all of these processes have been implicated in the cultural evo-

lution of language. In this thesis I have focussed almost exclusively on directly-biased

transmission, specifically cultural evolution resulting from learner biases with respect to

the one-to-one nature of meaning-signal mappings, although in Chapter 3 I briefly con-

sider the possibility of the natural selection of cultural variants. This force turns out to be

weak in comparison to the pressure arising from learner biases — learner biases tend to

eliminate the cultural variation which natural selection feeds upon.

Chapters 3–6 constitute the bulk of the thesis, and outline original research into the cul-

tural and biological evolution of language and language-learning biases. In Chapter 3 I

show that a bias in favour of one-to-one mappings is required for the cultural evolution

of a symbolic, communicatively functional vocabulary. I further argue that this bias is

present in humans. In Chapter 5, I demonstrate that a one-to-one bias is necessary for

the cultural evolution of compositionally-structured language, although such languages

only emerge frequently when there is a bottleneck on cultural transmission. Once again,

I show that children appear to bring precisely this kind of bias to the language acquisition

task.

The theme of Chapters 3 and 5 is that one-to-one biases play a crucial role in the evolution

of language, and that one-to-one biases apply during language acquisition by human

infants. The clear implication of these Chapters is therefore that linguistic structure may

be a reflex of human learning biases applied to the cultural transmission of language,

rather than a consequence of an innate specification of linguistic structure. A strong

nativist might argue that linguistic structure is prespecified, and in order to understand

language we need only to understand this innate prespecification. My position is that

language is only prespecified in the sense that language learners come to the language

learning task with an innate learning bias. Understanding this learning bias is important,

but not the whole story — we also have to understand how the learning bias interacts with

the medium of cultural transmission. It is only through this interaction that linguistic

structure emerges. For example, if there is no bottleneck on cultural transmission then

the one-to-one learning bias does not lead to the reliable emergence of compositional
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structure. However, a bottleneck on transmission radically changes this picture — the

bottleneck forces language to be generalisable, and this pressure, in combination with

the biases of learners, leads to the emergence of compositionality. Compositionality is

not specified entirely in the learner, but emerges through the interactions between learner

biases and transmission of linguistic structure on a cultural substrate (Brighton et al.

forthcoming).

There are several important implications, and potential elaborations, of the research de-

scribed in Chapters 3 and 5. Firstly, it highlights the importance of one-to-one biases in

explaining the cultural evolution of linguistic structure. Learning bias has typically taken

a back seat in explanations of linguistic evolution, with the role of the transmission bottle-

neck and the resultant pressure to generalise receiving more attention. However, Chapter

5 demonstrates (both through my original modelling and a review of the learning biases

used in Kirby (2002), Batali (2002) and others) that one-to-one biases are crucial for

the evolution of compositionality. I suspect that we might find them to be important on

almost every level of linguistic structure.

Generalisation alone leads to the loss of linguistic structure — the generalisation that

any meaning can be expressed by any linguistic form covers all possible combinations of

data, and subsumes all other generalisations. We therefore might expect, given a pressure

to generalise, that the most stable (or only stable) system would be one which maps

any meaning to any form. This is clearly not what we see in language — there must

be something counteracting the pressure to generalise in an unconstrained way. When

considering this possibility, Hurford concludes that natural selection (of cultural variants

or of genetic variants) must be responsible for preventing overgeneralisation:

“ in hearing a particular syllable used to express a particular atomic meaning,

an acquirer might in theory make the absurd overgeneralization than anysyl-

lable can be used to express any meaning . . . [a]ny tendency to make over-

generalizations of such an absurd kind would presumably be eliminated by

natural selection based on success in correctly divining a speaker’s meaning

and/or successfully signalling ones own meaning. Any mutant [cultural or

biological] displaying any tendency to generalize from the primary linguis-

tic data in ways which will lead to her being misunderstood, as she would

be if she used any form to convey any meaning, will be at a disadvantage.”

(Hurford 2000:348).

We can probably rule out natural selection acting on overgeneral cultural variants —

as discussed above, such pressures are fairly weak in comparison to those arising from

302



learner biases, and are also likely to be weak in comparison to the pressure to gener-

alise arising from a bottleneck on transmission. This leaves us with Hurford’s (intended)

conclusion, that natural selection must weed out individuals who are capable of learning

in an overgeneral way. This of course implies that the learning capacity with respect to

generalisation is genetically encoded. I would further argue that this genetically encoded

constraint on generalisation comes in the form of a bias in favour of one-to-one mappings

between meanings and signals — such biases constrain generalisations in preciselythe

right way. They allow the bottleneck on transmission to determine the degree of general-

izability of the linguistic system, while at the same time constraining the system so that

communicative function is maximised.

Let me take a more concrete example. In the G&B framework of syntactic analysis, ref-

erence is commonly made to a general movement operator, move-�. Move-� states that

any element in a syntactic structure can be moved to any other position in that syntactic

structure. Of course, this generates syntactic structures which no speaker of a language

would accept as grammatical. Move-� is therefore constrained in certain ways — for ex-

ample, in terms of the possible landing sites of the moved element or in terms of “ islands”

from which elements may not move.

Move-� is clearly an overgeneralisation. This generalisation would have a high yield in

cultural terms, and we might therefore expect it to emerge over cultural time, given a bot-

tleneck on transmission. The fact that unconstrained movement does not occur suggests

that there is some counteracting force at play. This could be a consequence of an arbi-

trary bias in learners, resulting from the structure of internal representations or from the

wiring of the language centers of the brain. However, it could also be a consequence of

a preference for one-to-one mappings between underlying semantic representations and

surface forms. Unconstrained application of move-� would scramble such relationships,

potentially beyond repair. A preference for one-to-one biases would constrain movement

so that, by and large, the correspondence between underlying semantic forms and surface

forms is preserved.

A second implication, if we accept that one-to-one biases have an important role to play

in shaping linguistic evolution, is that more research should focus on identify these biases

(or their absence) in the process of language acquisition. The Contrast/Mutual Exclusiv-

ity bias has been fairly well established, and I have suggested that similar experiments

could be used to identify a bias against homonymy in lexical acquisition. One-to-one

biases in the acquisition of structured linguistic form might be more difficult to isolate

experimentally. However, language acquisition in naturalistic circumstances provides
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fairly good evidence on this, and the reanalysis of existing data in terms of one-to-one

biases might shed further light on this issue.

Hauser et al.(2002) emphasise the importance of cross-species comparison in informing

theories of language evolution. I would suggest that one-to-one biases provide an ideal

candidate for this type of comparative approach. The tests for Contrast/Mutual Exclu-

sivity, and the proposed test for a bias against homonymy, are fairly simple experiments

which should be relatively straightforward to apply to non-human species, or at least

the higher primates. However, to date only a single such experiment has been carried

out (Lyn & Savage-Rumbaugh 2000), using two subjects, and the results are somewhat

equivocal.

In the concluding sections of Chapters 3 and 5 I make the point that one-to-one biases

in the learner are not the only possible biases at play in the cultural transmission of lan-

guage — in particular, there are two further pressures, summarised by Langacker (1977)

as pressures for signal simplicity (a least-effort preference on the part of individuals pro-

ducing utterances) and code simplicity (a bias, in learners, against having to memorise

large numbers of fixed expressions, such as words). I pointed out that these two pressures

work with any one-to-one bias in learners in eliminating synonymy, but work againstthe

one-to-one bias by favouring homonyms. This was advanced as one possible explanation

for the fact that homonyms are fairly common in language, whereas synonyms are not. A

worthwhile extension to the models in Chapter 3 and (particularly) Chapter 5 would be

to introduce an explicit treatment of such pressures. This would show whether stability

is a possibility given a tension between several learner/speaker biases and, if so, what

structure the linguistic systems exhibits at stable states.

A second possible line of extension is to consider a fuller range of pressures operating

at the level of the Arena of Use, the interface between the grammatical competence of

one individual and the primary linguistic data of another. The transmission bottleneck is

one aspect of the Arena of Use (an infinitely expressive competence is represented only

by a finite number of utterances), as is the proposed bias in favour of signal simplicity.

However, there are other possible pressures which could act at this level. Firstly, there are

aspects of the poverty of the stimulus other than the transmission bottleneck. In Chapter 1

I summarised Pullum & Scholz’s (2002) analysis of aspects of the poverty of the stimulus

problem, which I repeat here.

1. Children are not specifically or directly rewarded for their advances in language

learning.
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2. Children’s data-exposure histories are finite, but they acquire an ability to produce

or understand an infinite number of sentences.

3. Children’s data-exposure histories are highly diverse, yet language acquisition is

universal.

4. Children’s data-exposure histories are incomplete in that there are many sentences

they never hear, yet can produce and understand.

5. Children’s data-exposure histories are solely positive — they are never given details

of what is ungrammatical.

6. Children’s data exposure histories include numerous errors, such as slips of the

tongue and false starts.

The transmission bottleneck corresponds to points 2 and 4 in this list, and possibly point

3 — diversity of input might be a consequence of taking a small sample from an infinite

set. Diversity of input might also add a further pressure for generalisation. Consider the

case where children receive learning input both from adults, and from other children. If

each child receives different input from adults, this will tend to lead different children to

converge on different grammars. However, if children also learn from one another, there

will be a pressure for the children to converge on a grammar which is more general than

that suggested by each individual’s input from adults — learner-learner contact might

force children’s grammars to accept the union of the sets of sentences produced by the

(adult) cultural parents of each child. Similarly, point 5 in the list above might introduce

a bias towards generality — the lack of explicit negative evidence will tend to allow

children to misconverge on superset grammars. The possible consequences of the first

and final points in this list of aspects of the poverty of the stimulus are less obvious.

Finally, pressures arising from the passage of language through the Arena of Use might

offer one possible explanation for iconicity in syntax. Iconicity has been used as a fairly

general term which subsumes what I have called isomorphism, the one-to-one relation-

ship between semantic representations and surface structures. Iconicity has also been

invoked to cover cases where linguistic form appears to mirror non-linguistic reality.

McMahon (1994) gives the scarcity of languages where objects precede subjects as a

possible example of iconicity — this phenomenon “might be ascribed to the greater rel-

evance or perceptual salience of the Subject in real-world situations; in linguistic repre-

sentations of those situations, the Subject therefore comes first” (McMahon 1994:86). If

this type of iconicity is to arise anywhere, it must be in the Arena of Use.

In Chapters 4 and 6 I describe models designed to test whether natural selection acting on

genetic transmission can identify learning biases which lead, through cultural processes,
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to optimal (and compositional, in Chapter 6) communication. The main result of these

Chapters is to show that this was not the case, or at least not reliably so. The cultural

evolution of a functional communication system takes time, and consequently there is

no immediate fitness payoff for individuals who are appropriately biased. This leads

to random genetic transmission in the early stages of the construction process, which

can stop cultural evolution before it gets started. These experiments support the general

logical point that there is no advantage in being able to acquire an optimal communication

system if there is no meaningful communication system to acquire.

These experiments indicate to me that the default assumption about the evolution of the

human language acquisition biases should be non-adaptationist, rather than adaptationist.

Even in the simple models in Chapters 4 and 6, with a fairly simple genetic search space

and strong selection pressure acting in favour of successful communication, such biases

are unlikely to evolve. It therefore seems safer to conclude either that the biases applied

to the acquisition of language either a) originally evolved under selection pressure for

some other function or b) did not evolve for any specific function, but are a spandrel, a

coincident feature of some learning apparatus which was selected for. On the face of it,

this is a rather frustrating conclusion — while I give a strong argument on the learning

biases required for language, my account of the evolution of such biases appeals to extra-

linguistic factors.

However, things are not as bleak as all that. Firstly, I am not ruling out the possibility of

evolutionary reappropriation followed by adaptation specifically for language. For exam-

ple, the human language learning biases might have evolved for some other purpose, then

been pressed into service for language and subsequently specialised solely for language.

I would also allow the possibility that the appropriate learning biases arosefor some non-

linguistic or general purpose, but were almost immediately identified as being good for

communication and spreadwidely as a direct result of their utility for communication.

In part because of the rather unsatisfactory conclusions forced upon us by the results of

Chapters 4 and 6, this area is ripe for further exploration. I have focussed on the assump-

tion that learning biases are genetically encoded. An intriguing alternative possibility is

that they are learned. Quinn (2001) shows that the capacity to communicate can evolve

in populations which originally do not communicate, and are not pre-configured for com-

munication. The cultural parallel to this would be to show that the capacity to learn from

others was itself a learned capacity. More subtly, individuals might learn which type of

learning is best for acquiring a communication system, in which case I anticipate they

would learn to apply a one-to-one learning bias. Of course, the evolution of the meta-

learning process, whereby individuals learn to learn from others, then has to be explained.

306



One possibility is that this meta-learning capacity is rooted in our understanding of others

as intentional agents.

A second implication of these results relates to the role of the Baldwin effect in explaining

language evolution. The Baldwin effect has received a great deal of attention of late (wit-

ness Jackendoff’s comment that he “agree[s] with practically everyone that the ‘Baldwin

effect’ had something to do with it [language evolution]” (Jackendoff 2002:237)), but it is

not clear how the Baldwin effect relates to accounts of biological evolution of a learning

bias which effects cultural evolution. The Baldwin effect predicts that behaviours which

are initially learned tend to become innate — in other words, genes adapt to fit cultures.

However, in my models the opposite is true — cultures adapt to fit genes, because genes

encode learning biases which guide cultural evolution. What would Baldwinian evolu-

tion look like in this framework? We could envisage a scenario where the genes encode

a range of strengths of bias. The emergence of a weak bias, say in favour of one-to-one

mappings, results in the emergence of cultural traits conforming to this bias. Via the

Baldwin effect, stronger and stronger forms of the one-to-one bias then evolve biologi-

cally, to allow individuals to reliably acquire the dominant cultural trait. Learned traits

do not strictly speaking become innate, but learning becomes more restrictive and more

biased. This seems to me to be a form of the Baldwin effect which is very appealing

for explaining language evolution — we do not necessarily want to say that there is a

tendency for language to become innate, but we might want to say that there has been

evolution to more and more constraining forms of learning.

Finally, Chapters 4 and 6 indirectly highlight the importance of population dynamics in

understanding the cultural evolution of language. In Chapter 4, the spatial organisation

of populations was shown to have consequences for the speed of cultural evolution in

those populations, which in turn impacted on the biological evolution of learning biases.

In Chapter 6, in the population Iterated Learning Model, factors such as the number of

cultural parents each individual has impacts on the possibilities for cultural evolution.

It is reassuring that these models are sensitive to population structure and population

dynamics — as discussed in Chapter 1, population dynamics play a role in creolization

events, and the population dynamics have to be in some sense ‘ right’ before creolization

can take place (Ragir 2002). However, it is not clear what the right population dynamics

are, or why precisely these matter. Computational modelling could be profitably applied

to the investigation of such questions.

To summarise, the central theme of this thesis has been to explain the unique features of

language in terms of the cultural adaptation, by language, to two pressures:
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1. a pressure to be generalisable, arising from a bottleneck on cultural transmission

2. a pressure to conform to a learner preference for one-to-one mappings between

meanings and signals, and parts of meanings and parts of signals.

Linguistic structure is not specified entirely in the learner, but emerges through the in-

teractions between learner biases and transmission of linguistic structure on a cultural

substrate.
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APPENDIX A

Mathematical models of transmission

In this appendix I will present details of mathematical models of cultural and genetic

transmission. In Section A.1 I outline B&R’s treatment of cultural transmission and the

factors influencing cultural evolution. In Section A.2 I outline a simple mathematical

model of genetic transmission and biological evolution by natural selection. Finally, in

Section A.3 I describe the mathematical details of B&R’s model of the dual transmission

of cultural traits and a genetically-encoded direct bias.

A.1 Models of cultural transmission

This Section covers B&R’s basic models of unbiased cultural transmission (Section A.1.1),

and their treatment of the various pressures acting on cultural transmission (Section

A.1.2).

A.1.1 Basic cultural transmission models

A.1.1.1 Transmission of dichotomous traits

B&R provide a simple model of the cultural transmission of a dichotomous trait, where

individuals are either characterised as having cultural trait c or d. p is the proportion

of individuals in the population with cultural variant c, and 1 � p is the proportion of

individuals with variant d. p0 is the proportion of individuals in the population with

cultural variant c after cultural transmission.

Each individual acquires their cultural variant based on their observations of the cultural

variants of n cultural parents, or models. The probability that a naive individual acquires

variant c based on the behaviour of n models is therefore:
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Prob(individual = cjX1; : : : ; Xn) =
nX
i=1

AiXi

where Xi = 1 if the ith model possesses variant c and Xi = 0 if the ith model possesses

variant d, Ai is the probability that the naive individual acquires the variant of the ith

model and
P

iAi = 1. Ai therefore gives the importance of the ith cultural parent in the

enculturation process.

Given this equation we can now calculate p0, the proportion of individuals with variant c

after cultural transmission. For this we require the probability that a given set of models

(X1; : : : ; Xn) is formed, Prob(X1; : : : ; Xn). This leads to:

p0 =
1X

x1=0

: : :
1X

xn=0

Prob(cjx1; : : : ; xn)Prob(X1 = x1; : : : ; Xn = xn)

In other words, the proportion of individuals with variant c is equal to the probability that

an individual will acquire variant c based upon exposure to a specific set of n models,

multiplied by the probability of the formation of that set of models and summed over all

sets of models. p0 therefore depends on the probability of forming sets of models. If we

assume that the probability of any cultural parent possessing variant c is equal to p (i.e.

cultural parents are drawn at random from the population) then it can be shown that cul-

tural transmission leaves the frequency of cultural variants in the population unchanged

i.e.

p0 = p

Therefore, if the original population exhibits variation for some cultural trait, cultural

transmission itself will not reduce that variation or alter the distribution of variants, as-

suming random selection of cultural parents — cultural transmission alone will not lead

to cultural evolution or cultural adaptation.

A.1.1.2 Transmission of continuous traits

In the continuous trait model each individual is characterised by a single number, X ,

representing the value of their culturally-acquired character. In this case a population

cannot be characterised by the proportion of one cultural variant, as in the dichotomous

character model, but must rather be modelled as a distribution over values of X , P (X).
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Making the simplifying assumption that P (X) can be approximated by a normal distri-

bution allows a population to be characterised by the mean value of X in the population,

X and the variance of X in the population, V .

B&R consider how a blending inheritance model would alter the mean and the variance

of a cultural characteristic in a population. As in the dichotomous model, each naive

individual is exposed to the behaviour of n models, with the cultural variant of the ith

model being Xi. Based on these observations, the naive individual makes an estimate of

the ith model’s cultural rule, Zi, where:

Zi = Xi + ei

where ei is a random variable drawn from the normal distribution with mean 0 and vari-

ance Ei, representing errors in the naive individual’s estimate of the model’s cultural

character. As the name suggests, in a blending inheritance model the enculturated indi-

vidual’s cultural variant, X0, is simply the average of their estimates of their n models’

variants:

X0 =
nX
i=1

AiZi

where, as in the dichotomous model, Ai is the importance of the ith model.

By a similar method to that used for the dichotomous case, it is possible to calculate the

mean value of X in the population after cultural transmission, X
0

and variance of X in

the population after transmission, V 0. B&R show that, assuming non-selective formation

of sets of models:

X
0
= X

In other words, blending inheritance does not change the population mean of the cultural

variant, as with the dichotomous model. However, the variance of the population does

not necessarily remain unchanged. Assuming non-selective formation of sets of models,

equal weighting for all models (Ai = 1=n for all i) and no correlation between errors in

a given set of models (Cov(ei; ej) = 0 for all i and j):

V 0 = (1=n)(V + E)
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where E is the average value of Ei (recall that Ei gives the variance of a normal distri-

bution, and the errors made by the learner when estimating the trait of the ith cultural

parent come from this distribution) for the set of n models. In other words, there are two

forces acting on the population. Assuming no errors in transmission (E = 0), blending

transmission tends to reduce the variance in the population, with variance being reduced

faster for larger numbers of cultural parents. The counteracting force, dependent on the

average error introduced during transmission (E), tends to increase the variance in the

population, with errors of larger variance increasing the variance in the population more.

A.1.2 Pressures acting on cultural transmission

B&R provide mathematical accounts of how three pressure acting on transmission can

result in cultural change and cultural evolution. These are:

1. Natural selection of cultural variants, resulting from selective removal of encultur-

ated individuals.

2. Guided variation, resulting from individual learning by enculturated individuals.

3. Biased transmission, resulting from the strategy of learners during cultural trans-

mission. The forces of biased transmission can be further subdivided into three

forms:

(a) Directly biased transmission, resulting from a preference for learners to ac-

quire one cultural variant over another.

(b) Indirectly biased transmission, resulting from a preference for learners to ac-

quire cultural traits which are associated with other cultural traits.

(c) Frequency-dependent transmission, resulting from a disproportionate prefer-

ence for learners to acquire the most (or least) frequent cultural trait in the

population.

In Sections A.1.2.1 to A.1.2.5 B&R’s models for these pressures are reviewed. In the

interests of clarity, a separate section is devoted to each of the three subtypes of biased

transmission.

A.1.2.1 Natural selection of cultural variants

B&R model the natural selection of cultural variants by assuming that there are a set of

n distinct social roles (e.g. mother, father, uncle, priest, teacher). Each naive individual

acquires their cultural characteristic based on observation of a subset of these roles �j .
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As before, the weight of social role k is Ak. The weight of social role k with respect to a

subset of social roles �j , Akj is:

Akj =

8<
: Ak if k belongs to �j

0 otherwise

Working within the dichotomous traits model, the probability that a naive individual ac-

quires variant c based on the behaviour of the set of individuals with phenotypic values

X1; : : : ; Xn and the set of cultural parents with roles �j is therefore:

Prob(individual = cj�j; X1; : : : ; Xn) =

Pk=n
k=1 AkjXkPk=n
k=1 Akj

This equation normalises the weight of the cultural parent with role k by the weights of

all roles present in the set of roles �j and is clearly related to the earlier equation for the

cultural transmission of dichotomous traits.

In order to model natural selection we must assume that the probability that an individ-

ual attains a particular social role k depends on the cultural variant that that individual

possesses. Let 
ck be the probability that an individual with cultural variant c attains

social role k and, similarly, 
dk be the probability that an individual with cultural variant

d attains social role k. As before, we will assume that the frequency of variant c in the

population is p. The frequency of individuals with variant c attaining social role k, p 0k is

therefore:

p0k =

ckp


ckp + 
dk(1� p)

Working under the assumption that sets of roles �j are formed at random, and following

a similar procedure to that outlined for the basic cultural transmission rule, B&R show

that the frequency of cultural variant c in the population after differential attainment of

social roles and cultural transmission by the linear rule, p00, is:

p00 =
nX

k=1

Akp
0
k
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where Ak gives the importance of parents in the kth social role averaged over all possible

sets of cultural parents �j according to the frequency with which those sets occur:

Ak =
X
j

Prob(�j)

 
AkjP
lAlj

!

This equation can be combine with the equation for p0k given above. If �k is the selective

advantage of variant c with respect to role k (�k = (
ck=
dk) � 1) and assuming that

selection is weak, the equation becomes:

p00 = p+ p(1� p)

 
nX

k=1

Ak�k

!

where the sum is the selection advantage of variant c in role k averaged over all social

roles and weighted by the importance of each role (Ak). Roles which offer a high selec-

tive advantage (�k) will have a strong influence, even if that social role is not weighted

particularly highly in contribution to cultural transmission (i.e. Ak is not particularly high

relative to Al 6=k). Variant c will increase if this quantity is positive and decrease if it is

negative — if variant c offers a selective advantage when averaged over social roles then

it will increase in frequency in the population. In other words, if possessing variant c

makes an individual more likely to occupy a role which allows them to enculturate others

and transmit that variant, then c will increase in frequency in the population.

A.1.2.2 Guided variation

A model of guided variation requires a model of individual learning. B&R assume that an

individual can be characterised by a number X , the initial value of their phenotype prior

to individual learning, and a number Y , the value of their phenotype after individual

learning. This is therefore a continuous trait model of cultural characteristics. The goal

of learning is determined by the environment, which is characterised by a numberH . The

aim of learning is essentially to move Y towards H . L is a parameter determining the

reliance of an individual on individual learning, with high L indicating a high reliance

on individual learning. Errors made during the learning process are represented by a

normally distributed random variable � with mean 0 and variance Ve. It can be shown

that:

Y = aX + (1� a)(H + �)
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where a = Ve=(Ve+L) is a parameter that gives the importance of individual learning —

a � 1 (L� Ve) corresponding to a tendency to rely on the initial value of the phenotype

X and a � 0 (L � Ve) corresponding to a tendency to ignore the initial value of the

phenotype and move towards the value preferred by the environment, H .

How does this type of individual learning change the mean value and the variance of a

population’s cultural characteristic? Prior to individual learning the mean value of the

trait in the population is given by X and the variance is given by V . The mean value after

individual learning, Y is:

Y = aX + (1� a)H

where a is as before. As in the individual case, in the population case the mean value for

the trait will tend towards the value favoured by the environment if a < 0:5. The variance

of the population after individual learning, U , is:

U = a2V + (1� a)2Ve

Individual learning both decreases the variance of the trait in the population through

movement towards the environmentally-determined goal (U = a2V : : :) and increases it

due to errors introduced by individual learning (U = : : : (1� a)2Ve).

If we assume that the culturally-acquired value for the phenotype forms the initial value

of the phenotype which can subsequently be altered by individual learning, this model

of individual learning can be simply added to the blending model of cultural trans-

mission. Assuming non-selective formation of sets of models, equal weighting for all

models (Ai = Aj = 1=n) and no correlation between errors in a given set of models

(Cov(ei; ej) = 0) the mean value of X in the next generation, X
0
, is:

X
0
= aX + (1� a)H

i.e. when individual learning is powerful (a � 0) the population moves towards the value

of the phenotype favoured by the environment, due to the transmission of cultural traits

favoured by individual learning, and when individual learning is weak (a � 1) the mean
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value of the population’s cultural trait remains unchanged by individual learning. The

variance after transmission, V 0, is:

V 0 = (1=n)(a2V + (1� a)2Ve + E)

i.e. blending both reduces ((1=n)) and increases (: : :+E) variance, and individual learn-

ing both reduces (a2V ) and increases ((1� a)2Ve) variance.

A.1.2.3 Directly-biased transmission

Direct bias can be simply modelled using the model of the transmission of dichotomous

characters given earlier. As before, the probability that an individual acquires cultural

variant c given the set of cultural parents X1; : : : ; Xn is:

Prob(cjX1; : : : ; Xn) =
nX
i=1

AiXi

In the unbiased case, the value of a particular Ai is independent of Xi — the cultural

variant used by a model does not affect the importance of that model to the naive indi-

vidual. However, in the biased case, Ai depends on the intrinsic importance of the ith

model, given by �i, and the biasing function, �(Xi):

Ai =
�i(1 + �(Xi))Pn
j=1 �j(1 + �(Xj))

where the biasing function is:

�(Xi) =

8<
: B if Xi = 1

�B if Xi = 0

B gives the strength of the bias in favour of cultural variant c. AssumingB > 0 (variant c

is favoured over variant d), if the ith model has cultural variant c then the intrinsic weight

of that model will be increased by a factor 1 +B, whereas if the ith model has variant d

then the intrinsic weight of that model will be decreased by 1�B. Note that this model of

a biasing function is in principle arbitrary with respect to the functionality of the cultural

trait, with an arbitrary preference in favour of one variant over the other determined by B.
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However, B could be linked to the expected fitness payoff of the variants, in which case

the bias would be non-arbitrary and in favour of the cultural variant which is expected to

yield the greatest fitness payoff.

B&R consider the case where each individual is exposed to two models, with intrinsic

weights �1 and �2. This can be interpreted as either the case where each individual has

two cultural parents, or the case where each individual has multiple cultural parents but

is enculturated in a serial fashion, observing X2 for each parent in turn, comparing it to

their own value, (X1) and deciding on which of the two possibilities (X1 or X2) to adopt.

If p is the frequency of variant c in the population prior to such an episode of cultural

transmission, its frequency after cultural transmission, p0, will be:

p0 = p+ p(1� p)

 
4B�1�2

1� B2 (�1 � �2)
2

!

Assuming that both cultural parents have equal weight (�1 = �2 = 0:5), this reduces to:

p0 = p+ p(1� p)B

In other words, directly biased transmission will increase the frequency of the favoured

variant in the population. The rate of increase depends on the strength of the bias (B)

and the variance in the population (p(1� p)).

A.1.2.4 Indirectly-biased transmission

A model of indirect bias requires a model of the transmission of multiple cultural traits.

B&R develop a model of the blending transmission of two quantitative cultural traits

which is based on the basic transmission model for single continuous traits (outlined

in Section A.1.1.2). The jth individual is characterised by a two-place vector Xj =

(X1j; X2j). As before, a naive individual observing individual j forms an estimate of

that individual’s cultural variants, Zj = (Z1j; Z2j) such that:

Z1j = X1j + e1j

Z2j = X2j + e2j
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As before, e1j and e2j are random variables drawn from normal distributions with mean

0, variances E1j and E2j respectively and covariance E12j .

As for the earlier definition of the blending rule, naive individuals observe and estimate

the cultural character of n models and then form their own cultural character, X0 =

(X10; X20), by averaging over observed models:

X10 =
nX

j=1

A1jZ1j

X20 =
nX

j=1

A2jZ2j

where Aij is the importance of the jth model in transmitting cultural characteristic i (i =

1 or 2). As with the single-trait blending model, we need to know how this type of

transmission will affect the mean value of trait i in the population, X i, and the variance

of trait i, Vi. By similar methods, it can be shown that the mean and variance after

transmission (X
0
i and V 0

i ) are given by:

X
0
i = X i

V 0
i =

nX
j=1

A2
ij

�
Vi + Ei

�

where Ei is the weighted average of errors introduced during transmission:

Ei =

Pn
j=1A

2
ijEijPn

j=1A
2
ij

If we assume that all cultural parents for a given trait have equal weight (i.e. Aij = Aik =

1=n) then this reduces to:

V 0
i = (1=n)

�
Vi + Ei

�

i.e. as before, blending inheritance leaves the mean in the population unchanged and

both decreases and increases variance, depending on the number of cultural parents and

variance of the errors introduced.
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Cultural transmission will also affect the covariance between the values of traits 1 and 2,

C12. For the simplified case where each cultural parent has equals weight (Aij = Aik =

1=n, which implies A1j = A2j i.e the models are equally important in transmitting both

traits, rather than some models being important in the transmission of one trait and other

models being important in the transmission of other traits), the covariance of the values

after transmission, C 0
12, is give by:

C 0
12 = (1=n)

 
C12 +

Pn
j=1E12j

n

!

i.e. as with variance, co-variance is reduced by the factor (1=n) and increased by cor-

related errors, measured by the degree of correlation between errors averaged over all

models (
Pn

j=1E12j=n). For more complex cases where the different traits are influenced

by different sets of models (i.e. A1j 6= A2j) the covariance between the traits tends to

decrease.

Given this blending model of the transmission of two quantitative characters, it is possible

to model indirect bias. We will consider trait 1 to be the indicator trait and trait 2 to be

the indirectly biased trait, so that an individual can be characterised by a two-place vector

X = (XI ; XD) (I for Indicator trait, D for derived trait). As described above, individuals

acquire their trait based on the weighted average of their estimate of the variants of their

cultural parents i.e. Xi0 =
Pn

j=1AijZij where i = I or D.

As discussed above, the indicator trait is a directly-biased trait — some values for the

indicator trait are intrinsically preferred. AIj is therefore a function of the intrinsic influ-

ence of parent j with respect to trait I , �Ij, and the estimated value of model j’s trait I ,

ZIj:

AIj =
�Ij (1 + � (ZIj))Pn
k=1 �Ik (1 + � (ZIk))

where � (x) is a direct bias function. This equation should be familiar due to its similarity

to the equation from the direct bias section.

The importance of the jth cultural parent with respect to the indirectly biased trait, ADj,

will be a function of that parent’s intrinsic importance, �Dj, and the estimate of the jth

model’s value for the indicator trait, ZIj (rather than the estimate of the jth model’s value

for the indirectly biased trait ZDj):
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ADj =
�Dj (1 + � (ZIj))Pn
k=1 �Dk (1 + � (ZIk))

where � (x) is the indirect bias function, of a similar form to the direct bias function.

Assuming the non-selective formation of sets of models, weak biasing functions and

equal intrinsic weightings to all cultural parents (�ij = �ik = 1=n), the mean values of

the traits after transmission, X
0
i can be calculated given the mean values of the traits prior

to transmission, X i:

X
0
I = XI + (1=n)Cov (ZI; � (ZI))

X
0
D = XD + (1=n)Cov (ZD; � (ZI))

Cov (Zi; f (Zj)) is the covariance of the trait Zi and the bias function f applied to some

trait Zj . If increases in Zi tend to result in increases in f (Zj) then Cov (Zi; f (Zj)) >

0. On the other hand, if increases in Zi tend to result in decreasesin f (Zj) then

Cov (Zi; f (Zj)) < 0. Cov (ZI ; � (ZI)) therefore gives the strength and direction of

the direct bias — if Cov (ZI ; � (ZI)) < 0 then the mean value of XI must be above

the value favoured by the direct bias and the mean value will decrease through trans-

mission by an amount proportional to the magnitude of Cov (ZI ; � (ZI)). Similarly, if

Cov (ZI ; � (ZI)) > 0 then the mean value of XI will increase.

Cov (ZD; � (ZI)) gives the strength and direction of the indirect bias, and depends on

whether values of ZD and ZI are correlated. Consider the case where ZD and ZI are

positively correlated. Higher values of ZD will be associated with higher values of ZI .

If the current value of ZI associated with the current value of ZD is below the opti-

mum value given by � (ZI) then increases in ZD will result in increases in � (ZI) and

therefore Cov (ZD; � (ZI)) > 0. Similarly, if the current value of ZI associated with

the current value of ZD is above the optimal value then increases in ZD will result in

decreases in � (ZI) and therefore Cov (ZD; � (ZI)) < 0. In either case, the mean of the

population’s value for XD will tend towards the value associated with the value of XI

which maximises the indirect bias function � — “variants of the indirectly biased trait

that are positively correlated with the admired variants of the indicator trait will increase

in frequency” (B&R p254). Similarly, variants of the indirectly biased trait which are
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negatively correlated with the admired variants of the indicator trait will decrease in fre-

quency.

A.1.2.5 Frequency-dependent bias

In Section A.1.1.1 a model was described which gave the probability of acquiring cultural

variant c on the basis of n models for the unbiased dichotomous case. The frequency-

dependent bias case is very similar:

Prob(individual = cjX1; : : : ; Xn) =
nX
i=1

AiXi +D

 
nX
i=1

AiXi

!

Assuming that each model has equal importance this becomes

Prob(individual = cjj) = j=n+D (j)

where j is the number of parents with cultural variant c:

j =
nX
i=1

Xi

and D (j) is the frequency-dependent bias function. When D (j) = 0 for all j there is no

frequency-dependent bias and the model reduces to the unbiased case. If D (j) > 0 for

j > n=2 and D (j) < 0 for j < n=2 then transmission is biased in favour of conformity

— the probability of acquiring the majority trait (j > n=2 indicates that the trait is

possessed by more than half the set of n models) is increased by a factor D (j), and the

probability of acquiring the minority trait (j < n=2) is decreased by the factor D (j).

Conversely, if D (j) < 0 for j > n=2 and D (j) > 0 for j < n=2 then transmission is

biased in favour of non-conformity — the probability of acquiring the majority variant is

decreased and the probability of acquiring the minority variant is increased.

Assuming non-selective formation of sets of parents and some value k such that k > n=2

and k is minimised (i.e. the lowest value of k such that k represents more than half the

number of models n), it can be shown that the proportion of individuals with variant c,

p0, after cultural transmission is:
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p0 = p +
nX

j=k

D (j)

 
n

j

! h
pj (1� p)n�j � pn�j (1� p)j

i

This rather complex equation deserves some explanation. There are
�
n

j

�
ways to pick j

individuals from a population of size n. The probability that one of these will exhibit ex-

actly j individuals with variant c and n�j individuals with variant d is pj (1� p)n�j and

the probability that one of these will exhibit exactly j individuals with variant d and n�j

individuals with variant c is pn�j (1� p)j . There are therefore
Pn

j=k

�
n

j

� �
pj (1� p)n�j

�
ways to pick sets of models from the population such that more than half of the mod-

els have variant c, and
Pn

j=k

�
n

j

� �
pn�j (1� p)j

�
ways to pick sets of models such that

more than half have variant d. The proportion of c in the population therefore increases

according to the frequency-dependent bias function D (j) applied to the difference be-

tween the probability of picking sets of models such that the majority are of type c and

the probability of picking sets of models such that the majority are of type d.

In the case of conformist transmission, D (j) > 0 for j > k and D (j) < 0 for j < k.

Therefore, the frequency of variant c, p, will increase whenever p > 0:5 (if c is the

more frequent variant in the population then it will increase in frequency) and decrease

when p < 0:5 (if c is the less frequent variant in the population then it will decrease

in frequency). The rate of change of p is at its lowest as p approaches 1 or 0 (the two

saturation points) or 0.5 (the point where the population is perfectly split between the

two variants). Conformist transmission results in the spread of the most common cultural

variant.

A.2 Genetic transmission and natural selection

The simplest models of natural selection acting on genetic transmission1 deal with the

changes in frequency of alleles of a single gene in asexually-reproducing haploid pop-

ulations — each individual has a single gene drawn from a set of n alleles and each

individual inherits the allele of their single parent. In sexually-reproducing diploid pop-

ulations the equations are complicated by the fact that each individual has two alleles for

each gene and receives one allele from each of their two parents.
1The mathematical model given here is based on the models given in B&R, Hartl & Clark (1997) and

Futuyma (1998).
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Ontogeny is typically treated in a very simplistic manner in mathematical models of pop-

ulation genetics. In the haploid organism, single gene case there are n distinct alleles

and therefore n distinct genotypes G1 : : : Gn. It is typically assumed that there are n

distinct phenotypes F1 : : : Fn and ontogeny maps genotype Gi onto phenotype Fi. Selec-

tion then acts on the phenotype, but since there is a one-to-one correspondence between

genotypes and phenotypes we can talk of selection acting on genotypes and effectively

ignore ontogeny.

Suppose that each individual with phenotype Fi survives with probability si. If NGi is the

number of individuals with genotype Gi (and therefore phenotype Fi) prior to selection

then the number of individuals with genotype Gi after selection, N 0
Gi

is:

N 0
Gi

= siNGi

If we assume that every surviving individual with genotype Gi leaves, on average, oi
offspring then the number of individuals with genotype Gi the next generation, N 00

Gi
, is

given by:

N 00
Gi

= oiN
0
Gi

= sioiNGi = fiNGi

where fi gives the overall fitness of genotypeGi, the probability that individuals with that

genotype will survive to reproductive age multiplied by the average number of offspring

produced.

Now consider a population with two genotypes Ga and Gb with fitness fa and fb respec-

tively. Evolution by natural selection takes place in such a population where the two

genotypes do not reproduce at equal rates — fa 6= fb. Typically we are not interested

in the absolute numbers of the two genotypes, but the proportion of the population with

genotype Ga and the proportion of the population with genotype Gb. We will define these

as PGa =
NGa
N

and PGb =
NGb
N

, where N is the overall population size (N = NGa+NGb).

We can then calculate the proportion of genotype Ga at the next generation, which I will

denote by P 0
Ga

:

P 0
Ga

=
faNGa

faNGa + fbNGb

=
faPGaN

faPGaN + fbPGbN
=

faPGa
faPGa + fbPGb
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The proportion of genotype Ga at the next generation therefore depends on the propor-

tions of genotypes Ga and Gb and their fitness. We can calculate how PGa will change

over time:

�PGa =
faPGa

faPGa + fbPGb
� PGa =

PGaPGb (fa � fb)

faPGa + fbPGb

If fa > fb then genotypeGa will increase in frequency, and if fa < fb then it will decrease

in frequency. The rate of change is at a maximum when PGaPGb is at a maximum, which

occurs when PGa = PGb = 0:5 — in other words, natural selection depends on genetic

diversity, and the rate of evolution is higher when the population exhibits more diversity.

A.3 Dual transmission and direct bias

Within the dual transmission model, B&R consider the circumstances under which a bi-

ological capacity for individual learning and biased and unbiased cultural transmission

will be favoured by natural selection. For the purpose of this thesis it is sufficient to

review their model of the genetic evolution of direct bias. Recall from Section A.1.2.3

above that direct bias on cultural transmission will increase the frequency of the favoured

variant in a population, with the rate of increase depending on the strength of the di-

rect bias, given by the biasing function �, and the cultural variance in the population.

B&R expand this model, following their general technique outlined above, to consider

the case where � is determined genetically — an individual’s genotype determines their

preference for cultural variants.

B&R assume that there are two cultural variants, c and d, and two genetic variants in the

population, e and f . Genotypes e and f define biasing functions �e and �f such that:

�e(Xi) = 0

�f (Xi) =

8<
: B if Xi = 1

�B if Xi = 0

Recall that Xi = 1 if the learner’s ith cultural parent possesses variant c, and Xi = 0

otherwise. e is therefore the unbiased allele and f is the biased allele, where the bias is

in favour of cultural variant c if B > 0. We can now calculate the probability that an
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individual with genotype G acquires cultural variant c given that it is exposed to cultural

parents with the cultural variants X1; : : :Xn. This is given by:

Prob(cjX1; : : : ; Xn; G) =

Pn
i=1 �iXi (1 + �G (Xi))Pn
i=1 �i (1 + �G (Xi))

As before, �i gives the intrinsic importance of the ith cultural parent. This is essentially

identical to the equation for directly biased transmission given in Section A.1.2.3, with

the addition of a specified genotype G which gives the particular biasing function �G to

be used.

B&R first assume that genetic parents are selected at random from the pool of possible

parents, where the frequency of genotype G in that pool is qG. The frequency of geno-

type G among offspring, q 0G, therefore remains unchanged — there is no natural selection

acting on genetic transmission. p gives the frequency of cultural variant c in the parent

population. Assuming that individuals have just two, equally-weighted, cultural parents,

the frequency of individuals with genotype G and cultural variant X after cultural trans-

mission, F 0
GX , is therefore given by:

F 0
ec = qep

F 0
fc = qf (p+ p(1� p)B)

F 0
ed = qe (1� p)

F 0
fd = qf (1� p� p(1� p)B)

As we would expect, individuals with the unbiased allele e have the same frequency of

the two cultural variants as was present in the parent population — individuals with allele

e and variant c occur with frequency given by the product of the frequency of genotype

e and cultural variant c (p), and individuals with allele e and cultural variant d occur

with frequency given by the product of the frequency of genotype e and cultural variant

d (1 � p). Among individuals with the biased allele f cultural variant c increases in

frequency according to the strength of the bias and the cultural variance in the parent

population, and variant d decreases by a similar factor.

B&R then go on to add natural selection to the model. Natural selection weeds indi-

viduals out after cultural transmission and prior to breeding, with the probability that an
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individual with genotype G and cultural variant X survives to breeding age being given

by WGX . WGX depends on the selective advantage of cultural variant c, s, and the cost

of biased transmission, z:

Wec = 1 + s

Wfc = 1 + s� z

Wed = 1

Wfd = 1� z

Individuals with cultural variant c gain the fitness payoff s. Individuals with the biased

genotype f suffer the cost of that bias, z. We can now calculate the expected frequency

of individuals with genotype G and cultural variant X after selection, F 00
GX , according to

the equations given above for dealing with natural selection:

F 00
GX =

WGXF
0
GX

WecF 0
ec +WfcF 0

fc +WedF 0
ed +WfdF 0

fd

B&R then go on to make several simplifying assumptions. They assume that cultural

variant c is always favoured by selection (s > 0) and that bias has no cost or a positive

cost (z � 0) but that these factors are weak (z; s � 1). Given these assumptions, B&R

work through a rather complex set of equations, keeping track of qf , the frequency of the

biased genotype (henceforth q) and p, the frequency of cultural variant c. q 00 and p00 give

the frequencies of these two characters in the next generation.

Assume for a moment that p, the proportion of individuals with cultural variant c, is fixed

at some arbitrary value. What happens to q, the frequency of individuals with the biased

genotype?

q00 = q + vq(1� q)

where v gives the “selection differential” of the biased allele and is given by:

v = B (sp (1� p))� z
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If v is positive the biased allele will increase in frequency. First consider the case where

z = 0 — the biased genotype has no associated cost. If p = 0 or p = 1 then v = 0

and the biased allele does not change frequency — if the population exhibits no cultural

variation then the biased allele has no fitness advantage over the unbiased allele and does

not change in frequency. If the population exhibits cultural variation then v > 0 and the

biased allele will increase in frequency. Now consider the case where z > 0 — the biased

genotype has a cost. If the population exhibits cultural variance (0 < p < 1) then the

sign of v will depend on the relative values of B, s, p and z. If the population exhibits

no cultural variation (p = 0 or p = 1) then v will be negative and the biased genotype

will decrease in frequency – the biased allele will suffer a fitness penalty due to its cost

and no fitness benefit over the unbiased allele due to the lack of cultural variation. To

summarise, in a population which is completely converged culturally (on either variant)

the frequency of the biased variant should either remain constant (if biased learning is

costless relative to unbiased learning), or decrease (if biased learning has a cost).

What can we predict about the frequency of cultural variant c, given by p? Variant c

is always favoured by selection, and by biased transmission when q > 0. Therefore

variant c will increase in frequency until the population reaches equilibrium at p = 1. As

discussed in the previous paragraph, at this equilibrium state the biased genotype either

has no advantage over the unbiased genotype or is at a disadvantage (where z > 0).

Therefore, at equilibrium we should expect selection to either be neutral with respect

to bias, or to see only the unbiased allele — directly biased transmission pushes the

population to converge on the favoured cultural variant, at which point selection pressure

on the population’s genotypes either stops, or acts to reduces the frequency of the biased

allele which drove cultural convergence in the first place.
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APPENDIX B

Published papers

This appendix contains two journal articles accepted for publication prior to the com-

pletion of this thesis (Smith (2002) and Smith (in press)), and one further journal article

which is currently under review (Smith et al.submitted). I also include two papers which

have or will appear in edited collections (Smith (2001b) and Smith et al. (forthcoming)).
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SMITH, K. 2002. The cultural evolution of communication in a population of neural

networks. Connection Science14.65–84.
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Abstract

It has been postulated that aspects of human language are both

genetically and culturally transmitted. How might these processes in-

teract to determine the structure of language? An agent-based model

designed to study gene-culture interactions in the evolution of com-

munication is introduced. This model shows that cultural selection

resulting from learner biases can be crucial in determining the struc-

ture of communication systems transmitted through both genetic and

cultural processes. Furthermore, the learning bias which leads to the

emergence of optimal communication in the model resembles the learn-

ing bias brought to the task of communication by human infants. This

suggests that the iterated application of such human learning biases

may explain much of the structure of human language.

Key words: communication, language, evolution, culture, learning
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1 Introduction

Language is transmitted from generation to generation within a speech com-

munity. The precise nature of the intergenerational transmission remains a

contentious issue. The transmission of language down the generations in-

volves at least some cultural transmission { under normal circumstances
children learn the language of their speech community through exposure

to the linguistic behavior of that community. The most inuential linguis-

tic theories of modern times assume genetic transmission of the language

faculty between generations in addition to this cultural transmission { lan-

guage learners come to the language acquisition task equipped with some

genetically-encoded Language Acquisition Device (Chomsky, 1987). The re-

search outlined in this paper represents an attempt to understand the types

of interactions which may occur between cultural transmission and genetic

transmission of communication systems within a communicating population.

Speci�cally, in this paper I argue that cultural selection resulting from learn-

ing biases is key in determining the structure of communication systems,
such as language, which are both genetically and culturally transmitted.

In Section 2 the literature on the evolution of communication and lan-

guage is reviewed. This review reveals a paucity of models on gene-culture

interactions which are simple enough to be easily understood yet detailed

enough to test hypotheses regarding the evolution of communication or lan-

guage in the real world. In Section 3 such a model is proposed. Sections 4

and 5 present results generated by this model. These results suggest that

cultural selection resulting from the biases inherent in the model of the

learner is crucial in determining the structure of the emergent communica-

tion systems, and that natural selection is unable to override these biases.

In Section 6 the learning biases of the model are examined in detail and
related both to other agent-based models of the evolution of communication

and to the communication-speci�c learning biases observed in humans. Fi-

nally, in the concluding section it is suggested that much of the structure

of language may be best explained in terms of cultural evolution resulting

from a pre-adapted learning mechanism.

2 The literature

The literature on the evolution of communication and language can be

roughly divided into two main areas { that which addresses the question

\when should we expect to see communication or language?" and that which

3
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addresses the question \what structure should we expect communication or
language to exhibit?".

The �rst question has typically been addressed by theoretical biolo-
gists but has recently been tackled by researchers using agent-based mod-
eling techniques. Researchers in this area are concerned with the interlock-
ing issues of signal costs and honesty (for example, from biology Zahavi
(1975), Zahavi (1977), Krebs and Dawkins (1984) and Grafen (1990), from
agent-based modeling Wheeler and de Bourcier (1995), Bullock (1997), No-
ble (1998)) and altruism (from agent-based modeling Ackley and Littman
(1994), Oliphant (1996) and Reggia, Schulz, Wilkinson, and Uriagereka
(2001)). These important issues will not concern us in this paper, other
than to say that the presence of honest communication has been identi�ed
as a possibility in at least some circumstances by some researchers.

The second question can be viewed as consisting of three subquestions:
\what structure would we expect communication or language to exhibit if
it were shaped by purely biological processes?"; \what structure would we
expect communication or language to exhibit if it were shaped by purely
cultural processes?"; \what structure would we expect communication or
language to exhibit if it were shaped by both biological and cultural pro-
cesses?".

There has been some research on the �rst question, both by biologists
(see Hauser (1996) for a summary) and agent-based modelers. For example,
Werner and Dyer (1992), Levin (1995) and Di Paolo (1997) show that agents
can coordinate their actions or internal states optimally or near-optimally
using innate communication systems given selection pressure for that coor-
dination. Werner and Todd (1997) show that the reverse can also be true
{ agents can violate the innate expectations of receivers given innate sig-
nalling behavior and selection pressure for such violation. Cangelosi and
Parisi (1998) show that an eÆcient biologically-transmitted communication
system can emerge even without direct selection pressure, e�ectively due to
evolution of internal representations and genetic drift of a communication
system on top of this evolved substrate. However, human language, our
ultimate object of study, consists of at least some learned component and
these models are therefore of limited utility in understanding it.

The second question, concerning the structure of communication given
purely cultural transmission processes, has received a considerable amount
of attention in recent years. It appears that such processes may only be
relevant to the study of communication in humans, given that Hauser states
that \although call structure [in non-human primates] changes ontogeneti-
cally, no study has provided convincing evidence that acoustic experience is

4
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causally related to such changes" (Hauser, 1996, p315). Consequently, much

of the research into this area has been carried out by linguists or cognitive

scientists using agent-based modeling techniques to explain the cultural evo-

lution of features of human language such as syntax (e.g. Batali (1998),
Batali (in press), Hurford (2000), Kirby (2000), Kirby (in press), Brighton

and Kirby (2001), see Hurford (2002) and Kirby and Hurford (2002) for

an overview), regularity and irregularity (e.g. Kirby (2001), Worden (in

press)) and other language universals (e.g. Christiansen and Devlin (1997),

Kirby (1998)). Less work has been carried out on the more basic issue of

the cultural evolution of non-syntactic communication systems. However,

agent-based models directed at this issue can be found in Hutchins and

Hazelhurst (1995), Oliphant and Batali (1997), Oliphant (1999) and Steels

(1999).

This substantial body of literature presents a persuasive argument that

the features of communication and language can be explained in terms of

cultural processes. However, this work does have its weaknesses. Typically
each paper considers a single model of learning. This lack of comparison

between learning mechanisms makes it diÆcult to identify the biases of the

chosen model of learning. Secondly, these models assume a degree of pre-

existing mental apparatus, including a learning mechanism. This mental

apparatus presumably evolved, although not necessarily for its later role in

language-processing. But how might the evolution of learning mechanisms

interact with the resulting cultural processes? Such models are not designed

to address this question.

Finally, there is a small body of literature investigating the question of

the structure of communication systems emerging through a mixture of ge-

netic and cultural processes. Pinker and Bloom (1990) and Dor and Jablonka
(2000) introduce hypothetical scenarios under which positive interactions be-

tween natural selection and cultural transmission lead to language. However,

human intuitions regarding the behavior of such complex adaptive processes

are notoriously poor and a formal model is desirable.

In an early paper MacLennan and Burghardt (1994) consider how re-

inforcement learning might interact with natural selection in the evolution

of vocabulary-like systems. However, given that \a series of studies begin-

ning with Brown and Hanlon (1970) have demonstrated that there is little

reliable correlation between the grammaticality of children's utterances and

the sorts of responses to these that their parents give" (Bloom and Gleit-

man, 2001), the relevance of models involving reinforcement learning to our
understanding of language, our ultimate object of study, is doubtful. Batali

(1994) considers interactions between selection and learning in populations
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of neural networks. The languages Batali's networks attempt to learn are

externally determined, rather than emerging from the populations of agents

themselves, and are therefore not truly culturally transmitted. This makes

the relevance of this model to the �eld of human language less clear. Can-
gelosi (1999) uses neural networks to investigate gene-culture interactions

in the evolution of symbolic communication systems. However, as in an

earlier model (Cangelosi and Parisi, 1998), the structure of the communica-

tion system is determined by genetic factors with learning playing little role.

Kirby and Hurford (1997), Turkel (in press) and Yamauchi (2001) consider

possible interactions between natural selection and learning in the evolution

of an innate language acquisition device and a language. However, their

representations of language and learning are so abstract as to make any

claims about the structure of human language diÆcult. Finally, in a recent

paper Kvasni�cka and Posp��chal (1999) model interactions between natural

selection and learning of culturally-emergent communication systems in a

population of neural networks. This model is a step in the right direction,
detailed enough to allow hypothesis to be formed about the structure of

communication systems in the real world, abstract enough to be analyzable.

However, the model su�ers from two defects. Firstly, only one learning

mechanism is considered. Secondly, only one level of selection pressure is

considered. This means that the relationship between the learning bias of

the learning mechanism and the forces of natural selection remain unclear.

This paper presents a model of the interactions between processes of

biological transmission and cultural transmission in the evolution of simple

communication. The model avoids defects of earlier models in investigat-

ing, in detail, the relationship between di�erent selection pressures, di�erent

learning biases and di�erent strengths of learning bias. This allows us to
address the hypothesis, suggested by previous models, that natural selec-

tion and learning will interact positively to create optimal communication

systems. The ability to manipulate the various pressures proves to be essen-

tial in understanding the key determinants of the behavior of the system.

The model is simple enough to be analyzed but detailed enough to pro-

vide a starting point in understanding how these issues might apply to the

evolution of communication and, ultimately, language, in the real world.

3 The model

The model consists of a simple model of communication (Section 3.1), a

model of a communicative agent (Section 3.2) and a model of genetic and
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cultural transmission (Section 3.3).

3.1 The communication system

For the purposes of this model communication systems are mappings be-

tween a set of unstructured meanings m and a set of unstructured signals s.

A communication system consists of a production function, p(m), mapping

from m to s, and a reception function, r(s), mapping from s to m.

3.1.1 Communicative Accuracy

A measure of communicative accuracy can be de�ned for such communi-

cation systems. Given a signaler, P , producing signals using the function

p(m) and a receiver, R, interpreting signals using the function r(s), the ac-

curacy of communicating the meaning mi 2m between the two individuals,

ca(P;R;mi), is:

ca(P;R;mi) =

(
1 if r(p(mi)) = mi

0 otherwise

)

When ca(P;R;mi) = 1 the communication is successful1 . A popu-

lation's communicative accuracy can be estimated by taking the average

ca(P;R;mi) for a random sample of P , R and mi. In a population possess-

ing an optimal communication system ca(P;R;mi) = 1 for any choice of P ,

R and mi.

3.1.2 Ambiguity

Such communication systems can be classi�ed in terms of the degree of

ambiguity they exhibit in the mapping from meanings to signals. Ambiguity

arises when signals which are perceptually indistinguishable are associated

with distinct meanings. A communication system of the type outlined above

will be termed:

� Unambiguous if every meaning is associated with a distinct signal or

signals.

1Note that this assumes that meanings are functionally distinct. For example, if two
meaningsmi andmj result in the same behavior on the part of the receiver and r(p(mi)) =
mj then the communication would be measured as a failure but could, at the behavioral
level, be considered a success.
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� Partially ambiguous if some, but not all, meanings are associated with

identical signals.

� Fully ambiguous if all meanings are associated with identical signals.

These terms are more formally de�ned below.

3.2 The communicative agent

Feedforward neural networks are used to model communicative agents. The

structure of the network used is shown in Figure 1. Networks with this
con�guration will be referred to as imitator networks. The input to the

imitator network is considered to be the meaning to be communicated and

the imitator's output is considered to be the signal used by that agent to

communicate the input meaning, with the precise nature of the meaning-

signal mapping determined by the connection weights in the network.

Input/Meaning

Output/Signal

Figure 1: The structure of the neural network.

Communication systems therefore map from 3D meaning vectors to 3D

signal vectors. Binary vectors are used, giving 23 possible meanings and

23 possible signals. A subset of the set of possible meaning vectors are

considered to be communicatively relevant situations, where \communica-

tively relevant" means that agents receive a �tness payo� for communicating

about those situations. For all simulations outlined in this paper, the set of

communicatively relevant situations, m, consists of the unit vectors (1 0 0),

(0 1 0) and (0 0 1). The set of available signals, s, consists of all 23 possible

binary signal vectors.

Neural networks were chosen to model communicative agents for several

reasons. Firstly, there is some tradition of using neural networks in research
on the evolution of communication { neural networks of some form are used

by Batali (1994), Hutchins and Hazelhurst (1995), Batali (1998), Cangelosi
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and Parisi (1998), Cangelosi (1999), Livingstone and Fyfe (1999) and Kirby

and Hurford (2002). Continuing this tradition provides several bene�ts. In

particular, using a similar model allows the results of this research to be

more easily related to previous research and the generality of the results of
earlier simulations to be tested.

Secondly, well-established mechanisms exist for training neural networks

to learn input-output mappings (i.e. backpropagation). Using an estab-

lished learning mechanism reduces the amount of novel elements contained

in the model, as well as allowing our understanding of that mechanism to

be expanded.

Finally, using neural networks allows both genetically-transmitted and

culturally-transmitted information to inuence, in principle, the eventual

behavior of agents in the model. Some of the assumptions arising from

the choice of neural networks are somewhat dubious { for example, the as-

sumptions that there is a one-to-one correspondence between genotype and

phenotype and that genetic information merely provides a starting point for
unconstrained learning in the phenotype. Two points can be raised in de-

fense of these assumptions. Firstly, these assumptions are not unprecedented

in the computational modelling literature { see for example the models de-

scribed in Belew, McInerney, and Schraudolph (1992), Nol�, Elman, and

Parisi (1994), Batali (1994) and Rolls and Stringer (2000). Secondly, us-

ing this approach avoids some even more arbitrary assumptions that would

be required to model combined inuences of genes and culture in a more

abstract model. These assumptions will, however, be returned to in the

concluding section.

The disadvantage of using feedforward networks is that the slightly con-

torted reversal process outlined below is required in order to allow bidi-
rectionality. Why is bidirectionality desirable when modeling communica-

tion? It is a fundamental assumption of modern linguistics (originating with

Chomsky (1965)) that production and reception depend upon a common

underlying knowledge of language - an individual's linguistic competence.

Competence can be distinguished from performance, which determines how

the structures underlying competence are accessed during reception and pro-

duction. This competence-performance distinction is maintained here, with

an agent's competence being encoded in the set of connection weights in their

neural network and their performance being determined by the production

and reception processes used to access this competence.
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3.2.1 Production and reception

Producing the signal associated with a given meaning mi 2 m in such imi-
tator agents is straightforward | the given meaning is used as the input to
the network and activations are propagated forward through the network to
give a real-valued output pattern of activation, which is thresholded at 0:5
to give the binary signal associated with the given meaning.

The deterministic nature of the feedforward network during production
means that the de�nition of ambiguity for communication systems can be
formally stated. Communication systems used by neural networks will be
termed:

� Unambiguous if p(m) is a one-to-one, or an injective, function.

� Partially ambiguous if p(m) is a many-to-one function, but the range
of p(m) is not a singleton set.

� Fully ambiguous if the range of p(m) is a singleton set.

Reception is slightly more complex, given that the networks are not
bidirectional. All mi 2 m are propagated through a given agent's network
to produce a real-numbered output pattern of activation for each meaning.
Each output pattern is given a con�dence rating, corresponding to how
closely that pattern matches the received signal, sr 2 s. The meaning which
produces the signal closest to sr, according to the con�dence measure, is
chosen as the interpretation of sr. This method is based on the method
used by Batali (1998) and Kirby and Hurford (2002) for producing outputs
for similar networks.

The con�dence measure that a given real-numbered output vector, o,
of length n matches a target binary vector t of length n is given by C(tjo).
C(tjo) is simply the product of the con�dence scores for each individual node
1:::n in the output vector i.e.

C(t[1 : : : n]jo[1 : : : n]) =
nY

i=1

C(t[i]jo[i])

where the con�dence measure for node i is

C(t[i]jo[i]) =
n o[i] if t[i] = 1;

(1� o[i]) if t[i] = 0:

(Equations adapted from Kirby and Hurford (2002))
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3.3 The transmission of communication systems

In this section a model of the genetic transmission of network connection
weights and cultural transmission of communication systems is outlined. A
genetic algorithm (Holland, 1975) is used to model the process of genetic
transmission and is combined with an iterated learning model (Brighton and
Kirby, 2001) which is used to model cultural transmission.

3.3.1 The genetic algorithm

The genetic algorithm has four key components:

1. A model of population turnover.

2. A model of genotypes, phenotypes and the mapping from genotype to
phenotype.

3. Breeding based on an evaluation of communicative ability.

4. A method of recombination and mutation of genes during breeding.

These four components are described below.

Population turnover A generational population model is used | at ev-
ery time step of the simulation the entire population of size p is replaced by
a new population of size p generated by breeding interactions between the
members of the old population. p = 100 for all simulations outlined in this
paper.

Genotypes and phenotypes The phenotype communicative agent used
is as outlined in Section 3.2 | a three-layer, feedforward neural network
mapping from input meanings to output communicative signals. Each in-
dividual's initial connection weights are speci�ed by their genotype | each
agent's genotype consists of a string of real numbers, with each locus in
the genotype mapping to a particular connection in the phenotype network.
The real-numbered allele at a particular locus in the genotype determines
the initial weight of the associated connection in the phenotype network.
This mapping from genotype to phenotype is illustrated in Figure 2. The
agents in the initial population have random alleles in the range [�1; 1].
There is no restriction on the range of real-numbered alleles beyond the
initial population.
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Translation

Genotype

Phenotype

-1.0

0.5 0.4
0.4

0.2

0.1
-0.3

0.2

1.0

0.30.4

-0.3

 0.6
0.3

0.3
0.9

0.1
-0.7

0.2
0.4

1.0

0.1
-0.9

0.7

[-0.3,0.1,0.4,0.5,0.3,-1.0,0.4,0.2,0.2,1.0,-0.3,0.4,0.6,0.3,0.3,0.9,0.1,-0.7,0.2,0.4,1.0,0.1,-0.9,0.7]

Figure 2: The mapping from genotype (a string of real numbers) to phenotype (a
neural network). Bias node connection weights are shown in the associated node.

Selective breeding The probability of an agent breeding is determined

by its success at communicating with other members of its generation of

the population. The method of evaluating communicative success is given

below:

� For each agent A in the population:

1 Remove A from the population.

2 Pick an agent B at random from the population.

3.1 Pick a meaning, ms, at random from the set of communica-
tively relevant situations.

3.2 Call A the signaler and B the receiver.

3.3.1 Generate the signal ss, that the signaler associates with

ms (via the production mechanism outlined in Section

3.2.1).

3.3.2 Identify the meaning, mr, that the receiver associates

with ss (via the reception process outlined in Section
3.2.1).

3.3.3 Compare mr with ms and score the success of the com-

munication. If mr is identical to ms score the communi-
cation as a success and increment A's �tness. Otherwise,

the communication is a failure.
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3.4 Call A the receiver and B the signaler and repeat step 3.3.

3.5 Return B to the population.

4 Repeat steps 2 and 3 f times2.

5 Return A to the population

This �tness assessment algorithm corresponds to the measure of commu-
nicative accuracy outlined in Section 3.1.1. Agents receive a reward both for
understanding and being understood and the rewards for both are equally
weighted. The �ttest b individuals in the population breed with equal prob-
ability to produce the next generation of agents, where 0 < b � p.

Recombination of genes Breeding involves recombination of the genes of
two parents, via crossover, and mutation. Single-point crossover occurs with
probability Pcross

3. Point mutations occur on the newly formed genotype
with probability Pmutation

4. Mutation results in the value at the mutated
locus being increased by a random real number in the range [-1,1]5.

3.3.2 Cultural transmission

Iterated learning models have been used to examine the cultural evolution
of communication (Oliphant, 1999) and compositional language (Kirby and
Hurford, 1997; Batali, 1998; Batali, in press; Kirby, 1999; Kirby, 2000;
Kirby, 2001; Brighton and Kirby, 2001; Kirby and Hurford, 2002). In the
iterated learning model \each generation of language user acquires its lin-
guistic competence by observing the behavior of the previous generation"
(Brighton and Kirby, 2001, p592). This acquired linguistic competence then
governs the behavior which is observed by the subsequent generation. The
iterated learning model resembles the cultural equivalent of a genetic algo-
rithm, although typically there is no notion of �tness.

In terms of the current model, individuals at generation N + 1 observe
and learn from the communicative behavior of generation N individuals.
Each individual at generation N + 1 receives e exposures to the commu-
nication systems of the population at generation N . These exposures are

2f = 6 for all simulations outlined in this paper.
3For all simulations outlined in this paper Pcross = 0:95.
4For all simulations outlined in this paper Pmutation = 0:1

Lg
= 0:0042, where Lg is the

length of the genome.
5This mutation operator, in conjunction with the unrestricted range of alleles, allows

the possibility of the emergence of extremely large-valued alleles. However, in practice
such alleles do not occur. In the simulations outlined in this paper all alleles remain
within the range [-5.41,5.29].
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randomly distributed among the �ttest t members of generation N . During

each exposure, the set of meaning-signal pairs of the N generation agent

is used to train the generation N + 1 agent. The backpropagation algo-

rithm was used to implement this learning process6, with the starting point
for learning being the connection weights speci�ed in the learning agent's

genotype. The learning agent's communication system will therefore be de-

termined, at least to some extent, by the interactions between the processes

of genetic transmission via breeding and cultural transmission via learning.

4 Results for imitators

In this section results generated by the model under two main parameter

settings are presented:

1. Imitation learning and natural selection (p = 100, 20 � b � 100,

t = 100, 0 � e � 200) (Section 4.1).

2. Selective imitation learning and natural selection (p = 100, 20 � b �

100, 20 � t � 100, 0 � e � 200) (Section 4.2).

Under both general con�gurations the questions is asked: do the popu-

lations converge on communication systems resulting in high levels of com-

municative accuracy within the population? This was assessed by running

10 simulations under each parameter setting for a �xed number of gener-

ations (1000) and measuring the average communicative accuracy of the

population, as de�ned in Section 3.1.1, for the last 10 generations of each
run.

4.1 Imitation learning and natural selection

In this section we investigate the accuracy of the emergent communica-
tion systems in populations of size p = 100 for various numbers of learning

episodes e and various amounts of selective pressure b. e ranges from 0 (no

learning) to 200, and b ranges from 100 (no selection pressure on breed-

ing) to 20 (very strong selection pressure on breeding). For all simulations

outlined in this section, t = 100 { immature agents potentially sample and

learn from the communicative behavior of the entire preceding generation,

regardless of �tness.

6A learning rate of 0.5 and momentum of 0 were used.
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Figure 3: Average communicative accuracy in populations of imitator agents after

1000 generations, for various values of e and b. Each point represents the average

of 10 simulations.

The average communicative accuracy of the populations for the full range

of values of e are shown in Figure 3. Figure 4 shows the communicative

accuracy of populations where 0 � e � 25. For extremely low values of

e optimal communication systems can emerge given selection pressure on

breeding (b < 100). Average communicative accuracy rapidly tails o� as

e increases. For e > 5 there is little di�erence between simulations where

breeding is random (b = 100) and breeding is non-random (b < 100) and for

e > 25 there is no di�erence, with all populations converging on communi-

cation systems resulting in average communicative accuracy of 0:33. This

corresponds to the chance level of performance of a population attempting

to communicate three meanings with a fully ambiguous communication sys-
tem. How can the emergence of these suboptimal communication systems

be explained?

Table 1 shows the success of imitator networks at acquiring systems of

di�ering levels of ambiguity for a given number of exposures, e. As can be

seen from the Table, systems exhibiting a higher degree of ambiguity are

easier to acquire than systems exhibiting a lower degree of ambiguity for all
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Figure 4: Average communicative accuracy in imitator populations, for small val-

ues of e.

values of e. The learning bias of imitator agents results from the imitator

network architecture, as is discussed in Section 6.1. It should be noted

that systems exhibiting a higher degree of ambiguity have an additional

advantage, in that every exposure to an ambiguous system contains multiple
exposures to the ambiguous signal. However, this is not the key factor, as

can be seen by comparing success rates for fully ambiguous systems with

low values of e to success rates for unambiguous systems with higher values

of e { for example, �ve exposures to a fully ambiguous system (15 exposures

to the ambiguous signal) gives a rate of success which can only be matched

by 150 exposures to an unambiguous system, which gives 150 exposures to

each of the three unambiguous signals.

As can be seen from Table 1, for extremely low e (e < 5) even fully

ambiguous systems can not be reliably acquired. Figure 4 shows that lev-

els of communicative accuracy signi�cantly above the random level are only

observed given e < 5 and selection pressure on breeding. In these circum-
stances learning is e�ectively disabled and natural selection is free to evolve

the population's communication systems, resulting in levels of communica-

tive accuracy above the chance level, with optimal communication for e � 2.
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System Type
e

Fully Ambiguous Partially Ambiguous Unambiguous

1 24.9 0.4 0

2 50.1 0.6 0
3 76.0 1.6 0

4 90.9 1.8 0

5 97.9 1.4 0

10 100 0.4 0

25 100 1.5 0

50 100 32.9 13.3

100 100 93.1 82.8

150 100 99.5 97.9

200 100 100 99.8

Table 1: Percentage success at acquiring various types of system with various
values of e. These results were empirically derived by generating 100 random com-
munication systems of each type and training 100 networks with small random
initial weights in the range [�1; 1] on each system.

These optimal communication systems disappear given e > 5. Why

is natural selection not developing optimal communication systems under

these circumstances? It appears that the process of cultural transmission

is overriding the process of natural selection. Fully ambiguous systems are

always the easiest class of system to learn, and are therefore more likely to

pass intact through the learning process. The repeated cultural transmis-
sion of communication results in the elimination of communication systems

which do not conform to the learning biases of the agents { there is cultural

selection in favor of systems which conform to the learner biases. In the case

of imitator agents the learning bias happens to be in favor of communication

systems which are extremely poor in terms of communicative accuracy. As

we will see in Section 5, a di�erent agent model leads to a di�erent learning

bias.

The learning bias of the agents in favor of ambiguous systems is a prop-

erty of the imitator architecture (see Section 6.1), rather than the learning

rate, which merely determines the strength of the bias for a particular value

of e. Therefore the precise value of e at which cultural transmission over-
rides natural selection is dependent on the particular learning rate used

{ for example, if a lower learning rate was used then we would observe

cultural transmission disabling natural selection only at larger values of e.
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Importantly, however, natural selection would still be overridden by cultural

selection at some point.

Why does natural selection not counteract the cultural adaptation of the

communication systems to the learner biases and weed out poor communi-
cators? Learning in the phenotype masks an individual's genetic makeup

| with e > 5, no matter how good an agent's genes are, their e�ects are

likely to be overtaken by learning, which almost fully determines an agent's

communicative behavior. Shielding (Ackley and Littman, 1992) prevents

natural selection from identifying good gene combinations and weeding out

bad gene combinations. Only when e < 5 is natural selection not disabled

by shielding of the genotype.

There are certain combinations of genes which make learning a partic-

ular communication system impossible | an agent's genes constitute the

starting point for learning, and the backpropagation algorithm is sensitive

to initial weights to a certain degree. Genetic drift does occasionally result

in small numbers of agents being born whose genes are so good they cannot
learn fully ambiguous communication systems. However, these agents must

still communicate with their neighbors, and if those neighbors use a fully

ambiguous system then using a better system to communicate with them

yields no bene�t7. The good gene combinations do not survive for long

due to inter-breeding with agents whose genes allow them to acquire fully

ambiguous systems. Cultural transmission leads to cultural stagnation in

the simulated populations | the biases of the learners favor fully ambigu-

ous communication systems and natural selection is powerless to counteract

this.

4.1.1 Imitation learning and collapse

Cultural transmission not only prevents the development of an optimal com-

munication system in the simulated populations | it prevents the mainte-

nance of such a system. Figure 5 shows the average communicative accuracy

of populations of imitator agents who start out with a shared, optimal, in-

nate communication system | all the agents in the initial population have

a hand-selected set of genes which encode an unambiguous communication

system. e = 200 for all simulations in Figure 5. Various amounts of selection

pressure (b) are used. t = 100, as in the simulations in the previous section.

As can be seen from Figure 5, all populations collapse from using an unam-

biguous communication system to using a fully ambiguous communication

7Preferred interaction with genetically-related individuals might alleviate this problem

somewhat, but was not investigated here.
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system within 15000 generations.
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Figure 5: Average communicative accuracy of imitator populations over time,

where t = p = 100.

As discussed above, learning in the phenotype almost completely masks

an agent's genes but there are certain combinations of genes which make

learning a particular communication system impossible. In each simulation

shown in Figure 5 an agent will eventually be born whose genes are so bad

that they cannot learn the unambiguous communication system in use by

the rest of the population. This individual will learn a partially ambigu-

ous or fully ambiguous communication system instead. Such agents will be

unlikely to breed, given that their �tness will usually be lower than other

agents in the population. Suboptimal communicators do have a negative

e�ect on the �tness of optimally-communicating agents, given that those

optimally-communicating agents su�er a penalty for not understanding or

being understood by suboptimal communicators, although this will not usu-

ally depress the population's �tness enough to allow a suboptimal communi-

cator to breed. However, while such individuals are unlikely to breed, their

communication systems will be observed and learned from by agents in the

next generation.

Table 2 shows the percentages of agents with random connection weights
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System Type % population

Unambiguous 2
Partially Ambiguous 25
Fully Ambiguous 73

Table 2: Percentage of initial population using systems of each degree of ambiguity.

in the range [�1; 1] using communication systems of the three levels of am-
biguity. Agents with random connection weights clearly tend to have a fully
ambiguous communication system. This approximates the response of imi-
tator agents to training on conicting communication systems { training on
conicting data e�ectively randomizes the connection weights in the agents'
network.

As discussed above, agents with bad genes will occasionally occur in
the population due to genetic drift. The communication system of such
agents will be observed by other agents in the subsequent generation. These
individuals run the risk of acquiring a suboptimal communication system
due to the randomizing e�ect of conicting training data. If they do acquire
a suboptimal system they will be unlikely to breed. Regardless of whether
the suboptimal communicators breed or not, their communication systems
will be observed by agents in the next generation. As increasing levels
of ambiguity result in more successful cultural transmission, suboptimal
communication systems spread through the population like a virus due to
the processes of cultural transmission, until the whole population converges
on a fully ambiguous communication system. Once again, natural selection
is powerless to stop this process.

Note that e = 200 represents the best-case scenario for learning agents.
e = 200 results in the highest level of learnability for unambiguous com-
munication systems and also ensures that, at the early stages of collapse,
suboptimal communication systems will constitute only a small part of an
agent's observations. In populations where e � 2 the collapse phenomenon
does not occur, but as discussed above the behavior of these populations
is entirely determined by natural selection { they cannot truly be called
learning populations.

4.2 Selective imitation learning and natural selection

The phenomenon observed in the simulations outlined in the previous section
is purely a result of the bias of the learners towards acquiring fully ambigu-
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ous communication systems. In this section an additional learning bias, a

preference of learners to learn from successful communicators, is added to

the model.

Natural selection is implemented in this model by only allowing the top
b members of the population to transmit their genetic information to the

next generation via breeding. Similarly, only the �ttest t members of the

population transmit their communication systems culturally to the next

generation, through the process of being observed and learned from. In the

simulations in the previous section t = p { all members of the population

participate in cultural transmission, regardless of �tness. However, in this

section simulations are described where t < p { an agent's participation in

cultural transmission depends to some extent on their �tness.

In these populations of discriminating learners there are therefore 3 po-

tential selection pressures operating on the evolving populations and com-

munication systems:

1. Natural selection (when b < p), operating on genetic transmission,

favoring genes whose phenotype realizations are successful communi-

cators.

2. Cultural selection for learnability, operating on cultural transmission,

favoring communication systems which conform to the learning bias
for fully ambiguous systems.

3. Cultural selection for communicative success (when t < p), operating

on cultural transmission, favoring communication systems which result

in successful communication.

Selection pressures 1 and 3 are clearly related, although operating on

di�erent modalities of transmission. Selection pressures 2 and 3 operate in

the same modality of transmission, but are in direct competition.

Figures 6, 7, 8, 9 and 10 show the communicative accuracy of the emer-

gent communication systems in populations of size p = 100, for various

values of b, t and e.

The addition of the cultural selection pressure for communicative success

has clearly failed to have a signi�cant impact on the emergent communica-

tion systems { for e > 10 the populations' communication systems tend to

be fully ambiguous. For very low values of t and high values of e partially

ambiguous communication systems do occasionally emerge. However, the
behavior of the population is still dominated by the intrinsic learning bias

of the agents, which favors fully ambiguous systems.
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Figure 6: Average communicative accuracy in populations of imitator agents after
1000 generations, for various values of e and t (b = 100). Each point represents the
average of 10 simulations.

4.2.1 Selective imitation and collapse

Figure 11 shows the communicative accuracy over time of imitator popu-

lations, for various values of b and t. p = 100 and e = 200 in all these

simulations. As in the simulations outlined in Section 4.1.1, initially the

populations are genetically converged on an optimal communication system.

As can be seen from Figure 11, the addition of selective imitation in the

runs where t < 100 has failed to prevent the populations from moving away

from the initial optimal communication system { in 3 runs the population

has converged on a fully ambiguous system yielding chance levels of com-
municative accuracy, whereas in 2 runs (b = t = 60 and b = t = 40) the

population has converged on a partially ambiguous communication system.

The populations have failed to maintain the original optimal system for

the same reason as the populations discussed in Section 4.1.1 { shielding al-

lows mutations to accumulate in the population, those mutations eventually

prevent some agents acquiring the optimal communication system and the

observation of that suboptimal behavior disturbs more individuals in sub-

sequent generations. This results in the rapid spread of the communication
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Figure 7: Average communicative accuracy in populations of imitator agents for
various values of e and t (b = 80).
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Figure 8: Average communicative accuracy in populations of imitator agents for
various values of e and t (b = 60).
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Figure 9: Average communicative accuracy in populations of imitator agents for
various values of e and t (b = 40).
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Figure 10: Average communicative accuracy in populations of imitator agents for
various values of e and t (b = 20).
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Figure 11: Average communicative accuracy of imitator populations over time.

systems which are most easy to acquire, which happen to be suboptimal in

terms of �tness. Lower values of t makes it less likely that individuals with

suboptimal communication systems will transmit those systems, therefore

making it less likely that the population will collapse. However, as Figure

11 shows, collapses can occur given a suÆcient number of mutation events

at a single generation.

5 Tailoring the learning bias

In the simulations outlined in the previous section there were two learning

biases | the intrinsic bias of the learners, which favors increased ambiguity,

and the bias in favor of learning from successful communicators, which de-

pended on t. In this section the model of a communicative agent is revised

to build in a learning bias towards optimal, unambiguous communication

systems. This bias results in the rapid and reliable emergence of such sys-

tems.
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5.1 The new communicative agent

As outlined in Section 3.2, the communicative agents in all previous simu-

lations were feedforward neural networks mapping from input meanings to

output signals. Signal production for these imitator agents was merely a

matter of propagating an input meaning pattern of activation through the

network to produce an output signal. Reception was achieved by present-

ing all communicatively relevant meanings and selecting the meaning which

maximizes con�dence in the received signal. These networks are strongly

biased in favor of acquiring fully ambiguous communication systems.

The new model of a communicative agent has exactly the same basic form

as the imitator model, being a three-layer feedforward neural network. How-

ever, the crucial di�erence is that the new networks, which will be referred
to as obverter (Oliphant and Batali, 1997)8 networks, map from input sig-

nals to output meanings | the direction of the mapping has been reversed.

Production and reception in these obverter networks operate as follows:

Production: Each of the set of possible signals is propagated through the

network, producing a real-numbered output pattern of activation for

each signal. The signal which produces the meaning closest to the

meaning to be communicated, as determined by the con�dence mea-

sure outlined in Section 3.2.1, is used to communicate the given mean-

ing (as for imitator reception).

Reception: The received signal pattern is propagated forward through the

network and the output pattern of activation is thresholded to produce

a binary pattern of activation corresponding to that agent's interpre-

tation of the received signal (as for imitator production).

The learning biases of these agents are shown in Tables 3 and 4. As

can be seen from Table 3 these agents are strongly biased against learning
fully ambiguous and partially ambiguous communication systems. Some-

what surprisingly, learnability never reaches 100%, even for unambiguous

communication systems. It appears that certain unambiguous systems are

unlearnable by obverter agents, while certain unambiguous systems are 100%

learnable. The pattern to this learnable-unlearnable distinction is not im-

portant in this paper { the key point is that certain unambiguous systems are

highly learnable whereas partially ambiguous and fully ambiguous systems

are less learnable.

8Obverter networks are the equivalent of what Hurford (1989) termed Saussurean learn-
ers.
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Table 4 shows that obverter networks with random weight settings in the
range [-1,1] are strongly biased towards unambiguous communication sys-
tems | as discussed in Section 4.1.1, these random weight biases approx-
imate the response of networks to exposure to conicting communication
systems.

System Type
e

Fully Ambiguous Partially Ambiguous Unambiguous

1 0.1 0.2 0.3
2 0.2 0.2 0.4
3 0.1 0.4 0.4
4 0 0.3 0.6
5 0 0.5 0.6
10 0 1.0 1.6
25 0 4.6 7.8
50 0 8.9 31.3
100 0 11.1 53.9
150 0 11.0 51.7
200 0 18.0 55.0

Table 3: Percentage success of obverter agents at acquiring various types of system

with various values of e.

System Type % population

Unambiguous 65
Partially Ambiguous 33
Fully Ambiguous 2

Table 4: The percentage of a population of obverter agents with small, random

weights using communication systems of the given type

5.2 Obverter learning results in optimal communication

In the simulation runs plotted in Figure 12, the new obverter learner is
substituted for the imitator learner used in previous sections. Excluding the
change in the agent model, all other simulation details are identical to the
simulation runs described in Section 4.1 | speci�cally, p = 100 and t = 100.
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Figure 12: Average communicative accuracy in populations of obverter agents after
1000 generations, for various values of e and b (t = 100). Each point represents the
average of 10 simulations.

Figure 12 shows a clear di�erence between simulation runs with no se-
lection pressure on breeding (b = 100) and those with selection pressure on

breeding (b < 100). For the runs with no natural selection, communicative

accuracy is low with low e and increases as e increases. For e � 100 the

populations reliably converge on optimal, unambiguous communication sys-

tems. As shown in Table 3, (a subset of the set of) unambiguous systems

are highly learnable for these values of e and have a signi�cant learnability

advantage over ambiguous systems. As a result, ambiguous systems are se-

lected against during cultural transmission until the populations converge

on unambiguous systems.

In the runs with selection pressure on breeding the populations have

higher communicative accuracy with e < 100 due to the development of
innate communication systems through natural selection. As e increases the

communicative accuracy of the population increases, indicating a positive

interaction between natural selection and learning { natural selection favors

genotypes which improve the learnability of unambiguous communication

systems in use in the populations (i.e. the Baldwin E�ect (Baldwin, 1896)).
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As e increases this interaction decreases, and when e � 100 the interaction

all but disappears.

Furthermore, populations of obverter agents are capable of maintaining

such optimal communication systems inde�nitely { unlike the populations
shown in Sections 4.1.1 and 4.2.1 they do not su�er from the collapsing

problem, even in the absence of selection pressure on breeding.

6 The key learning bias

Imitator agents cannot create or maintain optimal communication systems,

even given a helping hand from natural selection, and obverter agents can

construct and maintain optimal communication systems, given suÆcient ex-

posure, without help from natural selection. This is due to the inherent
learning biases of the two types of agents (summarized in Tables 1, 2, 3 and

4). The relationship between these biases and the structure of the networks

is explored in detail in Section 6.1. The key biases identi�ed in Section 6.1

are discussed in terms of other models in Section 6.2.

6.1 The learning bias explored

In the terms of this paper, optimal communication systems are unambigu-

ous mappings from meanings to signals { one-to-one (or injective) functions.

Suboptimal systems are many-to-one or all-to-one functions. In terms of pro-

duction and reception functions p(m) and r(s), in an optimal communication

system:

1. p(m) should be an injective function.

2. r(s) should be a superset of the inverse of p(m).

These two restrictions guarantee that every meaning is expressed using
a distinct signal and that the reception process maps signals back on to the

meanings they were originally intended to convey.

Feedforward neural networks learn many-to-one functions. Due to the

deterministic nature of the feedforward propagation of activation values they

cannot learn one-to-many mappings. The easiest function for a network

to acquire is therefore an all-to-one mapping from inputs to outputs, the

hardest learnable function is an injective (one-to-one) function and one-

to-many mappings are unlearnable. The reversal process used to model

reception behavior for imitators and production behavior for obverters is
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similarly biased { it generates a function, which may be injective or many-

to-one, based on the function the feedforward network has acquired. In

general, if the network has acquired a function f(x) which has a range y,

then the reversal process ensures that element yi 2 y will map onto a single
element xi 2 x such that f(xi) = yi { in simple terms, the reversal process

deterministically reverses the function acquired by the network.

In imitator agents the feedforward network learns functions from mean-

ings to signals { it learns p(m). Since it is a feedforward network it will be

biased towards acquiring a many-to-one or all-to-one p(m). As illustrated in

Figure 13 and discussed in the caption, the maximally stable p(m) for im-

itator agents is therefore an all-to-one fully ambiguous function. Imitators

therefore do not have a bias in favor of the 1st feature (above) of an optimal

system. Reception in imitators will be based on their acquired p(m) { as

shown in Figure 13, in the case of an all-to-one p(m), in r(s) the signal si

that constitutes the range of p(m) will map onto a single element from m.

Therefore a population of imitators agents will tend to produce the same
signal for every meaning and interpret the ambiguous signal as communicat-

ing one arbitrary meaning. This situation results in performance equivalent

to random guessing.

In obverter agents the feedforward network learns functions from signals

to meanings { it learns r(s). As illustrated in Figures 14 and 15 the only

culturally stable system has an injective p(m) (point 1 above) and an r(s)

which includes at least the inverse of p(m) (point 2 above). Obverter agents

are therefore strongly biased in favor of acquiring systems with the properties

of optimal communication systems.

6.2 Other models

As mentioned in Section 2, there are several other models where cultural pro-

cesses result in the emergence of optimal communication. Do the learning

mechanisms used in these models include biases in favor of the two prop-
erties outlined above? This kind of analysis often requires a great deal of

familiarity with the model involved. However, this bias can be identi�ed in

certain other models.

Beginning with the models involving cultural transmission and no natu-

ral selection, the two key biases can be observed in the auto-associator net-

works of Hutchins and Hazelhurst (1995), the \obverter" learner of Oliphant

and Batali (1997), which is capable of constructing an optimal system of

communication from random behavior, (but not the \imitator", which is

not) and in the \constructor" agents of Smith (2002), capable of construct-

30

380



m1 m2 m3

s1 s2 s3 s4 m3m2m1

s3 s4s1 s2

m1 m2 m3

s1 s2 s3 s4
(d)

reverse

m1 m2

s2 s3 s4

learn

evaluate

m3

s1
(a) (b) (c)

Figure 13: (a) is a representation of an imitator agent's feedforward network en-
coding an all-to-one p(m) mapping three meanings onto a single signal, s2. The
function from a domain of real numbers (input unit activations) to a codomain of
real numbers (output unit activations) is represented by two lines, the lower line
representing the domain, the upper representing the codomain. Squares represent
particular points on the line corresponding to binary meanings or signals. Associ-
ations are shown with solid lines between elements in the domain and elements in
the codomain. (b) represents the con�dence-measuring step of the reversal process
for the network underlying (a). In order to decide r(s2), the real-number values of
p(m1), p(m2) and p(m3) are calculated. These real-numbered mappings are rep-
resented by dotted lines in (b). (c) represents the r(s) derived from applying the
reversal process to (a). r(s2) = m2 because m2 mapped closer to s2 than any other
m in (b). The other associations are e�ectively random. The random nature of
these mappings is represented by dashed lines. (d) represents the function acquired
by an imitator network exposed to behavior generated by (a) { as it is an all-to-one
function between meanings and signals it is easily learned by imitator agents. This
is in fact the only stable function for imitators.
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Figure 14: (a) represents an all-to-one r(s) encoded in an obverter agent's feedfor-
ward network. As obverters map from signals to meanings this is the most learnable
r(s). (b) represents the con�dence-measuring step of reversing this r(s) to generate
a p(m) { as before, real-number mappings are shown as dotted lines. (c) shows
the p(m) derived from (a). p(m2) = s3 as s3 mapped closest to m2 in (b). The
other associations are essentially random. The p(m) in (c) produces the meaning-
signal pairs f(m1; s1); (m2; s3); (m3; s3); g. The order of the meanings and signals
in these pairs are reversed to train the next generation of obverter networks. (d)
shows the r(s) resulting from training an obverter network on the signal-meaning
pairs f(s1;m1); (s3;m2); (s3;m3); g. r(s1) = m1, as expected. However, feedfor-
ward networks cannot learn one-to-many mappings so r(s3) is e�ectively randomly
assigned to a signal, in this case m2. As s2 and s4 are not represented in the train-
ing set they are e�ectively randomly assigned mappings. Notice that the mapping
in (a) has been destroyed in (d) { (a) is not a culturally stable mapping.

s3 s4s1 s2

m3m2m1

s3 s4s1 s2

reverse learn

s1 s2 s3 s4 m3m2m1

m1 m2 m3

(a) (b) (c)

Figure 15: Only an unambiguous p(m) is stable for obverter agents. (a) represents
an obverter agent's r(s). (b) is the p(m) derived from reversal of (a) { it is an
injective function. (c) illustrates that the r(s) resulting from training the next
generation of agents on data produced by (b) is e�ectively similar to (a) and will
therefore lead to (b) once again { (a) and (b) are culturally stable. The only
unstable aspect is the oating synonym s4. This synonym is highly unlikely to
interfere with the mapping in (b) and the oating synonym phenomenon can be
observed in the other obverter models outlined in the main text.
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ing an optimal system, but not in any non-constructor agents. The class of

constructor agents in these papers includes the Hebbian learner of Oliphant

(1999), also capable of constructing an optimal system. The neural networks

in Batali (1998) are essentially obverter agents, although the importance of
their inherent bias is not identi�ed.

The key bias can also observed in the model outlined in Kvasni�cka and

Posp��chal (1999), which involves cultural transmission and natural selection.

Given that the neural networks used by Kvasnicka and Pospichal are prac-

tically identical to the obverter network outlined in this paper, the behavior

of their populations can probably be explained purely in terms of cultural

processes. The absence of a contrastive learning bias or variance in natural

selection pressure in their model obscures this fact. The models of MacLen-

nan and Burghardt (1994) and Kirby and Hurford (1997) do have learning

biases which are speci�cally directed towards optimizing acquired systems,

but these models either model communication at a di�erent level (Kirby and

Hurford, 1997) or can be criticized for their use of reinforcement learning
(MacLennan and Burghardt, 1994). Finally, it is worth pointing out that

the theoretical models proposed in Pinker and Bloom (1990) and Dor and

Jablonka (2000) do not take into account the role of learning biases in cul-

tural evolution. The computational model outlined in this paper suggests

that the consequences of such biases, which may be non-obvious, need to be

taken into consideration.

The two key biases appear to be common, or at least recurring, in learn-

ing mechanisms capable of constructing optimal communication systems in

the modeling literature. Oliphant (1999) claims that this kind of bias is in

fact widespread in the natural world. But is there evidence that any species

is actually biased in favor of learning one-to-one mappings in the domain
of communication? As mentioned in Section 2, it is doubtful whether ex-

perience plays a role in determining the structure of communication in any

non-human primate. However, the sole species in which experience de�nitely

plays some role (humans) does appear to exhibit this bias. It has been sug-

gested that word acquisition in humans is guided by the Contrast Principle

(Clark, 1988), a bias in favor of one-to-one mappings between meanings and

words. While Bloom (2000) suggests this principle is part of the human the-

ory of mind, it can be conceived of as a communication-speci�c learning bias.

The model suggests that some of the nature of the human communication

system may be explicable in terms of cultural processes resulting from the

iterated application of human learning biases. The role of such a learning
bias in the evolution of syntax is a possible subject for future research - is

such a bias suÆcient for the cultural evolution of syntax, as well as simple
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communication? If not, what other components are required?

7 Conclusions

This paper outlines a computational model of the emergence of communi-

cation in a population of communicative agents. As previous work suggests,

natural selection alone is capable of evolving optimal, innate communication

systems in such populations. However, the addition of cultural transmission

of communication systems does not necessarily assist the emergence of op-

timal communication systems. The biases of the learners involved in the

cultural transmission process result in cultural selection | communication

systems which conform to the biases of the learners are more likely to be

successfully transmitted than communication systems which do not.
The results of simulations in which cultural selection is in direct conict

with natural selection are outlined in Section 4.1. In these circumstances,

cultural selection resulting from the intrinsic biases of the agents proves to

be the determining factor in the emergent behavior of the simulated popula-

tions. This is a clear case of what Durham (1991) would term gene-culture

opposition. In Section 4.2, a second cultural selection pressure was intro-

duced which was in direct conict with the intrinsic learning biases of the

simulated agents. This secondary pressure failed to override the intrinsic

biases of the learners. In Section 5 the model of the learning agent was

modi�ed to build in a bias towards optimal communication systems. In pop-

ulations of such agents optimal communication systems rapidly and reliably
emerged, due to the cultural selection pressures arising from the learners'

biases. As discussed in Section 6, these learning biases can be explained in

terms of the networks' structure.

This model has several limitations. The model of communication used,

with three unstructured meanings and eight unstructured signals, is very

simple, although there is no reason to expect these results not to hold for

more complex models of communication. The absence of any environment

outwith the agents means that communicative accuracy must be measured at

the agent-internal representations. While this is not unreasonable for refer-

ential communication systems, a behavior-based measure of communicative

success would be more appropriate for modeling non-referential communica-
tion. Finally, natural selection has a fairly limited role to play in this model,

a matter which is discussed further below.

These results have implications for both computational modeling of gene-

culture interactions and research into the origins and evolution of language.
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For computational modelers, the clear implication is that a particular choice

of agent model or learning model can have a fundamental impact on the

behavior of the systems as a whole. This suggests that modelers should

be aware of how speci�c their results are to their model of learning and
be prepared to justify their model of learning and its associated biases in

terms of the real-world system that is being modeled. The bias in favor of

one-to-one mappings associated with the the obverter agent corresponds to

a learning bias observed in humans (the Contrast Principle, as discussed in

Section 6.2), suggesting that, in terms of learning bias, the obverter model

is preferable to the imitator model as a model of human language learning.

More generally, the simulations outlined in this paper suggest that re-

search into the origins and evolution of language should not underestimate

the role of cultural selection in this process. These simulations give an illus-

tration of the fact that the learning biases of individual learners can have

profound and far-reaching e�ects when placed in the context of iterated

cultural transmission, and that in certain circumstances these cultural pro-
cesses can e�ectively nullify the inuence of natural selection during genetic

transmission.

This is not to say that natural selection can have no role in the ex-

planation of the evolution of language. In the simulations outlined in this

paper, natural selection is restricted to tinkering with the starting point for

the learning process. In a more realistic model, all aspects of the learning

apparatus would be genetically transmitted. It would therefore be possible

for natural selection to develop learning algorithms, and therefore modify

learner biases and determine the precise nature of cultural selection occur-

ring during cultural transmission. Under these circumstances, can natural

selection identify learning algorithms which result in cultural selection for
optimal communication? Preliminary modeling work in this area (Smith,

2001; Smith, in prep) suggests that natural selection may be unable to reli-

ably identify such biases due to the signi�cant delay between the appearance

of the bene�cial genes and the establishment of widespread bene�cial cul-

ture. The story of the evolution of language may therefore be best told in

two parts, with the development of the necessary pre-adaptation of an ap-

propriate learning mechanism occurring in a geological time scale and the

development of language parasitic on this learning mechanism occurring in

a historical time scale.
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Abstract

Language arises from the interaction of three complex adaptive systems | biological evolution,

learning, and culture. We focus here on cultural evolution, and present a multi-agent Iterated

Learning Model of the emergence of compositionality, a fundamental structural property of

language. Our key results is to show that the poverty of the stimulus available to language

learners leads to a pressure for linguistic structure. When there is a bottleneck on cultural

transmission, only a language which is generalisable from sparse input data is stable. Language

itself evolves on a cultural time-scale, and compositionality is language's adaptation to stimulus

poverty.

Key words: language, cultural evolution, compositionality
Running title: The Evolution of Compositionality

1 INTRODUCTION

Human language is at the nexus of several complex adaptive systems (Gell-Mann 1992). But
what are these systems, and how did they interact to deliver up language, unique among the
communication systems of the natural world? In what we will call the standard adaptationist

model, language is seen primarily as a biological trait. Language can then be explained in terms of
the interaction between biological evolution of the human \language instinct" (Pinker 1994) and
individual learning of language.

The standard adaptationist model is based on the Chomskyan paradigm from linguistics, which
focuses on the innate linguistic knowledge of the speaker. However, we argue that this de-emphasis
of learning and cultural transmission obscures an important dynamic in language evolution. Lan-
guage itself functions as a complex adaptive system, and the historical evolution of language
interacts with individual learning and biological evolution of the language faculty.

We believe that an understanding of language evolution will require a thorough understanding
of each of these three complex adaptive systems (biological evolution, learning and culture), but
also, crucially, an understanding of how they interact. In this paper we will focus on modelling
the cultural evolution of compositionality, one of the fundamental structural characteristics of
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Linguistic
Competence

Primary
Linguistic

Data

acquisition

Figure 1: The Chomskyan Paradigm. The focus is on an individual's internal linguistic competence, and

how this competence is acquired based on the available data. Acquisition is constrained and guided by an

innate LAD and UG.

language. In our concluding remarks we will broaden our focus to discuss how cultural evolution
might interact with biological evolution and learning.

We have modelled the cultural evolution of compositionality mathematically (Brighton 2002).
Mathematical and computational models suggest di�erent idealisations. The idealisations made
by Brighton restrict us to examining the behaviour of perfectly compositional or completely non-
compositional language. In this paper we present a multi-agent computational model of the dy-
namics arising from the cultural transmission of linguistic structure. We show that compositional
language can emerge from an initially non-compositional system by cultural processes. The poverty
of the stimulus available to language learners drives the evolution of linguistic structure | lan-
guage itself evolves to be learnable, and compositionality is language's adaptation to the poverty
of the stimulus problem.

2 COMPLEX SYSTEMSAND LANGUAGE EVOLUTION

2.1 The Standard Adaptationist Model

The standard adaptationist model places the Chomskyan approach to language within an evolu-
tionary framework. In the Chomskyan paradigm (formulated and developed by Noam Chomsky,
for example Chomsky (1965) and Chomsky (1995)), which has been highly inuential in modern
linguistics, language is viewed as an aspect of individual psychology. The object of interest is the
internal linguistic competence of the individual, and how this linguistic competence is derived from
the data the individual is exposed to. External linguistic behaviour is considered to be epiphe-
nomenal, the uninteresting consequence of the application of this linguistic competence to a set of
contingent communicative situations. From this standpoint, much of the structure of language is
puzzling | how do children, apparently e�ortlessly and with virtually universal success, arrive at
a sophisticated knowledge of language from exposure to sparse and noisy data? In order to explain
language acquisition in the face of this poverty of the linguistic stimulus, the Chomskyan program
postulates a sophisticated, genetically-encoded language organ of the mind, consisting of a Univer-
sal Grammar (UG), which delimits the space of possible languages, and a Language Acquisition
Device (LAD), which guides the formation of linguistic competence based on the observed data.
This scheme is illustrated in Figure 1.

Chomsky has been notoriously reluctant to o�er an account of the evolution of UG and the
LAD, preferring instead to appeal to architectural and developmental constraints:

\We know very little about what happens when 1010 neurons are crammed into some-
thing the size of a basketball, with further conditions imposed by the speci�c manner
in which this system developed over time. It would be a serious error to suppose
that all properties, or the interesting properties of the structures that evolved, can be
'explained' in terms of natural selection." (Chomsky 1975:59)

2
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acquired change
fitness langscape

Languages
guides acquisition

Innate endowment

Biological Evolution

Learning

Figure 2: The standard adaptationist model. Language is a consequence of the interaction between biolog-

ical evolution and learning. The innate language capacity guides language acquisition. The functionality

of the acquired language then has consequences for the biological evolution of the language capacity.

However, others have been less reticent in attempting to integrate the Chomskyan paradigm
with evolutionary theory. Pinker & Bloom (1990) present the classic adaptationist account of
language evolution, suggesting that \the ability to use a natural language belongs more to the
study of human biology than human culture: it is a topic like echolocation in bats"(Pinker &
Bloom 1990:707). They argue that language is adapted for the communication of propositional
structures (in the internal representational \language of thought") over a serial channel. UG
and the LAD have therefore evolved to facilitate the acquisition of language which performs this
function.

Pinker & Bloom's (1990) account calls upon the interaction between two complex adaptive sys-
tems to explain the language capacity and linguistic structure. The process of language acquisition,
constrained by UG and guided by the LAD, determines an individual's linguistic competence. This
competence then contributes to an individual's reproductive �tness, resulting in selection in favour
of an innate endowment which 1) facilitates language acquisition and 2) constrains the learner to
learning languages which are communicatively useful. Biological adaptation of UG and the LAD
then feeds back into the language acquisition process. This interaction is illustrated in Figure 2.

2.2 Culture: A Third Complex System

Those working within the Chomskyan paradigm typically play down the role of learning and the
cultural transmission of language. For Chomsky, learning of a language is \better understood as
the growth of cognitive structures along an internally directed course under the triggering and
partially shaping e�ect of the environment" (Chomsky 1980:34), while Piattelli-Palmarini has
suggested that \we would gain in clarity if the scienti�c use of the term [learning] were simply
discontinued"(Piattelli-Palmarini 1989:2). This devaluation of learning, and consequently cultural
transmission, arises from concerns based on poverty of the stimulus arguments. If the linguistic
stimulus available to the child is too impoverished to allow language acquisition, then much of
the structure of language must be prespeci�ed, and learning e�ectively plays no role. However,
focusing on the nature of this innate knowledge of language, to the detriment of the study of the
cultural transmission of language, means that we overlook an important dynamic which can help
explain some of the fundamental structural properties of language.

Following ideas developed by Hurford (1990), we place an understanding of cultural evolution

3
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Figure 3: Language as a cultural phenomenon. As in the Chomskyan paradigm, illustrated in Figure 1,

acquisition based on available data leads to linguistic competence. However, this competence in turn leads

to linguistic behaviour, which becomes the linguistic data for the next generation of language learners.

at the heart of an explanatory approach. An individual's linguistic competence is derived from
data which is itself a consequence of the linguistic competence of another individual. This view of
language is illustrated in Figure 3.

What consequences does this view of language have for evolutionary explanations of language
and the language faculty? The introduction of cultural transmission results in a third complex
adaptive system, that of cultural evolution, operating on what has been dubbed a glossogenetic

(Hurford 1990) time-scale, intermediate between the phylogenetic and ontogenetic time-scales.
As in the standard adaptationist model, language acquisition is guided by an individual's innate
endowment. The learner attempts to acquire the language of their cultural parents. Di�erences
between the language of the parent and the child results in the cultural evolution of language
itself. This cultural evolution further restricts the set of possible languages available to language
learners at subsequent generations. The particular language acquired by a learner from the set
of languages made available by this cultural evolution then contributes to the reproductive �tness
of that individual, resulting in selection in favour of an innate endowment which 1) facilitates
acquisition of those languages present in the culture and 2) constrains the learner to learning
languages which are communicatively useful. Biological adaptation of UG and the LAD then feeds
back into the language acquisition process. This interaction is illustrated in Figure 4.

The structure of language is dependent on the interaction between these three complex sys-
tems, and a full understanding of language evolution will require a treatment of all three adaptive
processes. However, it is prudent to develop an understanding of each process in isolation before
attempting to formulate a complete, uni�ed model of the evolution of language. In this paper we
will develop an account of the dynamics arising from the cultural transmission of language, then
draw inferences as to how this dynamic might interact with the complex systems of individual
learning and biological evolution.

3 THE ITERATED LEARNING MODEL

The Iterated Learning Model (ILM), as introduced in Kirby (2001) and Brighton (2002), provides
a framework for studying the cultural evolution of language on a glossogenetic time-scale. The
ILM in its simplest form is illustrated in Figure 5. In this model Hi corresponds to the linguistic
competence of individual i, whereas Ui corresponds to the linguistic behaviour of individual i and

4
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Learning results in
cultural evolution

Set of languages changes
fitness landscape guides acquisition
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Figure 4: Adding cultural evolution. Language is now a consequence of the interaction between biological

evolution, learning and cultural evolution. The innate language capacity guides language acquisition. The

cultural transmission of language leads to cultural evolution, which then has consequences for the biological

evolution of the language capacity.
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Figure 5: The ILM. In the simplest case, the ith generation of the population consists of a single agent

Ai who has hypothesis Hi. Agent Ai is prompted with a set of meanings Mi. For each of these meanings

the agent produces an utterance using Hi. This yields a set of utterances Ui. Agent Ai+1 observes Ui and

forms a hypothesis Hi+1 to explain the set of observed utterances, and the cycle repeats.

the primary linguistic data for individual i+ 1.
We focus here on the cultural evolution of language in the absence of any functional pressure

for e�ective communication. While it has been suggested that functional considerations have an
impact on language acquisition and production (for example, Hawkins (1990) suggests a preference
by speaker/hearers for sentences which are easy to parse), ignoring such pressures allows us to make
several simplifying assumptions. We can treat the population at any given generation as consisting
of a single agent. This means that we can focus fully on vertical cultural transmission, and ignore
for the moment horizontal, within-generation transmission. We can also ignore inter-generational
communication. However, the ILM does not rule out a focus on the communicative function of
language within or between generations in a population (see, for example, Smith (2002)) or the role
of horizontal transmission (see Batali (2002) for an ILM where transmission is purely horizontal).

The ILM provides a powerful framework for investigating the cultural evolution of language.
We have previously used the ILM to examine the emergence of word-order universals (Kirby 1999),
the regularity{irregularity distinction (Kirby 2001) and recursive syntax (Kirby 2002). Here we will
focus on the cultural evolution of compositionality, one of the characteristic structural properties

5
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of language.

4 MODELLING THE EVOLUTION OF COMPOSITION-

ALITY

4.1 Compositionality

In a compositional communication system the meaning of a signal is a function of the meaning of its
parts (Krifka 2001). The morphosyntax of human language is highly compositional. For example,
the relationship between the string John walked and its meaning is not completely arbitrary. It is
made up of two components: a noun (John) and a verb (walked). The verb is also made up of two
components: a stem and a past-tense ending. The meaning of John walked is thus a function of
the meaning of its parts. Compositionality, in combination with recursive syntax, allows language
users to produce and comprehend an in�nite range of sentences.

Compositional language can be contrasted with non-compositional, or holistic communication,
where a signal stands for the meaning as a whole, with no subpart of the signal conveying any
part of the meaning in and of itself. Animal communication is typically viewed as holistic | no
subpart of an alarm call or a mating display stands for part of the meaning \there's a predator
about" or \come and mate with me".

How can we explain the compositionality of language? In the standard adaptationist model,
compositionality must be viewed as a consequence of a biological adaptation of the unique human
language organ | natural selection has favoured an innate endowment which restricts language
learners to learning compositional systems. However, we demonstrate that compositionality can
arise through purely cultural processes, as a result of the adaptation of language in the face of
pressure to be learnable. This lifts some of the burden of explanation from the postulated language
organ | cultural processes acting on a (possibly domain-general) biological substrate results in
compositional language.

4.2 Necessary Elements of a Model

We treat language as a mapping between meanings and signals. A compositional language is a
mapping which preserves neighbourhood relationships | neighbouring meanings will share struc-
ture, and that shared structure in meaning space will map to shared structure in signal space. A
holistic language is one which does not preserve such relationships | as the structure of signals
does not reect the structure of the underlying meaning, shared structure in meaning space will
not necessarily result in shared signal structure.

In order to model such systems we need representations of meanings and signals. Meanings are
represented as points in an F -dimensional space where each dimension has V discrete values, and
signals are represented as strings of characters of length 1 to lmax, where the characters are drawn
from some alphabet �. More formally, the meaning space M and signal-space S are given by:

M = f(f1 f2 : : : fF ) : 1 � fi � V and 1 � i � Fg

S = fw1w2 : : : wl : wi 2 � and 1 � l � lmaxg

The world, which provides communicatively relevant situations for agents in our model, consists
of a set of objects, where each object is labelled with a meaning drawn from M. We will refer to
such a set of labelled objects as an environment.

Utterances, the units of observable behaviour that individuals acquire their competence from,
are considered to be meaning-signal pairs hm; si, where m 2 M and s 2 S. We therefore assume

6
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that learners are able to deduce the communicative intentions of others during language acquisi-
tion. This is obviously an oversimpli�cation | if the meaning of every signal was self-evident then
the signal itself would serve little purpose. However, we can make several points in defence of this
idealisation. Firstly, children do seem to have various strategies for deducing the meaning under-
lying an observed signal. Central to these abilities is the capacity to establish joint attention and
perform intentional inference (Baldwin 1991; Bloom 2000). Secondly, computational simulations
outlined in Hurford (1999) show that linguistic structure can be preserved if this idealisation is
weakened, so that learners observe only partially-speci�ed meanings in conjunction with signals.
Finally, a strand of research parallel and complementary to our own abandons this idealisation
completely (for example, Steels (1997), Steels (1998), Smith (2001), and Steels et al. (2002)). This
work shows that shared linguistic structure can still emerge in the absence of explicit meaning
transfer during learning.

We make a fundamental distinction between meanings and signals. An alternative approach
is presented in Hashimoto (1998), who also treats language as a dynamical system but makes no
distinction between the meanings of words and the words themselves. From this standpoint, the
meaning of a signal is de�ned in terms of the relationship between that signal and other signals |
the mesh of word-word associations constrains and guides the interpretation of signals. Language
lies somewhere between these two extremes.

4.3 An Analysis of Stable States

Brighton (2002) presents a mathematical analysis of the relative stability of compositional and
holistic language over cultural time. Brighton considers only perfectly compositional and com-
pletely holistic language. Addressing the question of relative stability allows us to predict when
we should observe linguistic structure | when compositional and holistic language are equally
stable we should expect them to emerge with equal frequency over cultural time, whereas when
one type of language is more stable than the other we should expect that language to emerge more
frequently and persist for longer.

One of Brighton's observations is that, in an iterated learning scenario, stability of a language
over cultural time relates to the expressivity of learners exposed to that language. Consider the
problem faced by a learner attempting to learn a holistic language. Given the lack of structure in
the holistic language, the best strategy for the learner is simply to memorise meaning-signal pairs.
The learner, when called upon to produce an utterance, will only be able to faithfully reproduce
meaning-signal pairs that it itself has observed. Parts of the language which have not been observed
cannot be expressed and will therefore be lost or will change | holistic language is only stable
when the learner observes, and is therefore able to express, the complete language of the previous
generation.

In contrast, the structure of a compositional language means that learners can acquire and ex-
press the complete language based on observation of a subset of that language. Consider a learner
presented with a perfectly compositional language. In such a language each feature value will map
onto a particular subsignal. The best strategy here is to memorise feature value{subsignal pairs.
When called upon to produce an utterance for a given meaning, an individual is not restricted
to reproducing meaning-signal pairs it itself has observed. A meaning will be expressible if every
feature value of that meaning has been observed paired with a subsignal. A learner of a composi-
tional language can therefore generalise from observed examples to express parts of the language
that it has not actually observed, therefore the language will remain stable.

Brighton's key result is to show that the stability advantage of compositional language over
holistic language is at a maximum when there is a bottleneck on cultural transmission. The trans-
mission bottleneck occurs when learners only observe a subset of the language of the previous
generation. This is one aspect of the poverty of the stimulus problem | the set of utterances

7
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of any human language is arbitrarily large, but a child must acquire their linguistic competence
based on a �nite number of sentences. The severity of the transmission bottleneck is given by the
proportion of the language of the previous generation that a learner will observe.

Holistic languages cannot persist over time when the bottleneck on cultural transmission is
tight | learners can only faithfully reproduce parts of the language which they have observed, and
if they observe only a small subset of the language then the language will be unstable. In contrast,
compositional languages are generalisable, due to their structure, and remain relatively stable even
when a learner only observes a small subset of the language of the previous generation. Brighton
shows that the poverty of the stimulus \problem" is actually a requirement for linguistic structure
| were there no poverty of the stimulus, compositional language would have no advantage over
unstructured holistic language.

4.4 A Model of Language Dynamics

Brighton's result is a fundamental one. However, by considering only perfectly compositional or
completely holistic languages, Brighton is restricted to examining the Lyapounov stable states,
places in language space that, if we start near, we stay near (Glendinning 1994). The model
cannot explain the dynamics that occur when we move away from the extremes of compositionality,
although insights taken from the model prove relevant to understanding the behaviour of dynamic
models.

What happens to languages of intermediate compositionality during cultural transmission?
Can compositional language emerge from initially holistic language, through a process of cultural
evolution? We can investigate these question using techniques from arti�cial life, by developing
a multi-agent computational implementation of the ILM. A neural network model of a linguistic
agent, based on a simple model described in Smith (2002), is outlined below. This agent is inserted
into the ILM, along with a model of environments, allowing us to model the dynamics arising from
the cultural transmission of language.

4.4.1 A network model of a linguistic agent

Representation Agents are modelled using networks consisting of two sets of nodes NM and
NS and a set of bidirectional connections W connecting every node in NM with every node in
NS . Nodes in NM represent meanings and partial speci�cations of meanings, while nodes in NS
represent partial and complete speci�cations of signals.

As summarised above, each meaning is a vector in F -dimensional space where each dimension
has V values. Components of meanings are (possibly partially speci�ed) vectors, with each feature
of the component either having the same value as the meaning, or a wildcard. More formally, if
cm is a component of meaning m, then the value of the jth feature of cm is:

cm [j] =

�
m [j] for speci�ed features
� for unspeci�ed features

where � represents a wildcard. Similarly, components of signals of length l are (possibly partially
speci�ed) strings of length l. We impose the additional constraint that a component must have a
minimum of one speci�ed position. For example, the components of the meaning represented by
the vector (1 2) are (1 2), (1 �) and (� 2), but not (1 3) (value of feature 2 doesn't match) or (� �)
(no speci�ed features). Similarly, the components of the signal represented by the string bd are
bd, b� and �d, but not e� (�rst character doesn't match), �� (no speci�ed characters) or a (not of
correct length).

8
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Figure 6: Storage of the meaning-signal pair h(2 1) ; abi. Nodes with an activation of 1 are represented
by large �lled circles, and are labelled with the component they represent. For example, M(2 �) is the
node which represents the meaning component (2 �). Small �lled circles represent weighted connections.
During the learning process, nodes representing components of (2 1) and ab have their activations set to
1. Connection weights are then either incremented (+), decremented (�) or left unchanged.

Each node in NM represents a component of a meaning, and there is a single node in NM for
each component of every possible meaning. Similarly, each node in NS represents a component of
a signal and there is a single node in NS for each component of every possible signal.

Learning During a learning event, a learner observes a meaning-signal pair hm; si. The activa-
tions of the nodes corresponding to all possible components of m and all possible components of s
are set to 1. The activations of all other nodes are set to 0. The weights of the connections in W
are adjusted according to the weight-update rule:

�Wxy =

8<
:

+1 i� ax = ay = 1
�1 i� ax 6= ay
0 otherwise

where Wxy gives the weight of the connection between nodes x and y and ax gives the activation
of node x. The learning procedure is illustrated in Figure 6.

Production An analysis of a meaning or signal is an ordered set of components which fully
speci�es that meaning or signal. More formally, an analysis of a meaning m is a set of components�
c1m; c

2

m; : : : c
N
m

	
that satis�es two conditions:

1. If cim [j] = �, ckm [j] 6= � for some choice of k

2. If cim [j] 6= �, cim [j] 6= ckm [j] for any choice of k

The �rst condition states that an analysis may not consist of a set of components which all
leave a particular feature unspeci�ed | an analysis fully speci�es a meaning. The second states
that an analysis may not consist of a set of components where more than one component speci�es
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Figure 7: Retrieval of three possible analyses of h(2 1) ; abi. The relevant connection weights are high-
lighted in grey. (a) g for the one-component analysis hf(2 1)g ; fabgi depends on the weight of the connec-
tion between the nodes representing the components (2 1) and ab. (b) g for the two-component analysis
hf(2 �) ; (� 1)g ; fa�; �bgi depends on the weighted sum of two connections, marked as i. The g for the
alternative two-component analysis hf(2 �) ; (� 1)g ; f�b; a�gi is given by the weighted sum of the two con-
nections marked ii.

the value of a particular feature | analyses do not contain redundant components. Valid analyses
of signals are similarly de�ned.

During the process of producing utterances, agents are prompted with a meaning and required
to produce a meaning-signal pair. Production proceeds via a winner-take-all process. In order
to retrieve a signal si 2 S based on an input meaning mi 2 M every possible signal sj 2 S
is evaluated with respect to mi. For each of these possible meaning-signal pairs hmi; sji, every
possible analysis of mi is evaluated with respect to every possible analysis of sj . The evaluation
of a meaning analysis-signal analysis pair yields a score g. The meaning-signal pair which yields
the analysis pair with the highest g is returned as the network's production for the given meaning.
The score for a meaning analysis (which consists of a set of meaning components) paired with a
signal analysis (a set of signal components) is given by:

g
��
c1m; c

2

m : : : cNm
	
;
�
c1s; c

2

s : : : c
N
s

	�
=

NX

i=1

!
�
cim
�
�Wci

m
;ci
s

whereN is the number of components in the analysis of meaning and signal, wci
m
;ci
s
gives the weight

of the connection between the nodes representing the ith component of the meaning analysis and
the ith component of the signal analysis and ! (x) is a weighting function which gives the non-
wildcard proportion of x. The production process is illustrated in Figure 7.

4.4.2 Environment structure

An environment consists of a set of objects labelled with meanings drawn from M. The number of
objects in the environment gives the density of that environment | environments with few objects
will be termed low-density, whereas environments with a large number of objects will be termed
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(a) (b) (c) (d)

Figure 8: We will present results for the case where F = 3 and V = 5. This de�nes a three-dimensional
meaning space. We highlight the meanings selected from that space with grey. (a) is a low-density,
unstructured environment. (b) is a low-density, structured environment. (c) and (d) are unstructured and
structured high-density environments.

high-density. When meanings are assigned to objects at random we will say the environment is
unstructured. When meanings are assigned to objects in such a way as to minimise the average
inter-meaning Hamming distance we will say the environment is structured. Sample low- and
high-density environments are shown in Figure 8.

4.4.3 Measuring compositionality

As discussed above, a compositional mapping preserves neighbourhood relations when mapping
between meanings and signals, whereas a holistic mapping does not, unless by chance. Our measure
of compositionality, c, captures this and is calculated based on the set of meaning-signal pairs in
an agent's language. c is the Pearson's Product-Moment correlation coeÆcient of the pairwise
distances between pairs of meanings and the distance between the corresponding pairs of signals.
We use the Hamming and Levenstein (string edit) distance measures to quantify inter-meaning and
inter-signal distances respectively. c ranges between -1 and 1. A perfectly compositional language
will have a c of 1, whereas c � 0 for holistic languages.

5 RESULTS

The network model of a linguistic agent outlined above is plugged into the ILM framework described
in Section 3. We will vary two key parameters | the presence or absence of a bottleneck on cultural
transmission, and the density and structure of the environment.

5.1 No Bottleneck on Cultural Transmission

First, runs of the ILM were carried out in the absence of a bottleneck on cultural transmission |
each learner is presented with the complete language of the agent at the previous generation. The
initial agents had all their connections weights set to 0, and therefore produced every meaning-
signal pair with equal probability. Subsequent agents had connection weights of 0 prior to learning.
Runs were allowed to progress until a stable state was reached, where agent Ai and Ai+1 produced
identical languages. At this point, in the absence of a bottleneck, further language change is
impossible.

Figures 9 and 10 plot compositionality by frequency for the initial and �nal, stable languages
for low-density and high-density environments. These results are based on 1000 independent runs
of the ILM for each environment.
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Figure 9: The relative frequency of initial and �nal systems of varying degrees of compositionality, where

there is no bottleneck on cultural transmission. The results shown here are for the low-density environments

given in Figure 8. The initial languages are largely holistic. Some �nal languages exhibit increased levels

of compositionality. Highly compositional languages are infrequent.
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Figure 10: The relative frequency of initial and �nal systems of varying degrees of compositionality,

where there is no bottleneck on cultural transmission. The results shown here are for the high-density

environments given in Figure 8. Both the initial and �nal languages are holistic.
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Initial Compositionality

Environment all cinitial = cfinal
cinitial 6= cfinal,
cfinal < 0:8

cinitial 6= cfinal,
cfinal � 0:8

ld, u � = 0:0011, � = 0:1135 � = �0:1484 � = 0:0076 NA
ld, s � = �0:0002, � = 0:1136 � = �0:0457 � = 0:0371 � = 0:0688
hd, u � = 0:0004, � = 0:0470 � = �0:0062 � = 0:0108 NA
hd, s � = 0:0027, � = 0:0454 � = �0:0002 � = 0:0101 NA

Table I: Sensitivity to initial conditions. Environments are speci�ed by a density | low-density (ld) or
high-density (hd), and a degree of structure | unstructured (u) or structured (s). Simulation runs can be
split into three groups, according to the values of cinitial and cfinal. The table gives the means (�) of the
initial language of the simulation runs, broken down by group. The runs in the low-density environments
are sensitive to the compositionality of the initial system. The standard deviations (�) is given once. �

for each subgroup is approximately the same as � for the runs in that environment as a whole. The initial
languages in the high-density environment are clustered more tightly around the mean.

Three results are apparent from these Figures:

1. Highly compositional systems are infrequent.

2. Compositional systems only occur when the environment is low-density.

3. Highly compositional systems only occur when the environment is structured.

The initial languages tend to be holistic. Brighton's (2002) results suggest that, with no
bottleneck on cultural transmission, such systems will be highly stable. This seems to be the
case for the majority of runs reported here, particularly in the high-density environment. The
emergence of some partially or highly compositional systems in the low-density environments then
seems somewhat surprising.

Individual simulation runs can be split into three groups { those where the �nal languages have
the same level of compositionality as the initial languages (cinitial = cfinal), those where the �nal
compositionality is di�erent from the compositionality of the initial language but not high (cinitial 6=
cfinal, cfinal < 0:8), and those where the �nal systems are highly compositional (cinitial 6= cfinal,
cfinal � 0:8). Table I gives the mean and standard deviations of the compositionality of the initial
languages, organised into these three groups.

As can be seen from the �rst column of the Table, runs in all environments have a mean value
of cinitial of approximately 0. However, these initial values are much more tightly distributed
around the mean in the high-density environments. The second column gives the mean cinitial for
simulation runs where cinitial = cfinal. These are somewhat lower than the overall mean, and are
lower than the mean cinitial for simulation runs where cinitial 6= cfinal. Finally, the mean cinitial

for simulation runs which converge on highly compositional systems is higher still.
These results suggest that, in the absence of a bottleneck on cultural transmission, there is a

degree of sensitivity to the compositionality of the initial, random language. Where this initial
system exhibits compositional tendencies, yielding cinitial above the mean, there is an increased
likelihood of the language moving, over iterated learning events, towards more compositional re-
gions of language space. The compositional tendencies of the initial language spread to other parts
of the language over time, resulting in an increase in compositionality. However, this progression
is not guaranteed - not all simulation runs where cinitial is above the mean eventually converge on
more compositional systems. For the high-density environments partially or highly compositional
systems do not emerge due to the fact that the initial systems tend to be clustered more tightly
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around the non-compositional mean. When the environment contains few meanings the initial
language may, by chance, exhibit some compositional tendencies. However, when the environment
contains a large number of meanings such tendencies are likely to be drowned out by the majority
holistic mapping.

Why does environment structure impact on the compositionality of languages in the low-density
environments? This is related to the previous question. In the low-density environments, as
discussed above, compositional tendencies in the initial system spread, over time, to other other
parts of the system. In structured environments, distinct meanings tend to have feature values in
common with a large number of other meanings. In unstructured environments distinct meanings
have feature values in common with few other meanings. If the initial random language has a
tendency to express a given feature value with a certain substring then this can spread to cover
all meanings involving that feature value | the system becomes consistent with respect to that
feature value | which can have knock-on consequences for other values at that feature and other
features. In structured environments the potential for spread of the substring associated with a
particular feature value is wider than is the case in unstructured environments, given that more
meanings will share that feature value. Any initial compositional tendency will therefore spread
more widely in structured environments, with more possible follow-on consequences, resulting in
the more frequent emergence of highly compositional systems.

5.2 Bottleneck on Cultural Transmission

Next, runs of the ILM were carried out with a bottleneck on cultural transmission | each learner
is presented with a subset of the language of the agent at the previous generation. The num-
ber of utterances produced by agents was set so that language learners observed utterances for
approximately 40% of the language of the previous agent.

While in the absence of a bottleneck runs were allowed to proceed until a stable state was
reached, in the bottleneck condition runs were terminated after a �xed number of generations
(100). The random selection of objects from the environment for which to produce utterances
means that, as with any stochastic system, a highly skewed distribution of objects could lead to
the loss of structure. However, this is extremely unlikely. The results reported here accurately
reect the behaviour of the system | allowing the runs to proceed for several hundred more
generations gives a similar distribution of languages.

Figure 11 plots the compositionality by frequency of the initial and �nal languages for unstruc-
tured and structured high-density environments. These results are based on 1000 independent
runs of the ILM for each environment. Results are not shown for the low-density environments.
At this severity of bottleneck, it is impossible for any learner to see every distinct feature value in
the low-density environment, therefore no stable states exist.

Two results are apparent from Figure 11:

1. Highly compositional systems are frequent.

2. Highly compositional systems are most frequent when the environment exhibits structure.

Brighton's (2002) mathematical model predicts that, in the presence of a bottleneck on cultural
transmission, compositional language will be more stable than holistic language. The results from
the computational model bear this out, but also show that it is possible to move from an initially
holistic system to a highly compositional system over time. Figure 12 illustrates the dynamics
of the transition from holistic to compositional language. In the case where the environment is
unstructured (Figure 12 (a)), there are two attractors | one where c = 0:45 and one where
c = 0:95. This gives the bimodal distribution of systems for such environments seen in Figure 11.
However, systems at these points are not highly stable | it is possible to move from one attractor
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Figure 11: The relative frequency of initial and �nal systems of varying degrees of compositionality,

where there is a bottleneck on cultural transmission. The results shown here are for the high-density

environments. The initial languages are largely holistic. Highly compositional languages emerge with high

frequency, and are most frequent when the environment is structured.
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Figure 12: The dynamics of language change. Arrows represent the direction and magnitude of change
of languages of a given level of compositionality, c. The origin of the arrow gives the compositionality of
the language at time t. The direction and length of the arrow corresponds to the mean directionality and
magnitude of change in compositionality for those systems at time t+1. (a) Dynamic in the unstructured
environment. There are two attractors, at c = 0:45 and c = 0:95, corresponding to the two peaks of the
bimodal distribution given in Figure 11. Magnitude of change decreases as these attractors are approached.
(b) Dynamics in the structured environment. There is a single attractor, at c = 0:95, corresponding to the
peak in Figure 11. Again, magnitude of change decreases as this attractor is approached.

to another. In contrast, in the structured environment, as shown in Figure 12 (b), there is a single
attractor at c = 0:95. Systems reaching this point are highly stable, and any perturbation away
from the attractor is quickly reversed.

Why are compositional languages so strongly preferred when there is a bottleneck on transmis-
sion? Holistic languages cannot persist in the presence of a bottleneck. The meaning-signal pairs
of a holistic language have to be observed to be reproduced. When a learner only observes a subset
of the holistic language of the previous generation then certain meaning-signal pairs will not be
preserved | the learner, when called upon to produce, will produce some other signal for that
meaning, resulting in a change in the language. In contrast, compositional languages are general-
isable, due to their structure, and remain relatively stable even when the learner observes a small
subset of the language of the previous generation. Over time, language adapts to the pressure to be
generalisable. Eventually, particularly when the environment is structured, the language becomes
highly compositional, highly generalisable and consequently highly stable.

In a structured environment the advantage of compositionality is at a maximum. As discussed
above, in such environments meanings share feature values with several other meanings. A language
mapping these feature values to a signal substring is highly generalisable. When the environment
is unstructured, meanings share feature values with few or no other meanings. In the most extreme
case, a meaning may have a value for a particular feature which no other meaning has. The signal
associated with that meaning cannot then be deduced from observations of the signals associated
with other meanings, and has to be observed to be learned. Consequently, compositional language
in an unstructured environment is less stable through the transmission bottleneck.
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6 CONCLUSIONS

We have presented a multi-agent simulation model which demonstrates that compositional lan-

guage can emerge from initially non-compositional language through purely cultural processes.

Compositional language emerges when there is a bottleneck on cultural transmission | composi-

tionality is an adaptation by language which allows it to slip through the transmission bottleneck.

The advantage of compositionality is at a maximum when language learners perceive their world

as structured | when the objects in the environment relate to one another in structured ways

then a generalisable, compositional language is highly adaptive.

We are not, however, arguing that compositionality can be understood purely in terms of

cultural evolution. The complex adaptive systems of learning and biological evolution still have a

role to play. In the models described here, after exposure to a small set of utterances a learner's

knowledge remains �xed. In the real case, however, an individual's knowledge and use of language

is constantly changing and adapting, and this may impact on cultural evolution.

Similarly, we have o�ered no account of the biological evolution of the linguistic capacities of

our simulated agents. Whereas the standard adaptationist model would hypothesise a complex,

language-speci�c component of the brain designed to deal with compositionality, we make much

weaker assumptions | a simple associative learning mechanism, in combination with a capacity

to infer the communicative intentions of others, is suÆcient to allow the cultural evolution of com-

positional language. It is not clear that either of these capacities are language speci�c, and an

evolutionary account of their origins and development might be domain-general or exaptationist

in avour. The interaction between the evolution of this mental capacity and the ongoing cul-

tural evolution of language is an exciting topic for future research, and computational modelling

techniques will continue to be an invaluable tool in such research.
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Language is culturally transmitted. Iterated Learning, the process by which the

output of one individual's learning becomes the input to other individuals' learning,

provides a framework for investigating the cultural evolution of linguistic struc-

ture. We present two models, based upon the Iterated Learning framework, which

show that the poverty of the stimulus available to language learners leads to the

emergence of linguistic structure. Compositionality is language's adaptation to

stimulus poverty.

Linguists traditionally view language as the consequence of an innate \language instinct"
(Pinker 1994). It has been suggested that this language instinct evolved, via natural se-
lection, for some social function | perhaps to aid the communication of socially relevant
information such as possession, beliefs and desires (Pinker & Bloom 1990), or to facilitate
group cohesion (Dunbar 1996). However, the view of language as primarily a biological
trait arises from the treatment of language learners as isolated individuals. We argue
that language should be more properly treated as a culturally transmitted system. Pres-
sures acting on language during its cultural transmission can explain much of linguistic
structure. Aspects of language which appear ba�ing when viewed from the standpoint of
individual acquisition emerge straightforwardly if we take the cultural context of language
acquisition into account. While we are sympathetic to attempts to explain the biological
evolution of the language faculty, we agree with Jackendo� that \[i]f some aspects of lin-
guistic behaviour can be predicted from more general considerations of the dynamics of
communication [or cultural transmission] in a community, rather than from the linguistic
capacities of individual speakers, then they should be"(Jackendo� 2002:101).

We present the Iterated Learning Model as a tool for investigating the cultural evolu-
tion of language. Iterated Learning is the process by which one individual's competence
is acquired on the basis of observations of another individual's behaviour, which is deter-
mined by that individual's competence. This model of cultural transmission has proved
particularly useful in studying the evolution of language. The primary goal of this pa-
per is to introduce the notion of Iterated Learning and demonstrate that it provides a
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new adaptive mechanism for language evolution. Language itself can adapt on a cultural
timescale, and the process of language adaptation leads to the characteristic structure of
language. To this end, we present two models. Both attempt to explain the emergence of
compositionality, a fundamental structural property of language. In doing so they demon-
strate the utility of the Iterated Learning approach to the investigation of language origins
and evolution.

In a compositional system the meaning of a signal is a function of the meaning of its
parts and they way they are put together (Krifka 2001). The morphosyntax of language
exhibits a high degree of compositionality. For example, the relationship between the
string John walked and its meaning is not completely arbitrary. It is made up of two
components: a noun (John) and a verb (walked). The verb is also made up of two
components: a stem and a past-tense ending. The meaning of John walked is thus a
function of the meaning of its parts.

The syntax of language is recursive | expressions of a particular syntactic category
can be embedded within larger expressions of the same syntactic category. For example,
sentences can be embedded within sentences | the sentence John walked can be embed-
ded within the larger sentence Mary said John walked, which can in turn be embedded
within the sentence Harry claimed that Mary said John walked and so on. Recursive
syntax allows the creation of an in�nite number of utterances from a small number of
rules. Compositionality makes the interpretation of previously-unencountered utterances
possible | knowing the meaning of the basic elements and the e�ects associated with
combining them enables a user of a compositional system to deduce the meaning of an
in�nite set of complex utterances.

Compositional language can be contrasted with non-compositional, or holistic commu-
nication, where a signal stands for the meaning as a whole, with no subpart of the signal
conveying any part of the meaning in and of itself. Animal communication is typically
viewed as holistic | no subpart of an alarm call or a mating display stands for part of the
meaning \there's a predator about" or \come and mate with me". Wray (1998) suggests
that the protolanguage of early hominids was also holistic. We argue that Iterated Learn-
ing provides a mechanism for the transition from holistic protolanguage to compositional
language.

In the �rst model presented in this paper, insights gained from the Iterated Learning
framework suggest a mathematical analysis. This model predicts when compositional
language will be more stable than non-compositional language. In the second model,
techniques adopted from arti�cial life are used to investigate the transition, through purely
cultural processes, from non-compositional to compositional language. These models
reveal two key determinants of linguistic structure:

Stimulus poverty: The poverty of the stimulus available to language learners during

cultural transmission drives the evolution of structured language | without this stimulus

poverty, compositional language will not emerge.

Structured semantic representations: Compositional language is most likely to evolve

when linguistic agents perceive the world as structured | structured pre-linguistic repre-
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sentation facilitates the cultural evolution of structured language.

Two views of language

In the dominant paradigm in linguistics (formulated and developed by Noam Chomsky,
for example Chomsky (1965) and Chomsky (1995)), language is viewed as an aspect of
individual psychology. The object of interest is the internal linguistic competence of the
individual, and how this linguistic competence is derived from the noisy fragments and
deviant expressions of speech children observe. External linguistic behaviour (the set of
sounds an individual actually produces during their lifetime) is considered to be epiphe-
nomenal, the uninteresting consequence of the application of this linguistic competence
to a set of contingent communicative situations. This framework is sketched in Figure
1 (a). From this standpoint, much of the structure of language is puzzling | how do
children, apparently e�ortlessly and with virtually universal success, arrive at a sophisti-
cated knowledge of language from exposure to sparse and noisy data? In order to explain
language acquisition in the face of this poverty of the linguistic stimulus, the Chomskyan
program postulates a sophisticated, genetically-encoded language organ of the mind, con-
sisting of a Universal Grammar, which delimits the space of possible languages, and a
Language Acquisition Device, which guides the \growth of cognitive structures [linguistic
competence] along an internally directed course under the triggering and partially shaping
e�ect of the environment" (Chomsky 1980:34). Universal Grammar and the Language
Acquisition Device impose structure on language, and linguistic structure is explained as
a consequence of some innate endowment.

Following ideas developed in Hurford (1990), we view language as an essentially cul-
tural phenomenon. An individual's linguistic competence is derived from data which is
itself a consequence of the linguistic competence of another individual. This framework
is sketched in Fig. 1 (b). Under this view, the burden of explanation is lifted from the
postulated innate language organ | much of the structure of language can be explained
as a result of pressures acting on language during the repeated production of linguistic
forms and induction of linguistic competence on the basis of these forms. In this paper
we will show how the poverty of the stimulus available to language learners is the cause
of linguistic structure, rather than a problem for it.

The Iterated Learning Model

The Iterated Learning Model, as introduced in Kirby (2001) and Brighton (2002), provides
a framework for studying the cultural evolution of language. The Iterated Learning Model
in its simplest form is illustrated in Fig. 2. In this model the hypothesis Hi corresponds
to the linguistic competence of individual i, whereas the set of utterances Ui corresponds
to the linguistic behaviour of individual i and the primary linguistic data for individual
i+ 1.
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Figure 1: (a) The Chomskyan paradigm. Acquisition procedures, constrained by Universal Grammar

and the Language Acquisition Device, derive linguistic competence from linguistic data. Linguistic

behaviour is considered to be epiphenomenal. (b) Language as a cultural phenomenon. As in the

Chomskyan paradigm, acquisition based on linguistic data leads to linguistic competence. However,

we now close the loop | competence leads to behaviour, which contributes to the linguistic data

for the next generation.
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Figure 2: The Iterated Learning Model. The ith generation of the population consists of a single

agent Ai who has hypothesis Hi. Agent Ai is prompted with a set of meaningsMi. For each of these

meanings the agent produces an utterance using Hi. This yields a set of utterances Ui. Agent Ai+1

observes Ui and forms a hypothesis Hi+1 to explain the set of observed utterances. This process of

observation and hypothesis formation constitutes learning.

420



We make the simplifying idealisation that cultural transmission is purely vertical |
there is no horizontal, intra-generational cultural transmission. This simpli�cation has
several consequences. Firstly, we can treat the population at any given generation as
consisting of a single individual. Secondly, we can ignore the intra-generational commu-
nicative function of language. However, the Iterated Learning framework does not rule
out either intra-generational cultural transmission (see Livingstone & Fyfe (1999) for an
Iterated Learning Model with both vertical and horizontal transmission, or Batali (2002)
for an Iterated Learning Model where transmission is purely horizontal) or a focus on
communicative function (see Smith (2002b) for an Iterated Learning Model focusing on
the evolution of optimal communication within a population).

In most implementations of the Iterated Learning Model, utterances are treated as
meaning-signal pairs. This is obviously an oversimpli�cation of the task facing language
learners | if the meaning of every signal were self-evident then the signal itself would
be rather pointless. However, empirical evidence suggests that language learners have a
variety of strategies for deducing the communicative intentions of others during language
acquisition (see Bloom (2000) for review). We will assume for the moment that these
strategies are error-free, while noting that the consequences of weakening this assumption
is a current and interesting area of research (see, for example, Steels (1998), Smith (2001)
and Steels et al. (2002)).

This simple model proves to be a powerful tool for investigating the cultural evolution
of language. While we have previously used the Iterated Learning Model to explain the
emergence of particular word-order universals (Kirby 1999), the regularity-irregularity
distinction (Kirby 2001), and recursive syntax (Kirby 2002), here we will focus on the
evolution of compositionality. The evolution of compositionality provides a test-case to
evaluate the suitability of techniques from mathematics and arti�cial life in general, and
the ILM in particular, to tackling problems from linguistics.

The cultural evolution of compositionality

We view language as a mapping between meanings and signals. A compositional language
is a mapping which preserves neighbourhood relationships | neighbouring meanings will
share structure, and that shared structure in meaning space will map to shared structure
in the signal space. For example, the sentences John walked andMary walked have parts of
an underlying semantic representation in common (the notion of someone having carried
out the act of walking at some point in the past) and will be near one another in semantic
representational space. This shared semantic structure leads to shared signal structure
(the inected verb walked) | the relationship between the two sentences in semantic
and signal space is preserved by the compositional mapping from meanings to signals. A
holistic language is one which does not preserve such relationships | as the structure
of signals does not reect the structure of the underlying meaning, shared structure in
meaning space will not necessarily result in shared signal structure.

In order to model such systems we need representations of meanings and signals. For
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both models outlined in this paper meanings are represented as points in an F -dimensional
space where each dimension has V discrete values, and signals are represented as strings
of characters of length 1 to lmax, where the characters are drawn from some alphabet �.
More formally, the meaning space M and signal-space S are given by:

M = f(f1 f2 : : : fF ) : 1 � fi � V and 1 � i � Fg

S = fw1w2 : : : wl : wi 2 � and 1 � l � lmaxg

The world, which provides communicatively relevant situations for agents in our models,
consists of a set of N objects, where each object is labelled with a meaning drawn from
the meaning space M. We will refer to such a set of labelled objects as an environment.

In the following sections two Iterated Learning Models will be presented. In the �rst
model a mathematical analysis shows that compositional language is more stable than
holistic language, and therefore more likely to emerge and persist over cultural time, in
the presence of stimulus poverty and structured semantic representations. In the second
model, computational simulation demonstrates that compositional language can emerge
from an initially holistic system. Compositional language is most likely to evolve given
stimulus poverty and a structured environment.

A mathematical model

We will begin by considering, using a mathematical model1, how the compositionality of
a language relates to its stability over cultural time. For the sake of simplicity, we will re-
strict ourselves to looking at the two extremes on the scale of compositionality, comparing
the stability of perfectly compositional language and completely holistic language.

Learning holistic and compositional languages

We can construct a holistic language Lh by simply assigning a random signal to each
meaning. More formally, each meaning m 2 M is assigned a signal of random length l

(1 � l � lmax) where each character is selected at random from �. The meaning-signal
mapping encoded in this assignment of meanings to signals will not preserve neighbour-
hood relations, unless by chance.

Consider the task facing a learner attempting to learn the holistic language Lh. There
is no structure underlying the assignment of signals to meanings. The best strategy here
is simply to memorise meaning-signal associations. We can calculate the expected number
of meaning-signal pairs our learner will observe and memorise. After R observations of
randomly-selected objects paired with signals a learner will have a set of O observed
meanings. We can calculate the probability that any arbitrary meaning m 2 M will be
included in O, Pr (m 2 O), with:

1This model is described in greater detail in Brighton (2002).
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Pr (m 2 O) =
NX
x=1

0
@
Probability that
m is used to label
x objects

1
A�

0
BBB@

Probability of observing an
utterance being produced
for at least one of those x

objects after R observations

1
CCCA

When called upon to produce utterances, such a learner will only be able to repro-
duce meaning-signal pairs they themselves observed. Given the lack of structure in the
meaning-signal mapping, there is no way to predict the appropriate signal for a meaning
unless that meaning-signal pair has been observed. We can therefore calculate Eh, the
expected number of meanings an individual will be able to express after observing some
subset of a holistic language, which is simply the probability of observing any particular
meaning multiplied by the number of possible meanings:

Eh = Pr (m 2 O) � V F

We can perform similar calculations for a learner attempting to acquire a perfectly
compositional language. As discussed above, a perfectly compositional language preserves
neighbourhood relations in the meaning-signal mapping. We can construct such a lan-
guage Lc for a given set of meanings M using a lookup table of subsignals (strings of
characters which form part of a signal), where each subsignal is associated with a par-
ticular feature value. For each m 2 M a signal is constructed by concatenating the
appropriate subsignal for each feature value in m.

How can a learner best acquire such a language? The optimal strategy is to memorise
feature value-signal substring pairs. After observing R randomly selected objects paired
with signals, our learner will have acquired a set of observations of feature values for the
ith feature, Ofi. The probability that an arbitrary feature value v in included in Ofi is
given by Pr (v 2 Ofi):

Pr (v 2 Ofi) =
NX
x=1

0
@
Probability that v
is used to label x
objects

1
A�

0
BBB@

Probability of observing an
utterance being produced
for at least one of those x

objects after R observations

1
CCCA

We will assume the strongest possible generalisation capacity. Our learner will be able
to express a meaning if it has viewed all the feature values that make up that meaning,
paired with signal substrings. The probability of our learner being able to express an
arbitrary meaning made up of F feature values is then given by the combined probability
of having observed each of those feature values:

Pr (v1 2 Of1 ^ : : : ^ vF 2 OfF ) = Pr (v 2 Ofi)
F

We can now calculate Ec, the number of meanings our learner will be able to express
after viewing some subset of a compositional language, which is simply the probability of
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being able to express an arbitrary meaning multiplied by Nused, the number of meanings
used when labelling the N objects:

Ec = Pr (v 2 Ofi)
F
�Nused

We therefore have a method for calculating the expected expressivity of a learner
presented with Lh or Lc. This in itself is not terribly useful. However, within the Iterated
Learning framework we can relate expressivity to stability. We are interested in the
dynamics arising from the iterated learning of languages. The stability of a language
determines how likely it is to persist over iterated learning events.

If an individual is called upon to express a meaning they have not observed being
expressed, they have two options. Firstly, they could simply not express. Alternatively,
they could produce some random signal. In either case, any association between meaning
and signal that was present in the previous individual's hypothesis will be lost | part
of the meaning-signal mapping will change. A shortfall in expressivity therefore results
in instability over cultural time. We can relate the expressivity of a language to the
stability of that language over time by Sh / Eh=N and Sc / Ec=N . Stability is simply
the proportion of meaning-signal mappings encoded in an individual's hypothesis which
are also encoded in the hypotheses of subsequent individuals.

We will be concerned with the relative stability of compositional languages with respect
to holistic languages, S, which is given by:

S =
Sc

Sc + Sh

When S = 0:5 compositional languages and holistic languages are equally stable and
we therefore expect them to emerge with equal frequency over cultural time. When
S > 0:5 compositional languages are more stable than holistic languages, and we expect
them to emerge more frequently, and persist for longer, than holistic languages. S < 0:5
corresponds to the situation where holistic languages are more stable than compositional
languages.

The impact of meaning space structure and the bottleneck

Relative stability S depends on the number of dimensions in the meaning space (F ), the
number of possible values for each feature (V ), the number of objects in the environment
(N) and the number of observations each learner makes (R). Unless each learner makes a
large number of observations (R is very large), or there are few objects in the environment
(N is very small), there is a chance that an agent will be called upon to express a meaning
they themselves have never observed paired with a signal. This is one aspect of the
poverty of the stimuli facing language learners | the set of utterances of any human
language is arbitrarily large, but a child must acquire their linguistic competence based
on a �nite number of sentences. We will refer to this aspect of the poverty of stimulus
as the transmission bottleneck. The severity of the transmission bottleneck depends on
the number of observations each learner makes (R) and the number of objects in the
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environment (N). It is convenient to refer instead to the degree of object coverage (b),
which is simply the proportion of all N objects observed after R observations | b gives
the severity of the transmission bottleneck.

Together F and V specify the degree of structure in the meaning space. This in turn
reects the sophistication of the semantic representation capacities of agents | we fol-
low Schoenemann in that we \take for granted that there are features of the real world
which exist regardless of whether an organism perceives them . . . [d]i�erent organisms
will divide up the world di�erently, in accordance with their unique evolved neural sys-
tems . . . [i]ncreasing semantic complexity therefore refers to an increase in the number
of divisions of reality which a particular organism is aware of"(Schoenemann 1999:318).
Schoenemann argues that high semantic complexity can lead to the emergence of syntax.
The Iterated Learning model can be used to test this hypothesis. We will vary the degree
of structure in the meaning space, together with the transmission bottleneck b, while
holding the number of objects in the environment (N) constant. The results of these
manipulations are shown in Fig. 3.

There are two key results to draw from these �gures:

1. Relative stability S is at a maximum for small bottleneck sizes. Holistic languages
will not persist over time when the bottleneck on cultural transmission is tight.
In contrast, compositional languages are generalisable, due to their structure, and
remain relatively stable even when a learner only observes a small subset of the
language of the previous generation. The poverty of the stimulus \problem" is in
fact required for linguistic structure to emerge.

2. A large stability advantage for compositional language (high S) only occurs when
the meaning space exhibits a certain degree of structure, suggesting that structure
in the conceptual space of language learners is a requirement for the evolution of
compositionality. In such meaning spaces, distinct meanings tend to share feature
values. A compositional system in such a meaning space will be highly generalisable
| the signal associated with a meaning can be deduced from observation of other
meanings paired with signals, due to the shared feature values. However, if the
meaning space is too highly structured S is low, as few distinct meanings will share
feature values and the advantage of generalisation is lost.

The �rst result outlined above is to some extent obvious, although it is interesting to
note that the apparent poverty of the stimulus problem motivated the strongly innatist
Chomskyan paradigm. The advantage of the Iterated Learning approach is that it allows
us to quantify the degree of advantage a�orded by compositional language, and investigate
how other factors, such as meaning space structure, impact on the advantage a�orded by
compositionality.

A computational model

The mathematical model outlined above, made possible by insights gained from viewing
language as a culturally-transmitted system, predicts that compositional language will
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Figure 3: Severity of bottleneck and meaning space structure impact on the relative stability of

compositional language. The relative stability advantage of compositional language increases as the

bottleneck tightens, but only when the meaning space exhibits certain kinds of structure (in other

words, for particular numbers of features and values). b gives the severity of transmission bottleneck,

with low b corresponding to a tight bottleneck.
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be more stable than holistic language when 1) there is a bottleneck on cultural trans-
mission and 2) linguistic agents have structured representations of objects. However, the
simpli�cations necessary to the mathematical analysis preclude a more detailed study of
the dynamics arising from Iterated Learning. What happens to languages of intermediate
compositionality during cultural transmission? Can compositional language emerge from
initially holistic language, through a process of cultural evolution? We can investigate
these question using techniques from arti�cial life, by developing a multi-agent computa-
tional implementation of the Iterated Learning Model.

A neural network model of a linguistic agent

Smith (2002b) presents a neural-network model of the evolution of holistic communication.
We extend this model to allow the study of the cultural evolution of compositionality2. As
in the mathematical model, meanings are represented as points in F -dimensional space
where each dimensions has V distinct values, and signals are represented as strings of
characters of length 1 to lmax, where the characters are drawn from the alphabet �.

Agents are modelled using networks consisting of two sets of nodes. One set represents
meanings and partially-speci�ed components of meanings (NM), and the other represents
signals and partially-speci�ed components of signals (NS). These nodes are linked by a
set of bidirectional connections W connecting every node in NM with every node in NS.

As with the mathematical model, meanings are sets of feature values, and signals are
strings of characters. Components of a meaning specify one or more feature values of
that meaning, with unspeci�ed values being marked as a wildcard �. For example, the
meaning (2 1) has three possible components, the fully-speci�ed (2 1) and the partially
speci�ed (2 �) and (� 1). These components can be grouped together into ordered sets,
which constitute an analysis of a meaning. For example, there are three possible analyses
of the meaning (2 1) | the one-component analysis f(2 1)g, and two two component
analyses which di�er in order, f(2 �) ; (� 1)g and f(� 1) ; (2 �)g. Similarly, components of
signals can be grouped together to form an analysis of a signal. This representational
scheme allows the networks to exploit the structure of meanings and signals. However,
they are not forced to do so.

Learners observe meaning-signal pairs. During a single learning episode a learner
will store a hm; si pair in its network. The nodes in NM corresponding to all possible
components of the meaning m have their activations set to 1, while all other nodes in
NM have their activations set to 0. Similarly, the nodes in NS corresponding to the
possible components of s have their activations set to 1. Connection weights in W are
then adjusted according to the rule:

�Wxy =

8><
>:

+1 if ax = ay = 1
�1 if ax 6= ay
0 otherwise

2We refer the reader to Smith (2002a) for a more thorough description of this model.
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Figure 4: Nodes with an activation of 1 are represented by large �lled circles. Small �lled circles

represent weighted connections. (a) Storage of the meaning-signal pair h(2 1) ; abi. Nodes repre-

senting components of (2 1) and ab have their activations set to 1. Connection weights are then

either incremented (+), decremented (�) or left unchanged. (b) Retrieval of three possible analyses

of h(2 1) ; abi. The relevant connection weights are highlighted in grey. The strength, g, of the one-

component analysis hf(2 1)g ; fabgi depends of the weight of connection i. g for the two-component

analysis hf(2 �) ; (� 1)g ; fa�; �bgi depends on the weighted sum of two connections, marked as ii.

The g for the alternative two-component analysis hf(2 �) ; (� 1)g ; f�b; a�gi is given by the weighted

sum of the two connections marked iii.

where Wxy gives the weight of the connection between nodes x and y and ax gives the
activation of node x. The learning procedure is illustrated in Fig. 4 (a).

In order to produce an utterance, agents are prompted with a meaningm and required
to produce a signal s. All possible analyses of m are considered in turn with all possible
analyses of every s 2 S. Each meaning analysis-signal analysis pair is evaluated according
to:

g (hm; si) =
CX

i=1

! (cmi) �Wcmicsi

where the sum is over the C components of the analysis, cmi is the ith component of m
and and ! (x) is a weighting function which gives the non-wildcard proportion of x. This
process is illustrated in Figure 4 (b). The meaning analysis-signal analysis pair with the
highest g is returned as the network's utterance.

Environment structure

In the mathematical model outlined above, the environment consisted of a set of ob-
jects labelled with meanings drawn at random from the space of possible meanings. In
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(a) (b) (c) (d)

Figure 5: We will present results for the case where F = 3 and V = 5. This de�nes a three-

dimensional meaning space. We highlight the meanings selected from that space with grey. (a) is a

low-density, unstructured environment. (b) is a low-density, structured environment. (c) and (d) are

unstructured and structured high-density environments.

the computational model we can relax this assumption, and investigate how non-random
assignment of meanings to objects impacts on linguistic evolution. As before, an environ-
ment consists of a set of objects labelled with meanings drawn from the meaning space
M. The number of objects in the environment gives the density of that environment |
environments with few objects will be termed low-density, whereas environments with a
large number of objects will be termed high-density. When meanings are assigned to ob-
jects at random we will say the environment is unstructured. When meanings are assigned
to objects in such a way as to minimise the average inter-meaning hamming distance we
will say the environment is structured. Sample low- and high-density environments are
shown in Fig. 5. Note the new usage of the term \structured" | while in the mathemat-
ical model we were concerned with structure in the meaning space, given by F and V ,
we are now concerned with the degree of structure in the environment. Di�erent levels of
environment structure are possible within a meaning space of a particular structure.

The impact of environment structure and the bottleneck

The network model of a language learner/producer is plugged into the Iterated Learning
framework. We will manipulate three factors | the presence or absence of a bottleneck,
the density of the environment and the degree of structure in the environment.

Our measure of compositionality is simply the degree of correlation between the dis-
tance between pairs of meanings and the distance between the corresponding pairs of
signals. In order to measure the compositionality of an agent's language we �rst take all
possible pairs of meanings from the environment, hmi; mj 6=ii. We then �nd the signals
these meanings map to in the agent's language, hsi; sji. This yields a set of meaning-
meaning pairs, each of which is matched with a signal-signal pair. For each of these pairs,
the distance between the meanings mi and mj is calculated using Hamming distance, and
the distance between the signals si and sj is calculated using Levenstein (string edit) dis-
tance.3 This gives a set of distance pairs, reecting the distance between all possible pairs

3Levenstein distance is a measure of string similarity. It is de�ned as the size of the smallest set of
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Figure 6: The relative frequency of initial and �nal systems of varying degrees of compositionality,

when there is no bottleneck on cultural transmission. The results shown here are for the low-density

environments given in Fig. 5. The initial languages are generally holistic. Some �nal languages

exhibit increased levels of compositionality. Highly compositional languages are infrequent.

of meanings and the distance between the corresponding pairs of signals. A Pearson's

Product-Moment correlation is then run on this set, giving the correlation between the

meaning-meaning distances and the associated signal-signal distances. This correlation is

our measure of compositionality. Perfectly compositional languages have a composition-

ality of 1, reecting the fact that compositional languages preserve distance relationships

when mapping between meanings and signals. Holistic languages have a compositional-

ity of approximately 0 | holistic mappings are random, and therefore fail to preserve

distance relationships when mapping between meaning space and signal space.

Fig. 6 plots the frequency by compositionality of initial and �nal systems in 1000 runs

of the Iterated Learning Model, in the case where there is no bottleneck on cultural trans-

mission. The initial agent has the maximum-entropy hypothesis | all meaning-signal

pairs are equally probable. The learner at each generation is exposed to the complete

language of the previous generation | the adult is required to produce utterances for

every object in the environment. Each run was allowed to proceed to a stable state.

Two main results are apparent from Fig. 6.

1. The majority of the �nal, stable systems are holistic.

edits (replacements, deletions, or insertions) that could transform one string to the other.
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Figure 7: Frequency by compositionality when there is a bottleneck on cultural transmission. The

results shown here are for the high-density environments given in Fig. 5 (c) and (d). The initial

languages are holistic. The �nal languages are compositional, with highly compositional languages

occurring frequently.

2. Highly compositional systems occur infrequently, and only when the environment is
structured.

In the absence of a bottleneck on cultural transmission, the compositionality of the
�nal systems is sensitive to initial conditions. The majority of the initial holistic systems
are stable. This can be contrasted with the result shown in Fig. 3 (a), where compo-
sitional languages have a slight stability advantage for most meaning spaces when the
transmission bottleneck is very wide (b = 0:9). When there is no bottleneck on trans-
mission (b = 1:0) most holistic systems are perfectly stable. However, the initial system
may exhibit, purely by chance, a slight tendency to express a given feature value with a
certain substring. This compositional tendency can spread, over iterated learning events,
to other parts of the system, which can in turn have further knock-on consequences. The
potential for spread of compositional tendencies is greatest in structured environments |
in such environments, distinct meanings are more likely to share feature values than in
unstructured environments. However, this spread of compositionality is unlikely to lead
to a perfectly compositional language.

Fig. 7 plots the frequency by compositionality of initial and �nal systems in 1000
runs of the Iterated Learning Model, in the case where there is a bottleneck on cultural
transmission (b = 0:4). Learners will therefore only see a subset of the language of the
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previous generation. Whereas in the no-bottleneck condition each run proceeded to a
stable state, in the bottleneck condition runs were stopped after 50 generations. There is
no such thing as a truly stable state when there is a bottleneck on cultural transmission.
For example, if all R utterances an individual observes refer to the same object then any
structure in the language of the previous generation will be lost. However, the �nal states
here were as close as possible to stable. Allowing the runs to continue for several hundred
more generations results in a very similar distribution of languages.

Two main results are apparent from Fig. 7.

1. When there is a bottleneck on cultural transmission highly compositional systems
are frequent.

2. Highly compositional systems are more frequent when the environment is structured.

As discussed with reference to the mathematical model, only highly compositional sys-
tems are stable through a bottleneck. The results from the computational model bear this
out | over time, language adapts to the pressure to be generalisable, until the language
becomes highly compositional, highly generalisable and highly stable. Highly compo-
sitional languages evolve most frequently when the environment is structured, because
in a structured environment the advantage of compositionality is at a maximum | each
meaning shares feature values with several other meanings, and a language mapping these
feature values to a signal substring is highly generalisable.

Fig. 8 plots the compositionality by generation for three runs of the Iterated Learning
Model. The behaviour of these runs is characteristic of the majority of simulations. Plots
(a) and (b) show the development from initially random, holistic systems to compositional
languages in structured and unstructured environments. In both these runs a partially
compositional, partially irregular language rapidly develops, resulting in a rapid increase
in compositionality. This partially compositional system persists for a short time, before
developing into a highly regular compositional language where each feature value maps
consistently to a particular subsignal. The transition is more rapid in the structured en-
vironment. In the structured environment, distinct meanings share feature values with
several other meanings and as a consequence compositional languages are highly general-
isable. Additionally, distinct meaning vary along a limited number of dimensions, which
facilitates the spread of consistent, regular mappings from feature values to signal sub-
strings. In plot (c) a partially compositional language develops from the initial random
mapping, but fails to become fully compositional. The lack of structure in the environ-
ment hinders the development of consistent compositional mappings and allows unstable,
idiosyncratic meaning-signal mappings to persist.

Conclusions

Language can be viewed as a consequence of an innate language organ. This view of lan-
guage has been advanced to explain for the near-universal success of language acquisition
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Figure 8: Compositionality by time (in generations) for three runs. (a) shows the development

from an initially holistic system to a compositional language for a run in a high-density structured
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ments. The language plotted in (b) eventually becomes highly compositional, whereas the system in

(c) remains partially compositional. Only the �rst 50 generations are plotted here, in order to focus

on the development of the systems from the initial holistic state.
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in the face of the poverty of the stimulus available to language learners. The innatist po-
sition solves this apparent conundrum by attributing much of the structure of language to
the language organ | an individual's linguistic competence develops along an internally-
determined course, with the linguistic environment simply triggering the growth of the
appropriate cognitive structures. If we take this view, we can form an evolutionary ac-
count which explains linguistic structure as a biological adaptation to social function |
language is socially useful, and the language organ yields a �tness payo�.

However, we have presented an alternative approach. We focus on the the cultural
transmission of language. We can then form an account which explains much of linguistic
structure as a cultural adaptation, by language, to pressures arising during repeated
production and acquisition of language. This kind of approach highlights the situatedness

of language-using agents in an environment | in this case, a socio-cultural environment
made up of the behaviour of other agents. We have presented the Iterated Learning Model
as a framework for studying the cultural evolution of language in this context, and have
focussed here on the cultural evolution of compositionality. The models presented reveal
two key factors in the cultural evolution of compositional language.

Firstly, compositional language emerges when there is a bottleneck on cultural trans-
mission | compositionality is an adaptation by language which allows it to slip through
the transmission bottleneck. The transmission bottleneck constitutes one aspect of the
poverty of the stimulus problem. This result is therefore surprising. The poverty of the
stimulus motivated a strongly innatist position on language acquisition. However, closer
investigation within the Iterated Learning framework reveals that the poverty of the stim-
ulus does not force us to conclude that linguistic structure must be located in the language
organ | on the contrary, the emergence of linguistic structure through cultural processes
requires the poverty of the stimulus.

The second key factor is the availability of structured semantic representations to
language learners | Schoenemann's (1999) semantic complexity. The advantage of com-
positionality is at a maximum when language learners perceive the world as structured.
If objects are perceived as structured entities and the objects in the environment relate
to one another in structured ways then a generalisable, compositional language is highly
adaptive.

Of course, biological evolution still has a role to play in explaining the evolution of
language. The Iterated Learning Model is ideal for investigating the cultural evolution
of language on a �xed biological substrate, and identifying the cultural consequences of a
particular innate endowment. The origins of that endowment then need to be explained,
and natural selection for a socially-useful language might play some role here. We might
indeed then �nd, as suggested by Deacon, that \the brain has co-evolved with respect to
language, but languages have done most of the adapting"(Deacon 1997:122). The poverty
of the stimulus faced by language learners forces language to adapt to be learnable. The
transmission bottleneck forces language to be generalisable, and compositional structure
is language's adaptation to this problem. This adaptation yields the greatest payo� for
language when language learners perceive the world as structured.
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KELEMEN, J., & P. SOSÍK (eds.) 2001. Advances in Artificial Life: Proceedings of the

6th European Conference on Artificial Life. Berlin: Springer-Verlag.

KIRBY, S. 1999. Function, selection and innateness: the emergence of language univer-

sals. Oxford: Oxford University Press.

—— 2000. Syntax without natural selection: how compositionality emerges from vo-

cabulary in a population of learners. In Knight et al. (2000), 303–323.

—— 2001. Spontaneous evolution of linguistic structure: an iterated learning model of

the emergence of regularity and irregularity. IEEE Journal of Evolutionary Compu-

tation 5.102–110.

—— 2002. Learning, bottlenecks and the evolution of recursive syntax. In Briscoe

(2002), 173–203.

443



——, & J. R. HURFORD. 1997. Learning, culture and evolution in the origin of linguistic

constraints. In Husbands & Harvey (1997), 493–502.

——, & J. R. HURFORD. 2002. The emergence of linguistic structure: An overview

of the iterated learning model. In Simulating the Evolution of Language, ed. by

A. Cangelosi & D. Parisi, 121–147. Springer Verlag.

KNIGHT, C. 1991. Blood Relations: Menstruation and the Origins of Culture. New

Haven, CT: Yale University Press.

——, C. POWER, & I. WATTS. 1995. The human symbolic revolution: a Darwinian

account. Cambridge Archaeological Journal 5.75–114.

——, M. STUDDERT-KENNEDY, & J.R. HURFORD (eds.) 2000. The Evolutionary

Emergence of Language: Social Functions and the Origins of Linguistic Form.

Cambridge: Cambridge University Press.

KOLEN, J. F., & J. B. POLLACK. 1990. Back propagation is sensitive to initial condi-

tions. Complex Systems 4.269–280.

KRAMER, S. N. 1963. The Sumerians: Their History, Culture and Character. Chicago,

IL: University of Chicago Press.

KREBS, J. R., & R. DAWKINS. 1984. Animal signals: mind-reading and manipulation.

In Behavioural ecology: an evolutionary approach, ed. by J. R. Krebs & N. B.

Davies. Oxford: Blackwell Scientific Publications.

KRIFKA, M. 2001. Compositionality. In The MIT Encyclopaedia of the Cognitive

Sciences, ed. by R. A. Wilson & F. Keil. Cambridge, MA: MIT Press.
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