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Spontaneous Evolution of Linguistic Structure—
An Iterated Learning Model of the Emergence of

Regularity and Irregularity
Simon Kirby

Abstract—A computationally implemented model of the trans-
mission of linguistic behavior over time is presented. In this model
[the iterated learning model (ILM)], there is no biological evolu-
tion, natural selection, nor any measurement of the success of the
agents at communicating (except for results-gathering purposes).
Nevertheless, counter to intuition, significant evolution of linguistic
behavior is observed. From an initially unstructured communi-
cation system (a protolanguage), a fully compositional syntactic
meaning-string mapping emerges. Furthermore, given a nonuni-
form frequency distribution over a meaning space and a produc-
tion mechanism that prefers short strings, a realistic distribution
of string lengths and patterns of stable irregularity emerges, sug-
gesting that the ILM is a good model for the evolution of some of
the fundamental features of human language.

Index Terms—Cultural selection, evolution, grammar induction,
iterated learning, language.

I. INTRODUCTION

ONE striking feature of human languages is the struc-
ture-preserving nature of the mapping from meanings to

signals (andvice versa).1 This feature can be found in every
human language, but arguably in no other species’ communi-
cation system [1]. Structure preservation is particularly striking
if we consider sentence structure. The syntax of English, for
example, is clearly compositional—that is, the meaning of a
sentence is some function of the meanings of the parts of that
sentence. For example, we can understand the meaning of the
sentence “the band played at Carlops” to the extent that we
can understand the constituents of that sentence, such asthe
band or Carlops. Similarly, in the morphological paradigms
of languages,regularity is pervasive. We can see this too as a
structure-preserving mapping.2

An obvious goal for evolutionary linguistics is, therefore, an
understanding of the origins of compositionality and regularity
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1By “structure-preserving,” here I mean simply that similar meanings tend
to map to similar signals. We could formally define degree of structure preser-
vation in terms of a correlation of distances between points in meaning-space
and signal-space (i.e., atopographicmapping), but this is unnecessary for our
purposes here.

2Interestingly, recent computational analysis of very large corpora of English
usage [2] suggests that this structure preservation can even be seen within the
monomorphemic lexicon, whose phonetic structure was previously thought to
be arbitrarily related to meaning.

in morphosyntax. Ultimately, we would like to derive these
properties from some other feature external to the syntax of
human language. For example, one approach is to argue that
structure preservation is actually a property of our innate
biological endowment and can be explained by appealing to
fitness enhancing mutations that were retained in our species
through natural selection [3]. Ultimately, these types of expla-
nation typically derive features of the meaning-string mapping
from communicative pressures that influenced our protohuman
ancestors [4].

This paper follows on from recent computational work that
takes a different approach [5]–[13]. Instead of concentrating
on the biological evolution of an innate language faculty, this
line of research places more explanatory emphasis on languages
themselves as adaptive systems. Human languages are arguably
unique not only for their compositionality, but also in the way
they persist over time through iterated observational learning.
That is, information about the mapping between meanings and
signals is transmitted from generation to generation of language
users through a repeated cycle of use, observation, and induc-
tion. Rather than appealing to communicative pressures and nat-
ural selection, the suggestion is that structure-preserving map-
pings emerge from the dynamics of iterated learning.

Using computational models of iterated learning, earlier work
demonstrated that structure-preserving maps emerge from un-
structured random maps when learners are exposed to a subset
of the total range of meanings. The problem with this kind of ap-
proach, which this paper addresses, is that it predicts that there
should be no stableir regularity in language. This does not map
well onto what we know about natural language morphology,
where historically stable irregularity is common. The results re-
ported in this paper, however, show that both regularityand ir-
regularity are predicted by a more sophisticated version of the
iterated learning model (ILM).

II. OVERVIEW OF THE ITERATED LEARNING MODEL

In order to model the cultural/historical transmission of lan-
guage from generation to generation, the ILM has four compo-
nents:

1) a meaning space;
2) a signal space;
3) one or more learning agents;
4) one or more adult agents.

The simulations reported here use only one adult and one learner.
Each iteration of the ILM involves the adult agent being given a

1089–778X/01$10.00 © 2001 IEEE



KIRBY: SPONTANEOUS EVOLUTION OF LINGUISTIC STRUCTURE—AN ITERATED LEARNING MODEL 103

set of randomly chosen meanings to produce signals for. The re-
sulting meaning-signal pairs form training data for the learning
agent. After learning, this agent becomes a new adult agent, the
previous adult agent is removed, and a new learning agent is in-
troduced. Typically, this cycle is repeated thousands of times or
until a clearly stable end-state is reached. Furthermore, the sim-
ulation is usually initialized with no language system in place. In
other words, the initial agents have no representation of a map-
ping from meanings to signals at all.

Clearly, the agents in the ILM need at least:

1) an internal representation of language that specifies the
ways in which signals can be produced for particular
meanings;

2) an algorithm for inducing this representation given exam-
ples of meanings and signals;

3) some means of generating signals for meanings that the
induced language representation does not include (e.g., in
the early stages of the simulation).

Apart from the meaning space, the various components of the
simulation reported in this paper are the same as those reported
in [7], [9], [10]. The following sections set out each in turn.

A. Meaning Space

In contrast to earlier work, which used a meaning space
involving recursively structured hierarchical predicates, a much
simpler set of meanings is employed here. Each meaning is
simply a vector of values drawn from a finite set. Specifically,
for the results reported here, a meaning consists of two compo-
nents, and , both of which can range over five values.3 Thus,
there are 25 possible meanings, to and, within
the space of meanings, there is some structure. We can imagine
how this simple model of meanings could map onto the world
in various ways. For example, one component of the meaning
could be an object and the other an action—expressing a very
simple one-place predicate. The interpretation of the meaning
space is not important, however. It provides us with a very
simple model of a structured space of concepts. Usefully, the
space can be displayed as a table, as will be done later.

B. Signal Space

The signal space, in common with earlier work, is an ordered
linear string of characters drawn from the letters a–z. There is
no set limit on string length. These letters cannot be equated
simply with the phonemes of natural languages. A better par-
allel would be with syllables, but even this is not a one-to-one
correspondence. Basically, the letters that make up signals are
the atomic elements of the language that the grammatical system
cannot break down.

C. Language Representation

Obviously there are many possible representations of the map-
pingbetweenmeaningsandsignals inthespacesdescribedabove.
To keep the model as general as possible and retain compatibility

3To check that the model scales up, the results were replicated with a meaning
space of 20� 20. These are not reported because the large size seems to add
little to the simulation and the results are harder to visualize. Note also that
previously reported results relating to the emergence of recursion (but not of
irregularity) have, in principle, an infinite meaning space.

withearlierwork, the language is representedasasimplified form
of definite-clause grammar (DCG). Specifically, the grammars
consist of context-free rewrite rules in which nonterminals may
have a single argument attached to them that conveys semantic
information. Thus, a rule has the following form:

where
category label;
meaning structure;
string of terminals (characters from the alphabet) and
nonterminals.

There is a special category labelthat signifies the start symbol
for production. In other words, every legal meaning-string pair
must expand an rule in the language. For these simulations,
the meaning structure has one of the following forms:

or or

but, in general, any structure can be used. Each of the meaning
elements may either be specified directly or inherited from the
value of the meaning structure attached to one of the nontermi-
nals in using variable unification.

For example, this rule specifies that the string maps to
the meaning

as do the following set of rules:

An adult agent that had either of these sets of rules would output
if asked to produce a signal for the meaning .

D. Induction Algorithm

In order that the simulation of iterated learning over many
generations be a practical prospect, the induction algorithm
of the learning agents must be computationally cheap. The
heuristic incremental algorithm developed in [7] is used here.

Induction takes place in two steps incrementally for every
input meaning-signal pair.

Incorporation: A single rule that covers the input pair is
added to the grammar. In this model, a rule is only added if the
learning agent cannot already parse the signal component of the
pair. This is included to impose a preference for unambiguous
languages because the learner will not acquire multiple mean-
ings for one string.

Generalization: The algorithm iteratively tries to integrate
the new rule into the existing grammar by looking for possible
generalizations. These generalizations are essentially subsump-
tions over pairs of rules. In other words, the algorithm takes a
pair of rules from the grammar and tries to find a more gen-
eral rule to replace them with (within a set of heuristic con-
straints). This may be done, for example, by merging category
labels, or discovering common strings of right-hand-side con-
stituents. After subsumption, duplicate rules are deleted, and the
process is repeated until no more heuristics apply. At this stage
the learning agent accepts another input pair to be incorporated.
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The details of the algorithm are outlined below (adapted from
[9]).

Induction algorithm: Given a meaning , a
string , and a grammar :
i.1 parse using , if the parse is suc-

cessful, then return .
i.2 form , the union of and .
i.3 apply a generalization algorithm to

:
g.1 take a pair of rules from

.
g.2 if there is a category label sub-

stitution to , that would make
identical to , then rewrite all

in with , go to g.5 .
g.3 if and could be made iden-

tical by “chunking” a substring on
either or both their right-hand
sides into a new rule or rules,
then create the new rules, and
delete the old ones in , go
to g.5 .

g.4 if ’s right-hand side is a proper
substring of ’s and ’s semantics
is identical to either the top
level predicate or one of the argu-
ments of ’s semantics, then
rewrite in to refer to , go
to g.5 .

g.5 delete all duplicate rules in .
g.6 if any rules in have changed, go

to g.1
i.4 return .

The general chunking method for the DCG-type representa-
tions is not given here for lack of space, but can be found in [7].
However, for the meaning space used here, practically chunking
is pretty simple. Given a pair of rules

where is any string of terminals/nonterminals, these are
deleted and replaced with

The constraints on this process are thatand must be non-
null and that or must be nonnull. The obvious equivalent
chunking process is applied if it is thecomponent of the se-
mantics that the rules have in common.

E. Invention Algorithm

At the start of the simulation especially, the adult agents will
frequently not have a way of expressing particular meanings.
In other words, their grammar will not be able to generate any

string-meaning pair for some meanings. In the very first gen-
eration of the ILM, the adult agent has no grammar at all and,
therefore, no way to express any meaning. In order for any in-
novation to emerge in the linguistic system that is being trans-
mitted, the agents need some form of creativity—an ability to
invent new strings.

The simplest approach would be to generate strings at random
whenever an agent must produce a signal for a meaning that its
grammar cannot generate. For the most part, in fact, this is the
strategy employed in the simulation. However, in some cases this
approach is rather implausible. Consider the case of an agent that
has a completely regular compositional language, but does not
have a word for a particular meaning component. For example,
the agent might have words for all the meaning components
to and words for to and might produce signals for whole
meanings by concatenating the relevant words for thecompo-
nent and then thecomponent. This is obviously a very regular
syntactic and humanlike language. However, the agent does not
havea way to produce a string for, say, . It seems counter-
intuitive for theagent togenerateacompletely randomnewstring
for this meaning given that it has a word forand has already in-
duced a compositional rule for concatenating words together to
produce sentences. Instead, it seems sensible that an agent in this
state should simply invent a new word for.

On the other hand, it is undesirable for the model to allow
for agents to introduce compositionalityde novoin the inven-
tion process. To give another example, consider an agent who
has signals for the same range of meanings as the agent in the
previous example, but instead of using a regular rule to produce
sentences, simply lists each meaning and its associated signal
unanalyzed in its grammar. In this case, we do not want the in-
vention algorithm to introduce any compositionality itself—in-
stead, an entirely random innovation seems more plausible.

What is needed, then, is aninvention algorithmthat in pro-
ducing a novel string preserves what structure is already existing
in the agent’s grammar, but does not introduce any new struc-
ture. The general algorithm for any meaning space is informally
summarized below: (N.B. If the grammar is empty, then this al-
gorithm cannot be applied, and a random string is generated.)

Invention algorithm: Given a meaning
and a grammar that cannot generate a
meaning-string pair ( :
i.1 find the most similar to

for which the pair can be gener-
ated (i.e., initially try all meanings
with one meaning component the same,
then all meanings).

i.2 form , the intersection of and
, with any meaning slots that are

different replaced with a unique “dif-
ference-flag.”

i.3 generate a string corresponding to
using , but include a pseudorule

of the sort:
any-category: differ-
ence-flag random-string

i.4 return .
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Fig. 1. Emergence of a stable system in the simple simulation. Coverage is a measure of the proportion of utterances that are made without recourse to invention.
Success is calculated by testing adult and learnerafter learning in a set of communication games, half of the time with the adult as speaker and half of the time with
the learner as the speaker. Number reflects the proportion of successful games (i.e., when the hearer can parse the string with the same meaning as the speaker).

The random string generated as part of the invention algo-
rithm can be produced with various different lengths. In the sim-
ulations reported here, the strings were of a random length be-
tween one and ten. To encourage consistency in output, the agent
uses the meaning-string pair produced by invention as input to
one iteration of the induction algorithm. In other words, agents
learn from their own innovations.

III. RESULTS

In this section, the results of running the ILM with various
different conditions are presented. Typical results are analyzed
here, but qualitatively similar behaviors are observed in all repli-
cations.

A. Emergence of Regular Compositionality

The simulation described in the previous section was set up
with an initial population of one adult and one learner, both with
no linguistic knowledge. The adult produces 50 utterances for
the learner, each of which is a randomly chosen meaning. No-
tice that although there are only 25 meanings, the chances of all
25 being exemplified in the learner’s input are less than one.4

This feature of the ILM has been termed the “bottleneck” in
linguistic transmission [8]. Although the bottleneck is not par-
ticularly tight here, it plays a more important role in later exper-
iments.

Fig. 1 shows a plot of the simulation converging from the
initial condition on a language that is stable, covers the complete
meaning space, and allows for perfect communication.

Because the meaning space is essentially a two-dimensional
vector, we can visualize the language used at a particular point

4The probability of a particular meaning being in the training input to a learner
is 1 � (1 � 1=n) , wheren is the size of the meaning space andr is the
number of utterances. So, the chances of every meaning being represented are
(1 � (1 � 1=n) ) . So, only three times in every 100 generations should a
learner hear all meanings in the simulations reported here.

in time in the simulation as a table of strings with the columns
corresponding to the component of the meaning and the rows
to the component. The table below was produced by the first
adult agent in the simulation at the end of its “life.” Notice that
each cell in the table has only one string associated with it. This
does not specify the language of that agent completely because
there may be more than one way of producing a signal for each
meaning. In this experiment, the agents make a random choice
whenever that happens.

In this first iteration of the ILM, we are essentially seeing the
language that is produced from iteratively inducing 50 random
inventions. There is no clear regularity in the system and the
agent even at the end of life has no way to produce a couple
of meanings and . We can term this type of
system aprotolanguagesystem (in fact, it matches well with
Wray’s definition of protolanguage [14] rather better than the
more well-known Bickertonian definition [15]5 ).

Once the language has converged, however, the system looks
quite different. Here is the system after 30 generations (it looks
the same after another 1000).

5Wray argues that protolanguage utterances were more likely to beholistic
unanalyzed expressions as opposed to the short concatenations of words (rather
like asyntactic minisentences) that Bickerton envisages.
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This language is quite clearly compositional in a completely
regular way. There appears to be substrings for each component
of the meaning. For example, for the most part,is expressed
using the string at the start of the utterance, whereas
is expressed using the string at the end of the utterance.
The only exceptions to this pattern are the meanings involving

and . These appear to havecircumfixeslike - -
and - - .

The grammar for this language is shown below.

This compositionality is just what was expected to emerge
given earlier results with more complex meaning spaces.
In every run of the simulation, this sort of behavior always
emerges. The exact structure of the language is different
every time, but structure preservation in the mapping between
meanings and strings appears to be inevitable. We will return
to an explanation for this in a later section.

B. Problems with Regularity

Although the primary target for explanation in this line of
work has been the pervasive structure-preserving nature of
human linguistic behavior, the results outlined above and in
previous work by myself and others do not appear to capture
the nature of regularity in human languages accurately. This is
because a completely stable compositional system is actually
unusual in real languages, whereas there does not seem to be
any other possible attractor in the ILM dynamic. If we are to
claim that structure preservation in human languages arises
out of the dynamics of the transmission of learned behavior,
it seems important that we should be able to show partial but
stableirregularity emerging as well.

C. Pressures on Language Use

One possible reason that the models presented so far appear to
betooperfectly structure-preserving is that there is no pressure

on the language that is being transmitted other than a pressure
to be learnable. Real languages have to be used by speakers
who are not always accurate and whose performance may be
influenced by least-effort principles. To test the hypothesis that
features of linguisticperformanceinfluence the emergence of
regularity, the experiment described earlier was repeated with
two modifications.

1) If the agent speaking has more than one way of expressing
a meaning, then instead of picking one at random, the
shortest string is always used.

2) With a certain probability per character, the speaker may
fail to pronounce characters in a string. In other words,
there is a chance of random noiselike erosion of the
strings transmitted from generation to generation. For
the simulation results here, the erosion probability per
character was 0.001.6

In many ways, the behavior of the simulation under these con-
ditions is similar to the previous simulation. The initial language
is completely noncompositional (irregular), but regularity in-
creases gradually over time. The major differences are that the
system obviously never reaches complete stability, since there
is always a chance that a random erosion will disrupt linguistic
transmission. Fig. 2 shows the evolution of the system over 1000
generations.

Again, it is easy to see language evolution in progress in the
model by tabulating strings from adult agents in the simulation
at different points in time. Here is a language from early in the
simulation (generation 13).

As before, this early system is clearly a protolanguage as
opposed to a fully compositional mapping from meanings to
strings. Again, however, a structure-preserving system does
eventually emerge (generation 223).

6If the erosion resulted in a string of length zero, the speaking agent was
considered not to have said anything. In this case, no information was passed to
the learning agent.
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Fig. 2. Evolution of the language in an ILM with pressures for short strings. In addition to coverage, communicative success and size of grammar mean string
length of utterances is also plotted.

Just as in the previous simulation, a clearly regular encoding
has evolved. This is not what we were looking for, however.
There is still no irregularity in this language. In later genera-
tions, some irregularity does emerge (shown in bold in this ex-
ample from generation 763).

These irregulars are not stable, however. They typically
only last one or two generations, being rapidly reregularized
by learners. So, although the performance pressures clearly
influence the evolution of the system (in that the string length
is much reduced), realistic irregulars have not emerged.

D. Nonuniform Frequency Distributions

What else might be needed to model both the emergence
of structure-preserving regularity and stable irregularity in lan-
guages? A clear indication of what is missing from the ILMs
presented so far is given if we look at where in real languages
irregulars appear most stable. For example, here are some of the
verbs in English that have an irregular past tense:be, have, do,
say, make, go, take, come, see, get,.

Strikingly, these verbs are also the ten most frequent verbs
in English usage [16]. In fact, it is recognized by linguists that
irregularity (i.e., noncompositionality) correlates closely with
frequency in natural language [17]. The frequency with which
meanings need to be expressed in the ILM (and, hence, indi-
rectly the frequency of use of particular strings) is uniform. In
contrast, the frequency of use of words in natural languages ap-
proximates a Zipfian distribution [18]; that is, the frequency of

use of a particular word is inversely proportional to its frequency
rank. While we cannot infer the frequency distribution of par-
ticularmeaningsin real languages from this directly, it strongly
suggests that a uniform distribution is an unrealistic idealization.

Consequently, the simulation in the previous section is
rerun with a nonuniform distribution over meanings (shown
in Fig. 3) based on a Zipfian surface. This means that when,
in the ILM, meanings are chosen at random for the adult
agent to produce strings, the probability of picking a particular
meaning is weighted so that the frequency of use of meanings
approximates the function shown in Fig. 3.

The results of a run with this distribution of meanings is
shown in Fig. 4. It is noticeable that the system appears far
less stable than others, suggesting that the process of language
change is ongoing throughout the simulation (as it is in real lan-
guage history). The most important result, however, can be seen
by looking at a snapshot of the language taken at one point in
time in the simulation (generation 256).

As before, there are some irregular forms (shown in bold), but
in contrast with the previous result, they are highly stable. For ex-
ample, this particular cluster of irregulars appeared in generation
127 and lasts until generation 464, at which pointis regular-
ized to . Indeed, the irregularappears constant throughout all
1000 generations of the simulation. Furthermore, just as in the
real case, the irregular forms are all highly frequent. It is also in-
teresting to note that length appears to correlate inversely with
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Fig. 3. Expected number of each meaning in the input to a learner. Probability of a meaning(a ; b ) is proportional to(i + 1) (j + 1) and, as before, the
total number of utterances is 50.

Fig. 4. Evolution of language with performance pressures and a nonuniform distribution of meanings.

frequency (although quantitative results have yet to be obtained).
This correlation is also well known in human language [18].

IV. DISCUSSION

Why does language emerge in these simulations? There is no
biological evolution in the ILM—the agent architecture is the
same throughout the simulation. Nowhere in the simulation is
the communicative system of the agents measured against an ob-
jective function. To put it crudely, the agents do not care if they
can communicate or not. Nor does the agent architecture put
any hard constraints on whether the language that they can use
should be structure-preserving or not (as witnessed by the lan-
guages in the early stages of the simulation). Given these facts,
one might suspect that there would be no evolution in the ILM
at all. Counter to intuition, the system appears to adapt. In even
the simplest instantiation of the model, structure emerges in
the meaning-signal mapping. Words/morphemes spontaneously
emerge that correspond to subparts of the meaning and reg-
ular rules evolve for combining these into complete sentences.

Where there are length pressures placed on the signal channel,
the language adapts to shorter codes. When the distribution of
meanings is not smooth, a system evolves with a realistic pat-
tern of frequent short irregulars and infrequent regular forms.

The key to understanding the behavior in the model lies
in seeing the language (as opposed to the language users) as
adapting to improve its own survival. In a standard evolutionary
simulation, a model of natural selection would lead the agents
to adapt to some fitness function. However, in this case there is
no natural selection; agents do not adapt, but rather we can see
the process of transmission in the ILM as imposing a cultural
linguisticselectiononfeaturesof the languagethat theagentsuse.

The survival of a language, or rather a feature of a language
like a rule or word, over time relies on it being repeatedly repli-
cated in the ILM. Fig. 5 shows how linguistic information flows
through time, both in the model and in reality. It is clear from this
that in order for a linguistic feature of any kind to be successful,
it must survive the two transformations between its internal rep-
resentation (I-language in the Chomskian parlance [19]) and
its external representation (E-language or utterances). We can,
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Fig. 5. Process of linguistic transmission. I-language refers to the internal
representation (e.g., grammar) of language, whereas E-language is the external
form of language as sets of utterances. For language to persist, it must be
transformed repeatedly from one domain to the other through the processes of
induction and production.

therefore, see the processes of language induction and language
production as imposing endogenous selection pressures on lan-
guages. To put it another way, these transformations act asbot-
tleneckson the persistence of linguistic variation (see also [8]
and [11]).

Taking these in turn, it is clear that the optimal system with
regard to these two bottlenecks is rather different.

Induction: The induction or learning bottleneck appears to
favor languages that are maximally structure-preserving. More
generally, it has been argued that the learning bottleneck favors
linguistic generalizations [11] or compressed internal represen-
tations [20]. If we consider generalizations as replicators, it is
clear why this might be the case. For example, assume in a hypo-
thetical language that there are two ways of expressing a partic-
ular meaning. The first is noncompositional: it is simply a com-
pletely idiosyncratic holistic word for that whole meaning. The
second, on the other hand, is compositional, produced by some
more general rule that can also produce a variety of other mean-
ings. What are the chances that each of these ways of producing
that meaning will survive? For the first way of expressing the
meaning to survive, that meaning-string pair must be produced
by the adult and heard by the learner. However, for the second,
it does not necessarily need to be produced. In some sense, the
actual meaning-string pair is not the relevant replicator; rather,
it is the generalization that is replicating. By definition, a gen-
eralization will cover more meaning space and, therefore, have
more chance of being expressed in the input to the learner. The
learning bottleneck, therefore, will tend to produce a selective
pressure for generalizations. Notice that the precise form of gen-
eralization that is possible must depend on the prior bias of the
learner—in the case of this model, for example, this corresponds
to the induction heuristics and the choice of representation lan-
guage (i.e., DCGs). That said, however, the argument about the
relative replicability of generalizations is quite general. It is an
ongoing research project to discover how similar emergent lan-
guages are with a range of representational and search biases
(see, e.g., [13]).

Production: The pressure imposed by the production bottle-
neck in this simulation is very clear. Shorter strings are more
likely to show up in the languages in the simulation. Ultimately,
we might expect that if it were possible for pressures from pro-
duction alone to influence the simulation, languages would tend
toward minimal length codes for the meaning space.

The language for a 5 5 meaning space and a 26-letter al-
phabet cannot both be minimal length and structure-preserving
because the shortest language would have one letter for each
whole meaning, which makes compositionality impossible. The
two selection pressures on language are, therefore, in compe-
tition.7 What is interesting about this competition is that the
relative pressure varies according to the frequency of use of
the meanings. The induction pressure becomes more severe for
low-frequency meanings since these will have less likelihood
of being expressed in the learner’s training set. The low fre-
quency forms, therefore, need to behave in regular paradigms.
Conversely, the higher frequency forms are much more likely to
replicate without the need to be part of a general pattern. This
means that they can succumb to the pressure for shortness and,
hence, irregularity.

Various directions for future work are possible given the re-
sults described in this paper, for example.

1) The role of induction bias: This has already been men-
tioned; essentially we need to replicate these results with
a range of different learning algorithms to uncover the
(nontrivial) relationship between bias and emergent struc-
ture of systems in the ILM.

2) The role of invention: I have argued for an invention al-
gorithm that never increases the degree of composition-
ality inherent in the learner’s grammar at the time of
invention. This is clearly only one point on a scale of
possible approaches, however. For example, different dy-
namics would be observed given a purely random inven-
tion process, or one which maximizes compositionality.
An interesting project would be to look at the types of lan-
guage-change that are observed with different algorithms
and compare these with real language change.

3) Different degrees of irregularity: In some languages (such
as isolating languages like Chinese), there is little or no
irregularity. A challenge for modeling could be to isolate
the possible mechanisms that might lead to different de-
grees of irregularity in different languages. This could in-
volve investigating more closely the processes of, for ex-
ample, phonological erosion, which here is modeled very
crudely (as the random elision of segments).

4) The comprehension bottleneck: The results described
here are due to an interaction of induction and production
bottlenecks. Other work looks at the role of comprehen-
sion bottlenecks on emergent structure (e.g., [21]). A
possible extension to the model might be to integrate this
third bottleneck into the ILM.

V. CONCLUSION

A central and unique feature of human language—structure
preservation—has been explained in terms of the evolution of
languages themselves as opposed to language users. Within the
framework of an ILM, it has been shown that general pressures
on the transmission of language over time give rise not only
to compositional systems of meaning-signal mapping, but also

7Appealing to pressures in competition is a well recognized explanatory prin-
ciple in linguistic functionalism, where the term “competing motivations” is
used. See [21] and [22] for discussion.
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realistic patterns of language dynamics, utterance length, and
irregularity.

This research suggests that if we are to understand the origins
of human linguistic behavior, we may need to concentrate less
on the way in which we as a species have adapted to the task of
using language and more on the ways in which languages adapt
to being better passed on by us.
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