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Spontaneous Evolution of Linguistic Structure—
An lterated Learning Model of the Emergence of
Regularity and Irregularity

Simon Kirby

Abstract—A computationally implemented model of the trans- in morphosyntax. Ultimately, we would like to derive these
mission of linguistic behavior over time is presented. In this model properties from some other feature external to the syntax of
[the iterated learning model (ILM)], there is no biological evolu- human language. For example, one approach is to argue that

tion, natural selection, nor any measurement of the success of the truct fi . tuall v of ; t
agents at communicating (except for results-gathering purposes). Structure preservation IS actually a property of our innate

Nevertheless, counter to intuition, significant evolution of linguistic  biological endowment and can be explained by appealing to
behavior is observed. From an initially unstructured communi- fithess enhancing mutations that were retained in our species
cation system (a protolanguage), a fully compositional syntactic through natural selection [3]. Ultimately, these types of expla-
meaning-string mapping emerges. Furthermore, given a nonuni- aiinn typically derive features of the meaning-string mapping

form frequency distribution over a meaning space and a produc- f icati that infl d toh
tion mechanism that prefers short strings, a realistic distribution rom communicative pressures that influenced our protohuman

of string lengths and patterns of stable irregularity emerges, sug- ancestors [4].
gesting that the ILM is a good model for the evolution of some of ~ This paper follows on from recent computational work that

the fundamental features of human language. takes a different approach [5]-[13]. Instead of concentrating
Index Terms—Cultural selection, evolution, grammar induction, on the biological evolution of an innate language faculty, this
iterated learning, language. line of research places more explanatory emphasis on languages
themselves as adaptive systems. Human languages are arguably
I. INTRODUCTION unique not only for their compositionality, but also in the way

NE striking feature of human languages is the strué‘Feyt per_s?t °"etf tlmebthrtci[l;]gh |tera'Fed gbtservatlonal Igarnlng(.j

ture-preserving nature of the mapping from meanings J1a |Is,.|nt0rma I'(t)tn jfou N magpm? € weert1' mea;rlnngs an

signals (andvice versd.! This feature can be found in everySIgnaSIS ransmitied from generation 1o generation otlanguage
sers through a repeated cycle of use, observation, and induc-

human language, but arguably in no other species’ commuH Rather th i A d
cation system [1]. Structure preservation is particularly striking.;on' ather than appealing to communicative pressures and nat-

if we consider sentence structure. The syntax of English, f Fal selection, the suggestion is that structure-preserving map-
Rings emerge from the dynamics of iterated learning.

example, is clearly compositional—that is, the meaning of ! ) ) ; .
sentence is some function of the meanings of the parts of thal/Sing computational models of iterated learning, earlier work

sentence. For example, we can understand the meaning quﬁ@onstrated that structure-preserving maps emerge from un-
sentence “the band played at Carlops” to the extent that \%uctured random maps .when learners are e?xpos'ed.to a subset
can understand the constituents of that sentence, suttieasOf the total range of meanings. The problem with this kind of ap-
band or Carlops Similarly, in the morphological paradigmsproaCh' which this paper addresses, is that it predicts that there

of languagesregularity is pervasive. We can see this too as ghould be no stableregularity in language. This does not map
structure-preserving mappiAg. well onto what we know about natural language morphology,

An obvious goal for evolutionary linguistics is, therefore, alhere historically stable irregularity is common. The results re-

understanding of the origins of compositionality and regularif°rted in this paper, however, show that both regulaitgir-
regularity are predicted by a more sophisticated version of the
) ] ) ] iterated learning model (ILM).
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1By “structure-preserving,” here | mean simply that similar meanings terfdents:
to map to similar signals. We could formally define degree of structure preser- 1) a meaning space;
vation in terms of a correlation of distances between points in meaning-space2 . | .
and signal-space (i.e.,tapographicmapping), but this is unnecessary for our ) a signal space; .
purposes here. 3) one or more learning agents;

2Interestingly, recent computational analysis of very large corpora of English 4) one or more adult agents.

usage [2] suggests that this structure preservation can even be seen Withml:ﬁ . .
monomorphemic lexicon, whose phonetic structure was previously thought % simulations reported here use Only one adultand one learner.

be arbitrarily related to meaning. Each iteration of the ILM involves the adult agent being given a
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set of randomly chosen meanings to produce signals for. Thewéth earlier work, the language isrepresented as a simplified form
sulting meaning-signal pairs form training data for the learningf definite-clause grammar (DCG). Specifically, the grammars
agent. After learning, this agent becomes a new adult agent, tioasist of context-free rewrite rules in which nonterminals may
previous adult agent is removed, and a new learning agent islave a single argument attached to them that conveys semantic
troduced. Typically, this cycle is repeated thousands of timesioformation. Thus, arule has the following form:

until a clearly stable end-state is reached. Furthermore, the sim-

. o . . OF A
ulation is usually initialized with no language system in place. In i
other words, the initial agents have no representation of a magiere
ping from meanings to signals at all. C  category label;
Clearly, the agents in the ILM need at least: Iz meaning structure;
1) an internal representation of language that specifies the! ~ String of terminals (characters from the alphabet) and
ways in which signals can be produced for particular _ nonterminals. o
meanings; There is a special category lalsethat signifies the start symbol
2) an algorithm for inducing this representation given exanfer Production. In other words, every legal meaning-string pair
ples of meanings and signals: must expand ar¥ rule in the language. For these simulations,
3) some means of generating signals for meanings that th& meaning structure has one of the following forms:

induced language representation does not include (e.g., in (a;, b;) or a; or b
the early stages of the simulation).

Apart from the meaning space, the various components of mlét, in general, any structure can be used. Each of the meaning

simulation reported in this paper are the same as those repoﬁl%dnenft?hmay elther bf sptecme(tjt dlrhec(;I)t/ or mhefr![thed frOT th?
in [7], [9], [10]. The following sections set out each in turn. value otthe meaning structure attached to one ot the honhtermi-

nals in A using variable unification.
A. Meaning Space For example, this rule specifies that the strisig: maps to

) _ ) the meanindag, bg)
In contrast to earlier work, which used a meaning space

involving recursively structured hierarchical predicates, a much S: (ao, bo) — abc

s!mpler set of meanings is employed h.ere. Each me.a.ningaiédo the following set of rules:

simply a vector of values drawn from a finite set. Specifically,

for the results reported here, a meaning consists of two compo- S:(x,y) - A:yB:x

nents,e andb, both of which can range over five value3hus, A: by —ab

there are 25 possible meaningss, bo) to (a4, bs) and, within

the space of meanings, there is some structure. We can imagine

how this simple model of meanings could map onto the workin adult agent that had either of these sets of rules would output

in various ways. For example, one component of the meaningg if asked to produce a signal for the meantiag, bo).

could be an object and the other an action—expressing a very

simple one-place predicate. The interpretation of the meaniRg Induction Algorithm

space is not important, however. It provides us with a very In order that the simulation of iterated learning over many

simple model of a structured space of concepts. Usefully, thenerations be a practical prospect, the induction algorithm

space can be displayed as a table, as will be done later.  of the learning agents must be computationally cheap. The

heuristic incremental algorithm developed in [7] is used here.

B. Signal Space Induction takes place in two steps incrementally for every
The signal space, in common with earlier work, is an orderd@ut meaning-signal pair.

linear string of characters drawn from the letters a—z. There isincorporation: A single rule that covers the input pair is

no set limit on string length. These letters cannot be equat@dded to the grammar. In this model, a rule is only added if the

simply with the phonemes of natural languages. A better pa&¢arning agent cannot already parse the signal component of the

allel would be with syllables, but even this is not a one-to-orair. This is included to impose a preference for unambiguous

correspondence. Basically, the letters that make up signals ‘&guages because the learner will not acquire multiple mean-

the atomic elements of the language that the grammatical sys#@g$ for one string.

B:ag —c.

cannot break down. Generalization: The algorithm iteratively tries to integrate
the new rule into the existing grammar by looking for possible
C. Language Representation generalizations. These generalizations are essentially subsump-

Obviously there are many possible representations of the mHBf‘S over pairs of rules. In other words, the algorithm takes a

ping between meanings andsignalsinthe spacesdescribed absy .Of rules from the grammar and tries to find a more gen-

To keep the model as general as possible and retain compatibfﬁ{ _rule to _replace them with (within a set of hegristic con-
straints). This may be done, for example, by merging category

3To check that the model scales up, the results were replicated with a meardi@bels, or discovering common strings of right-hand-side con-

space of 20x 20. These are not reported because the large size seems to §ﬂfbents. After subsumption, duplicate rules are deleted, and the
little to the simulation and the results are harder to visualize. Note also that ! '

previously reported results relating to the emergence of recursion (but notJOCeSS i_S repeated until no more h_euriStiCS_ apply. _At this stage
irregularity) have, in principle, an infinite meaning space. the learning agent accepts another input pair to be incorporated.
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The details of the algorithm are outlined below (adapted froetring-meaning pair for some meanings. In the very first gen-

[9D). eration of the ILM, the adult agent has no grammar at all and,
therefore, no way to express any meaning. In order for any in-
Induction algorithm: Given a meaning u, a novation to emerge in the linguistic system that is being trans-
string s, and a grammar g: mitted, the agents need some form of creativity—an ability to
i.l parse s using g, if the parse is suc- invent new strings.
cessful, then return g. The simplest approach would be to generate strings at random
i.2 form ¢/, the union of g and S:pu— s. whenever an agent must produce a signal for a meaning that its
i.3 apply a generalization algorithm to grammar cannot generate. For the most part, in fact, this is the
g strategy employed in the simulation. However, in some cases this
g.1 take a pair of rules (ry, r2) from approach s ratherimplausible. Consider the case of an agent that
q. has a completely regular compositional language, but does not
g.2 if there is a category label sub- have a word for a particular meaning component. For example,
stitution c to ¢, that would make the agent might have words for all the meaning components
r1 identical to re, then rewrite all to a4 and words fobg to b3 and might produce signals for whole
cin ¢ with ¢, go to g5 . meanings by concatenating the relevant words forntbempo-
g3 if 7 and r; could be made iden- nent and then thecomponent. This is obviously a very regular
tical by “chunking” a substring on syntactic and humanlike language. However, the agent does not
either or both their right-hand have away to produce a string for, sgag, b4). It seems counter-
sides into a new rule or rules, intuitive for the agentto generate a completely random new string
then create the new rules, and for this meaning given that it has aword fgrand has already in-
delete the old ones in g, go duced a compositional rule for concatenating words together to
to g.5 . produce sentences. Instead, it seems sensible that an agent in this
g.4 if r’s right-hand side is a proper state should simply invent a new word far.
substring of rz’s and r;’s semantics On the other hand, it is undesirable for the model to allow
is identical to either the top for agents to introduce compositionalite novoin the inven-
level predicate or one of the argu- tion process. To give another example, consider an agent who
ments of ry’s semantics, then has signals for the same range of meanings as the agent in the
rewrite r2 in g¢' to refer to 71, g0 previous example, but instead of using a regular rule to produce
to g5 . sentences, simply lists each meaning and its associated signal
9.5 delete all duplicate rules in qg. unanalyzed in its grammar. In this case, we do not want the in-
g.6 if any rules in g have changed, go vention algorithm to introduce any compositionality itself—in-
. to g.1 stead, an entirely random innovation seems more plausible.
i.4  return g’ What is needed, then, is amvention algorithmthat in pro-

ducing a novel string preserves what structure is already existing

The general chunking method for the DCG-type represeni8-the agent’s grammar, but does not introduce any new struc-
tions is not given here for lack of space, but can be found in [#}ire. The general algorithm for any meaning space is informally
However, for the meaning space used here, practically chunkigmmarized below: (N.B. If the grammar is empty, then this al-

is pretty simple. Given a pair of rules gorithm cannot be applied, and a random string is generated.)
C: (ai, b)) = Mdads Invention algorithm: Given a meaning g
C: (ai; bk) = AAas and a grammar ¢ that cannot generate a
where \; is any string of terminals/nonterminals, these af@€aning-string pair ( 1, 5):
deleted and replaced with i.1 find the ¢ most similar to i
for which the pair (1, ¢) can be gener-
Ct (ai; ) = ArChew: TA3 ated (i.e., initially try all meanings
Chew: b; — Ao with one meaning component the same,
Crow: b — s then all meanings).
i.2 form  p”, the intersection of w and
The constraints on this process are thaand A, must be non- ¢/, with any meaning slots that are
null and that\; or Az must be nonnull. The obvious equivalent  (ifferent replaced with a unique “dif-
chunking process is applied if it is tHecomponent of the se- ference-flag.”
mantics that the rules have in common. i.3 generate a string s corresponding to
. . i using g, but include a pseudorule
E. Invention Algorithm of the sort:
At the start of the simulation especially, the adult agents will any-category: differ-
frequently not have a way of expressing particular meanings. ence-flag —random-string

In other words, their grammar will not be able to generate ang¢  return  s.
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Fig. 1. Emergence of a stable system in the simple simulation. Coverage is a measure of the proportion of utterances that are made without veotiorse to in
Success is calculated by testing adult and leaafterlearning in a set of communication games, half of the time with the adult as speaker and half of the time with
the learner as the speaker. Number reflects the proportion of successful games (i.e., when the hearer can parse the string with the same mpeak®g)as the s

The random string generated as part of the invention algo-time in the simulation as a table of strings with the columns
rithm can be produced with various different lengths. In the singorresponding to the component of the meaning and the rows
ulations reported here, the strings were of a random length betheb component. The table below was produced by the first
tween one and ten. To encourage consistency in output, the agehtlt agent in the simulation at the end of its “life.” Notice that
uses the meaning-string pair produced by invention as inputeach cell in the table has only one string associated with it. This
one iteration of the induction algorithm. In other words, agent®es not specify the language of that agent completely because

learn from their own innovations. there may be more than one way of producing a signal for each
meaning. In this experiment, the agents make a random choice
IIl. RESULTS whenever that happens.

In this section, the results of running the ILM with various
different conditions are presented. Typical results are analyzed

. . . . . . . a [23 [¢2 a a
here, but qualitatively similar behaviors are observed in all repli- i ! 2 i !
cations. bo s sq - pnj bjmjimsq

. . 2] n avvcf jlimgttztp  pelefho kebae
A. Emergence of Regular Compositionality
by | ebhzyuyrl  afeeyykokz - pyuhu hwrpg

The simulation described in the previous section was set up
with an initial population of one adult and one learner, both with by | rqbviggjac  zrdleab  rxktywr rbg  rkhxpbmx
no linguistic knowledge. The adult produces 50 utterances for
the learner, each of which is a randomly chosen meaning. No-
tice that although there are only 25 meanings, the chances of all
25 being exemplified in the learner’s input are less than4one. o ) ) )
This feature of the ILM has been termed the “bottleneck” in In this first iteration of the ILM, we are essentially seeing the
linguistic transmission [8]. Although the bottleneck is not par2nguage that is produced from iteratively inducing 50 random

ticularly tight here, it plays a more important role in later expef?ventions. There is no clear regularity in the system and the

iments. agent even at the end of life has no way to produce a couple
Fig. 1 shows a plot of the simulation converging from th8f meanlngs(alQ, bo) and (a», bQ)_' \?Ve can termhth|s tyﬁe 0:_:

initial condition on a language that is stable, covers the compleq‘t)éSte,m apr_ot_o_ anguagesystem (in fact, it matches well wit

meaning space, and allows for perfect communication, Wray’s definition of_ protola_nguagg [1_4] rather better than the
Because the meaning space is essentially a two-dimensidha € well-known Bickertonian definition [19].

vector, we can visualize the language used at a particular poinPnc€ the language has converged, however, the system looks
quite different. Here is the system after 30 generations (it looks

the same after another 1000).

4The probability of a particular meaning being in the training input to a learner
is1— (1 —1/n)", wheren is the size of the meaning space anis the
number of utterances. So, the chances of every meaning being represented &wray argues that protolanguage utterances were more likely holigtic
(1 —(1—=1/n)")". So, only three times in every 100 generations should ananalyzed expressions as opposed to the short concatenations of words (rather
learner hear all meanings in the simulations reported here. like asyntactic minisentences) that Bickerton envisages.

by | drnlblwmo  afgjghvuw gnbyq pquztpi wf
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on the language that is being transmitted other than a pressure
to be learnable. Real languages have to be used by speakers
who are not always accurate and whose performance may be
influenced by least-effort principles. To test the hypothesis that
features of linguistigperformancenfluence the emergence of
regularity, the experiment described earlier was repeated with
two modifications.

1) Ifthe agent speaking has more than one way of expressing

. . . . ) a meaning, then instead of picking one at random, the
This language is quite clearly compositional in a completely shortest string is always used.

regular way. There appears to be substrings for each componené) With a certain probability per character, the speaker may
of the meaning. For example, for the most paitis expressed fail to pronounce characters in a string. In other words,
using the stringwvcpal at the start of the utterance, wherégs there is a chance of random noiselike erosion of the
is expressed using the strindqu at the end of the utterance. strings transmitted from generation to generation. For
The only exceptions to this pattern are the meanings involving 1o simulation results here, the erosion probability per
bs andb,. These appear to hawrcumfixeslike rkhxp- -mx character was 0.00.
andcs- -bf. , _ In many ways, the behavior of the simulation under these con
The grammar for this language is shown below. ditions is similar to the previous simulation. The initial language
S: (z,y) — A: zB: y is completely noncomp(_)sitional (irre_gula_r), but regularity in-
creases gradually over time. The major differences are that the

o a1 ay az ay

by wepalsdgu asdqu hngmxsdqu gpmhmsdqu bsdqu
) wepalp ap hngmxp gpmhmp bp

by wepalihm aihm hngmxihm gpmhmihm bihm

bs | rkhxpwcpalmx  rkhxpamx  rkhxphngmxmx  rkhxpgpmhmmx  rkhxpbmx

by cswepalbf csabf cshngmxbf csgpmhmbf csbbf

S: (x, bg) — rkhxpA: zmx
S:(x, by) — csA: xbf

system obviously never reaches complete stability, since there
is always a chance that a random erosion will disrupt linguistic

A: ag — wepal transmission. Fig. 2 shows the evolution of the system over 1000
Aia —a generations.
A L Again, it is easy to see language evolution in progress in the
42 7 nqx model by tabulating strings from adult agents in the simulation
A: a3 — gpmhm at different points in time. Here is a language from early in the
A:aq —Db simulation (generation 13).
B: bg — sdqu
B: bl — D ap a as as 22
B: b2 — ihm. by | gbkgofetfv mpqr kyfnfz knj wgvick
.This compositionality _is just what was expecteq to emerge b | wkiwjk  usdptizoq Il Iif Iz

given earlier results with more complex meaning spaces.

In every run of the simulation, this sort of behavior always by | xwlua  tunakitga  fjpginnza  fia  kbtlakgyoa

emerges. The exact structure of_ the Ianguage_ is different bs | lxed  qesgsagyfoq  luc  ifjiuc  thsmy

every time, but structure preservation in the mapping between

meanings and strings appears to be inevitable. We will return by PPl Ivtjoq ubvasi v f

to an explanation for this in a later section.

As before, this early system is clearly a protolanguage as

. o o opposed to a fully compositional mapping from meanings to
Although the primary target for explanation in this line oftings. Again, however, a structure-preserving system does
work has been the pervasive structure-preserving ”aturee%ntually emerge (generation 223).

human linguistic behavior, the results outlined above and in
previous work by myself and others do not appear to capture
the nature of regularity in human languages accurately. This is a a1 a a3 ag
because a completely stable compositional system is actually

unusual in real languages, whereas there does not seem to be
any other possible attractor in the ILM dynamic. If we are to bl qr
claim that structure preservation in human languages arises
out of the dynamics of the transmission of learned behavior,

it seems important that we should be able to show partial but by | qu bguu Iy ku ixcu
stableirregularity emerging as well.

B. Problems with Regularity

bp | qda bguda Ida kda ixcda
bgur  Ir  kr ixer

b | qa bgua la ka ixca

bi| ap bgup Ip  kp ixcp

C. Pressures on Language Use

ibl hatth del dsof Ef the erosion resulted in a string of length zero, the speaking agent was
One possible reason that the models presented so far appeggiQdered not to have said anything. In this case, no information was passed to
betoo perfectly structure-preserving is that there is no pressuhe learning agent.
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Fig. 2. Evolution of the language in an ILM with pressures for short strings. In addition to coverage, communicative success and size of grammigg mean st
length of utterances is also plotted.

Just as in the previous simulation, a clearly regular encodinge of a particular word is inversely proportional to its frequency
has evolved. This is not what we were looking for, howeverank. While we cannot infer the frequency distribution of par-
There is still no irregularity in this language. In later generdicular meaningsn real languages from this directly, it strongly
tions, some irregularity does emerge (shown in bold in this exuggests that a uniform distribution is an unrealistic idealization.

ample from generation 763). Consequently, the simulation in the previous section is
rerun with a nonuniform distribution over meanings (shown
ap @y ay az as in Fig. 3) based on a Zipfian surface. This means that when,

in the ILM, meanings are chosen at random for the adult
agent to produce strings, the probability of picking a particular
blar g Ir k xr meaning is weighted so that the frequency of use of meanings
approximates the function shown in Fig. 3.

The results of a run with this distribution of meanings is

by|qd gd Id ki xd

by |ga ga la ka xa

by lqu gu u ku xu shown in Fig. 4. It is noticeable that the system appears far
less stable than others, suggesting that the process of language
by |ap gp Ip ke xp change is ongoing throughout the simulation (as itis in real lan-

_ ~guage history). The most important result, however, can be seen
These irregulars are not stable, however. They typicalby looking at a snapshot of the language taken at one point in

only last one or two generations, being rapidly reregularizgfhe in the simulation (generation 256).
by learners. So, although the performance pressures clearly

influence the evolution of the system (in that the string length

is much reduced), realistic irregulars have not emerged. ap a1 a a3 a
. L . b s kf it uhlf
D. Nonuniform Frequency Distributions o &

What else might be needed to model both the emergence bl oy Jgi i u uhli
of structure-preserving regularity and stable irregularity in lan- b yq  igg kg g uhlg
guages? A clear indication of what is missing from the ILMs '
presented so far is given if we look at where in real languages bs | yba  jgba  kba  jbq  uhlbg
irregulars appear most stable. For example, here are some of the bs | yugeg jgugeg kugeg jueg uhlugeg

verbs in English that have an irregular past tetsg:have, do,
say, make, go, take, come, see, get,

Strikingly, these verbs are also the ten most frequent verbsAs before, there are some irregular forms (shown in bold), but
in English usage [16]. In fact, it is recognized by linguists thah contrast with the previous result, they are highly stable. For ex-
irregularity (i.e., noncompositionality) correlates closely witlample, this particular cluster of irregulars appeared in generation
frequency in natural language [17]. The frequency with which27 and lasts until generation 464, at which pgiri$ regular-
meanings need to be expressed in the ILM (and, hence, inidied toyi. Indeed, the irregulayappears constant throughout all
rectly the frequency of use of particular strings) is uniform. 18000 generations of the simulation. Furthermore, just as in the
contrast, the frequency of use of words in natural languages apal case, the irregular forms are all highly frequent. Itis also in-
proximates a Zipfian distribution [18]; that is, the frequency diresting to note that length appears to correlate inversely with



108 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 2, APRIL 2001

Meaning distribution ——
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b component

a component

Fig. 3. Expected number of each meaning in the input to a learner. Probability of a méanitg) is proportional tai + 1)~(j + 1) ~* and, as before, the
total number of utterances is 50.
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Fig. 4. Evolution of language with performance pressures and a nonuniform distribution of meanings.

frequency (although quantitative results have yetto be obtaineédjhere there are length pressures placed on the signal channel,
This correlation is also well known in human language [18].  the language adapts to shorter codes. When the distribution of
meanings is not smooth, a system evolves with a realistic pat-
tern of frequent short irregulars and infrequent regular forms.
The key to understanding the behavior in the model lies
Why does language emerge in these simulations? There ism@eeing the language (as opposed to the language users) as
biological evolution in the ILM—the agent architecture is thadapting to improve its own survival. In a standard evolutionary
same throughout the simulation. Nowhere in the simulation sgmulation, a model of natural selection would lead the agents
the communicative system of the agents measured against antoladapt to some fitness function. However, in this case there is
jective function. To put it crudely, the agents do not care if thayo natural selection; agents do not adapt, but rather we can see
can communicate or not. Nor does the agent architecture phe process of transmission in the ILM as imposing a cultural
any hard constraints on whether the language that they can lisguistic selection on features ofthe language thatthe agentsuse.
should be structure-preserving or not (as witnessed by the lanThe survival of a language, or rather a feature of a language
guages in the early stages of the simulation). Given these faditss a rule or word, over time relies on it being repeatedly repli-
one might suspect that there would be no evolution in the ILEhted in the ILM. Fig. 5 shows how linguistic information flows
at all. Counter to intuition, the system appears to adapt. In eviiimough time, both in the model and in reality. Itis clear from this
the simplest instantiation of the model, structure emergesthmt in order for a linguistic feature of any kind to be successful,
the meaning-signal mapping. Words/morphemes spontaneousiyust survive the two transformations between its internal rep-
emerge that correspond to subparts of the meaning and regsentation (I-language in the Chomskian parlance [19]) and
ular rules evolve for combining these into complete sentencés.external representation (E-language or utterances). We can,

IV. DISCUSSION



KIRBY: SPONTANEOUS EVOLUTION OF LINGUISTIC STRUCTURE—AN ITERATED LEARNING MODEL 109

L L The language for a &% 5 meaning space and a 26-letter al-
anguage --anguage phabet cannot both be minimal length and structure-preserving
because the shortest language would have one letter for each
[ Induction | [ Production | [ induction | [ Production | [ induction | whole meaning, which makes compositionality impossible. The

two selection pressures on language are, therefore, in compe-
tition.” What is interesting about this competition is that the
E-language E-language relative pressure varies according to the frequency of use of
the meanings. The induction pressure becomes more severe for
low-frequency meanings since these will have less likelihood
Fo 5 P ¢ inauisi cion. 1 . e i ofI being expressed in the learner’s training set. The low fre-
O pimacees of Inguistc ranamission. Larguage refers o e e flncy forms, therefore, need to behave in regular paradigns.
form of language as sets of utterances. For language to persist, it must@&@nversely, the higher frequency forms are much more likely to
transformed repeatedly from one domain to the other through the processegegilicate without the need to be part of a general pattern. This
induction and production. means that they can succumb to the pressure for shortness and,
hence, irregularity.
therefore, see the processes of language induction and languag@rious directions for future work are possible given the re-
production as imposing endogenous selection pressures on kults described in this paper, for example.
guages. To put it another way, these transformations dmttas 1) The role of induction bias: This has already been men-
tleneckson the persistence of linguistic variation (see also [8]  tioned; essentially we need to replicate these results with

and [11]). . N _ _ a range of different learning algorithms to uncover the
Taking these in turn, it is clear that the optimal system with  (nontrivial) relationship between bias and emergent struc-
regard to these two bottlenecks is rather different. ture of systems in the ILM.

Induction: The induction or learning bottleneck appears to 2) The role of invention: | have argued for an invention al-
favor languages that are maximally structure-preserving. More gorithm that never increases the degree of composition-
generally, it has been argued that the learning bottleneck favors ality inherent in the learner's grammar at the time of
linguistic generalizations [11] or compressed internal represen-  jnvention. This is clearly only one point on a scale of
tations [20]. If we consider generalizations as replicators, it is possible approaches, however. For example, different dy-
clear why this might be the case. For example, assume in ahypo-  namics would be observed given a purely random inven-
thetical language that there are two ways of expressing a partic-  tjon process, or one which maximizes compositionality.
ular meaning. The first is noncompositional: it is simply a com- An interesting project would be to look at the types of lan-
pletely idiosyncratic holistic word for that whole meaning. The guage-change that are observed with different algorithms
second, on the other hand, is compositional, produced by some gpq compare these with real language change.
more general rule that can also produce a variety of other meang) pifferent degrees of irregularity: In some languages (such
ings. What are the chances that each of these ways of producing ¢ isolating languages like Chinese), there is little or no
that meaning will survive? For the first way of expressing the irregularity. A challenge for modeling could be to isolate

meaning to survive, that meaning-string pair must be produced e possible mechanisms that might lead to different de-
by the adult and heard by the learner. However, for the second, grees of irregularity in different languages. This could in-

it does not necessarily need to be produced. In some sense, the
actual meaning-string pair is not the relevant replicator; rather,

it is the generalization that is replicating. By definition, a gen- crudely (as the random elision of segments).

eralization will cover more meaning space and, therefore, have4) The comprehension bottleneck: The results described
more chance of being expressed in the input to the learner. The * | o1e are due to an interaction of induction and production
learning bottleneck, therefore, will tend to produce a selective  pwienecks. Other work looks at the role of comprehen-

pressure for generalizations. Notice that the precise form of gen- sion bottlenecks on emergent structure (e.g., [21]). A

leralization thhat is pos?itél_e muzt ?efpend on tlhe E_rior bias of ”:je possible extension to the model might be to integrate this
earner—in the case of this model, for example, this corresponds i 'pceae i T T

to the induction heuristics and the choice of representation lan-
guage (i.e., DCGs). That said, however, the argument about the
relative replicability of generalizations is quite general. It is an
ongoing research project to discover how similar emergent lan-A central and unique feature of human language—structure
guages are with a range of representational and search biggeservation—has been explained in terms of the evolution of
(see, e.g., [13]). languages themselves as opposed to language users. Within the

Production: The pressure imposed by the production bottldramework of an ILM, it has been shown that general pressures
neck in this simulation is very clear. Shorter strings are mom the transmission of language over time give rise not only
likely to show up in the languages in the simulation. Ultimatelygp compositional systems of meaning-signal mapping, but also
we might expect that if it were possible for pressures from pro-, _ _ L , ,
duction alone to influence the simulation, languages would te Appealing to pressures in competition is a well recognized explanatory prin-

»languag Bflle in linguistic functionalism, where the term “competing motivations” is

toward minimal length codes for the meaning space. used. See [21] and [22] for discussion.

volve investigating more closely the processes of, for ex-
ample, phonological erosion, which here is modeled very

V. CONCLUSION
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realistic patterns of language dynamics, utterance length, anth] ——, “Learning, bottlenecks and infinity: A working model of the evo-
irregularity. lution of syntactic communication,” iRroceedings of the AISB’99 Sym-

. . . posium on Imitation in Animals and Artifact&. Dautenhahn and C.
This research suggests that if we are to understand the origins Nehaniv, Eds: Society for the Study of Atrtificial Intelligence and the

of human linguistic behavior, we may need to concentrate less  Simulation of Behavior, 1999.
on the way in which we as a species have adapted to the task Bl J- R. Hurford, “Expression/induction models of language evolution:

ina | d th . hich | dant Dimensions and issues,” irLinguistic Evolution Through Lan-
using language and more on the ways in which languages adap guage Acquistion: Formal and Computational ModeEs Briscoe,

to being better passed on by us. Ed. Cambridge, U.K.: Cambridge Univ. Press, to be published.
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