Language Evolution in the Lab: from models to experiments in evolutionary linguistics

> Simon Kirby Hannah Cornish, Kenny Smith

Language Evolution & Computation Research Unit University of Edinburgh www.lel.ed.ac.uk/lec

The evolutionary approach to language

The evolutionary approach to language

• Language is (almost) unique in nature

The evolutionary approach to language

- Language is (almost) unique in nature
- It involves three complex adaptive systems:
 - Biological evolution
 - Individual learning
 - Cultural transmission
- Language arises from the interaction of these three

The challenge...

The challenge...

- Evolutionary linguistics rests on the premise:
 - to understand why language is the way it is, we need to understand these adaptive processes and their interaction

The challenge...

- Evolutionary linguistics rests on the premise:
 - to understand why language is the way it is, we need to understand these adaptive processes and their interaction
- But how do we do this?
- One approach: build models
 - explore the adaptive processes in miniature, and then apply what we learn to the real thing

This talk

- I'm going to focus on cultural transmission
 - mainly because its importance has been underemphasised in traditional evolutionary approaches
- I want to show that you can study this in the lab
 - New experimental methodologies inspired by earlier computational models
- Ultimately this gives us a new perspective on the biological prerequisites for human language

• The Iterated Learning Model (mid 90s onwards)

- The Iterated Learning Model (mid 90s onwards)
 - Multi-agent modelling techniques applied to cultural evolution

- The Iterated Learning Model (mid 90s onwards)
 - Multi-agent modelling techniques applied to cultural evolution
 - Embed simple models of learners in a dynamic population and an "environment" about which they try to communicate

- The Iterated Learning Model (mid 90s onwards)
 - Multi-agent modelling techniques applied to cultural evolution
 - Embed simple models of learners in a dynamic population and an "environment" about which they try to communicate
 - Agents learn to communicate by observing others, who themselves learned the same way (cf. the game "telephone")

• Key insight: transmission bottlenecks

- Key insight: transmission bottlenecks
 - If a learner is given imperfect information about the language, e.g. noise, processing constraints, or simply not hearing all the data (cf. stimulus poverty)
 - ... cultural transmission becomes an adaptive system.
 - Language will adapt so that it appears to be designed to "fit" the bottleneck

- Key insight: transmission bottlenecks
 - If a learner is given imperfect information about the language, e.g. noise, processing constraints, or simply not hearing all the data (cf. stimulus poverty)
 - ... cultural transmission becomes an adaptive system.
 - Language will adapt so that it appears to be designed to "fit" the bottleneck
 - Features like compositional syntax emerge spontaneously in these models

Brighton et al (2005)

??3/k

??2/p

??2/e

???/g ???/p 4??/h ???/j 2??/g

422/1

?4?/k

?3?/i

• Languages (arguably) have the "appearance of design"

- Languages (arguably) have the "appearance of design"
- Two obvious mechanisms to explain this:
 - Biological evolution (cf. Pinker & Bloom 1990)
 - Intentional design by individuals

- Languages (arguably) have the "appearance of design"
- Two obvious mechanisms to explain this:
 - Biological evolution (cf. Pinker & Bloom 1990)
 - Intentional design by individuals
- Computational models show a third alternative
 - Cultural evolution
 - Consistent with idea of the "invisible hand" (Keller 1990)

- Languages (arguably) have the "appearance of design"
- Two obvious mechanisms to explain this:
 - Biological evolution (cf. Pinker & Bloom 1990)
 - Intentional design by individuals
- Computational models show a third alternative
 - Cultural evolution
 - Consistent with idea of the "invisible hand" (Keller 1990)
- But can we demonstrate this in real human agents?

• Combine diffusion chain and artificial language learning studies

- Combine diffusion chain and artificial language learning studies
- Cultural transmission of an "alien language"

- Combine diffusion chain and artificial language learning studies
- Cultural transmission of an "alien language"
 - I. Start off with a random artificial language

- Combine diffusion chain and artificial language learning studies
- Cultural transmission of an "alien language"
 - I. Start off with a random artificial language
 - 2. Ask an experimental subject to try and learn this language and test them

- Combine diffusion chain and artificial language learning studies
- Cultural transmission of an "alien language"
 - I. Start off with a random artificial language
 - 2. Ask an experimental subject to try and learn this language and test them
 - 3. Use their output on test as the language to teach the next subject in the experiment (and repeat)

Hypothesis

• There will be cumulative cultural adaptation of the language without intentional design by participants

Hypothesis

- There will be cumulative cultural adaptation of the language without intentional design by participants
- Two ways of verifying this:
 - The language should become easier to learn
 - The language should become structured

The Language

The Language

- A set of 27 possible "meanings"
 - Pictures with coloured objects in motion:
 - Three shapes $\Box \circ \Delta$
 - Three colours 🖉 🧲 🗲
 - Three motions ---- > /``./` (()

The Language

- A set of 27 possible "meanings"
 - Pictures with coloured objects in motion:
 - Three shapes $\Box \circ \Delta$

 - Three motions ----► , ``, ``
- A large set of possible "signals"
 - Random sequences of between two and four syllables chosen from a set of nine
 - No spaces

Procedure

Procedure

- Language divided randomly into two sets:
 - SEEN set: 14 string-picture pairs
 - UNSEEN set: remaining 13 string-picture pairs

Procedure

- Language divided randomly into two sets:
 - SEEN set: 14 string-picture pairs
 - UNSEEN set: remaining 13 string-picture pairs
- Subjects trained on SEEN set
Procedure

- Language divided randomly into two sets:
 - SEEN set: 14 string-picture pairs
 - UNSEEN set: remaining 13 string-picture pairs
- Subjects trained on SEEN set
- String displayed for I second, then string and picture for a further 5 seconds

Procedure

- Language divided randomly into two sets:
 - SEEN set: 14 string-picture pairs
 - UNSEEN set: remaining 13 string-picture pairs
- Subjects trained on SEEN set
- String displayed for I second, then string and picture for a further 5 seconds
- Tested on complete set,
 - randomly redivided into new SEEN and UNSEEN sets for next generation

kihemiwi

kihemiwi

kunige

Language becomes easier to learn

After Generation I:

After Generation I:

24 words

After Generation 10:

After Generation 10:

5 words

• Looks like it might be just that there are fewer words.

- Looks like it might be just that there are fewer words.
- If this were all that was going on, then subjects' performance on unseen items should be random

- Looks like it might be just that there are fewer words.
- If this were all that was going on, then subjects' performance on unseen items should be random
- This doesn't appear to be the case...

Language becomes systematic

After Generation 7: miniku

tupim

Language adapts to be structured

- Language adapts
 - Subjects are not aware of this (they aren't even aware they are being shown unseen items!)
 - Systematic underspecification is an adaptation by language to aid its own survival, since it makes language learnable despite stimulus poverty
- Cumulative cultural adaptation without

More interesting structure?

- In reality language exhibits structure (e.g. morphology, syntax) that makes it learnable and expressive
- There's no pressure for expressivity in the experiment

More interesting structure?

- In reality language exhibits structure (e.g. morphology, syntax) that makes it learnable and expressive
- There's no pressure for expressivity in the experiment
- Simple modification: filter out all ambiguous items from SEEN set before subjects see them

Language becomes easier to learn

Language becomes systematic

Example initial language

Example final language (10 "generations" later)

• Language adapts to the transmission "bottleneck"

- Language adapts to the transmission "bottleneck"
- It must be learned even though:
 - only a sub-sample is seen by learners
 - ambiguous signals are filtered out

- Language adapts to the transmission "bottleneck"
- It must be learned even though:
 - only a sub-sample is seen by learners
 - ambiguous signals are filtered out
- Morphological/syntactic structure is a solution to this problem

- Language adapts to the transmission "bottleneck"
- It must be learned even though:
 - only a sub-sample is seen by learners
 - ambiguous signals are filtered out
- Morphological/syntactic structure is a solution to this problem
- Note: subjects cannot be aware of the filtering, but language structure is very different
 - Demonstrates that adaptation is *non-intentional*
 - Culture gives us design without a designer
Conclusions

Conclusions

- Cultural evolution must be a crucial part of an explanatory biolinguistic account of language structure
 - We can study it in the lab
- Language evolution is not:
 - Natural selection of innate constraints that determine language structure

Conclusions

- Cultural evolution must be a crucial part of an explanatory biolinguistic account of language structure
 - We can study it in the lab
- Language evolution is not:
 - Natural selection of innate constraints that determine language structure
- So what's left for biological evolution?
 - Preadaptations enabling learning of complex sequential signals paired with complex meanings (we're the only primate that can do this)