Language, Culture and Biology: does language evolve to be passed on by us, and did humans evolve to let that happen?

Simon Kirby

Language Evolution & Computation Research Unit
Linguistics & English Language, PPLS
University of Edinburgh

www.ling.ed.ac.uk/~simon
Why is language interesting as a natural phenomenon?
Why is language interesting as a natural phenomenon?

• It’s unique.
Why is language interesting as a natural phenomenon?

• It’s unique.

• It’s a complex dynamical system on three timescales:
 1. individual learning
 2. social coordination/cultural transmission
 3. biological evolution
Why is language interesting as a natural phenomenon?

• It’s unique.

• It’s a complex dynamical system on three timescales:
 1. individual learning
 2. social coordination/cultural transmission
 3. biological evolution

• But does this matter?
 • Do we need to take this into account to explain why language is the way it is?
Evolutionary linguistics orthodoxy: learning & evolution matter

- One answer (e.g. Pinker & Bloom 1990):
 - explaining language structure means thinking about biological evolution of constraints on learning
Evolutionary linguistics orthodoxy: learning & evolution matter

- One answer (e.g. Pinker & Bloom 1990):
 - explaining language structure means thinking about biological evolution of constraints on learning

- Genetically determined Language Faculty shapes what languages we can learn, and this has fitness impact
Evolutionary linguistics orthodoxy: learning & evolution matter

• One answer (e.g. Pinker & Bloom 1990):
 • explaining language structure means thinking about biological evolution of constraints on learning

• Genetically determined Language Faculty shapes what languages we can learn, and this has fitness impact

• To explain adaptive structure in language, look to natural selection of learning constraints
Human nature determines human behaviour, i.e. innate learning mechanism determines language structure.
Evolutionary linguistics orthodoxy: learning & evolution matter

- Biological evolution explains adaptive behaviour, i.e. communicatively functional language
So what about the third timescale?

• Where does socio/cultural stuff fit in?
So what about the third timescale?

• Where does socio/cultural stuff fit in?

• Language does not spring directly from our language faculty!
So what about the third timescale?

- Where does socio/cultural stuff fit in?
- Language does not spring directly from our language faculty!
- It is inherited and constantly shaped by our membership of a speech community
So what about the third timescale?

- Where does socio/cultural stuff fit in?

- Language does not spring directly from our language faculty!
 - It is inherited and constantly shaped by our membership of a speech community

- Dual inheritance:
 - biological inheritance of language faculty, cultural inheritance of languages
How this fits in with our previous picture

• Our genes affect our learning biases/constraints, which somehow influence the socio/cultural process to give us the structural properties of language, which go on to affect our fitness
Our genes affect our learning biases/constraints, which *somehow* influence the socio/cultural process to give us the structural properties of language, which go on to affect our fitness.
Does this matter?
Can’t we just ignore this difficult stuff?

• Can simply ignore cultural transmission when making evolutionary arguments?
• Does it add anything substantial?
Does this matter?
Can’t we just ignore this difficult stuff?

• Can simply ignore cultural transmission when making evolutionary arguments?
 • Does it add anything substantial?

• Research programme initiated by Hurford in the early 90s to try and answer this
Methodology: how to study the influence of cultural transmission

- Intuitions about interacting dynamical systems are poor
 - *Models* allow us to study the mechanisms in an idealised setting.
- Apply understanding gained to real systems later.
Methodology: how to study the influence of cultural transmission

- Three broad types of models:
 - **Computational/robotic**
 Castello; Damper; de Beule; Bleys; Briscoe; Dowman; Gasser; Gong; Hawkey; Hoefler; **Hurford**; Kirby; Lakkaraju; Laskowski; Mehler; Schulz; A. Smith; K. Smith; **Steels**; Swarrup; Uno; Wang; Wellens; Worgan; Yamauchi; Zuidema...
 - **Mathematical**
 Baronchelli; Dowman; **Griffiths; Kalish**; Kirby; Nakamura; K. Smith...
 - **Experimental**
 Beqa; **Cornish**; Dowman; Feher; Flaherty; Kirby; Roberts; Scott-Phillips; A. Smith; K. Smith; Tamariz...
A broad framework:
The Iterated Learning Model
A broad framework: The Iterated Learning Model

1. Explicitly model individuals (population-level behaviour must be emergent)
A broad framework: The Iterated Learning Model

1. Explicitly model individuals (population-level behaviour must be emergent)

2. Individuals learn by observing instances of behaviour
A broad framework:
The Iterated Learning Model

1. Explicitly model individuals (population-level behaviour must be emergent)

2. Individuals *learn* by observing instances of behaviour

3. Individuals also *produce* behaviour that is the input to others’ learning
A broad framework: The Iterated Learning Model

- Models vary in a number of ways:
A broad framework: *The Iterated Learning Model*

- Models vary in a number of ways:
 - How is learning modelled?
 - e.g., is it the same for all individuals, or does it evolve biologically? How domain-specific is it? How constrained?
A broad framework:
The Iterated Learning Model

• Models vary in a number of ways:
 • How is learning modelled?
 e.g., is it the same for all individuals, or does it evolve biologically? How domain-specific is it? How constrained?
 • What is being learned?
 e.g., Learning to produce signals for meanings with varying degrees of explicitness about what those meanings are; learning to solve a task that requires communication.
A broad framework: The Iterated Learning Model

- Models vary in a number of ways:
 - How is learning modelled?
 e.g., is it the same for all individuals, or does it evolve biologically? How domain-specific is it? How constrained?
 - What is being learned?
 e.g., Learning to produce signals for meanings with varying degrees of explicitness about what those meanings are; learning to solve a task that requires communication.
 - What is the population structure?
 e.g., size; population turnover; spatial structure; social networks; horizontal vs. vertical transmission.
What have we learned from this modelling work?
What have we learned from this modelling work?

• Socio/cultural transmission is an *adaptive system*

 • Language can exhibit appearance of design *without* either natural selection or intentional design

 • It is adapting to ensure it’s *own* survival
What have we learned from this modelling work?

- Socio/cultural transmission is an *adaptive system*
 - Language can exhibit appearance of design *without* either natural selection or intentional design
 - It is adapting to ensure it’s *own* survival

- Clear imperative on culturally transmitted language *(Deacon, Christiansen)*:
 - To be transmitted with fidelity it must be learnable despite constraints placed on that transmission
 - Languages adapt to the nature of the transmission *bottleneck*
Structure as a hallmark of cultural adaptation
Structure as a hallmark of cultural adaptation

• Languages are strikingly non-random
Structure as a hallmark of cultural adaptation

• Languages are strikingly *non-random*
 • The have a partially predictable relationship between meanings and signals
 • If we know some meaning-signal pairs, we can accurately predict others
Structure as a hallmark of cultural adaptation

- Languages are strikingly non-random
 - The have a partially predictable relationship between meanings and signals
 - If we know some meaning-signal pairs, we can accurately predict others
- *No other species can do this* (without coding the lot innately).
Structure as a hallmark of cultural adaptation

• Languages are strikingly *non-random*
 • The have a partially predictable relationship between meanings and signals
 • If we know some meaning-signal pairs, we can accurately predict others
 • *No other species can do this* (without coding the lot innately).

• This is a cultural rather than biological adaptation
Structure as a hallmark of cultural adaptation
Structure as a hallmark of cultural adaptation

- **Computational models** (esp. Brighton):
 - Structure emerges from trade-off between learnability and expressivity in presence of bottleneck
Structure as a hallmark of cultural adaptation

- **Computational models** (esp. Brighton):
 - Structure emerges from trade-off between learnability and expressivity in presence of bottleneck
Structure as a hallmark of cultural adaptation

- **Computational models** (esp. Brighton):
 - Structure emerges from trade-off between learnability and expressivity in presence of bottleneck

- **Math models** (Kirby, Dowman Griffiths):
 - This happens *even without strong innate biases*
Structure as a hallmark of cultural adaptation

- **Computational models** (esp. Brighton):
 - Structure emerges from trade-off between learnability and expressivity in presence of bottleneck

- **Math models** (Kirby, Dowman Griffiths):
 - This happens even without strong innate biases

- **Experimental models** (e.g. Cornish):
 - Give us direct evidence in the lab
Cultural evolution in the lab

(Kirby, Cornish, Smith forthcoming)
Cultural evolution in the lab

(Kirby, Cornish, Smith forthcoming)

- Participants exposed to artificial language made up of picture/string pairs (initially random)
Cultural evolution in the lab

(Kirby, Cornish, Smith forthcoming)

- Participants exposed to artificial language made up of picture/string pairs (initially random)
- Try and learn this kunige
Cultural evolution in the lab
(Kirby, Cornish, Smith forthcoming)

- Participants exposed to artificial language made up of picture/string pairs (initially random)
- Try and learn this
- Tested on full set of “meanings”
Cultural evolution in the lab
(Kirby, Cornish, Smith forthcoming)

- Participants exposed to artificial language made up of picture/string pairs (initially random)
- Try and learn this
- Tested on full set of “meanings”
- Sample of output on test used as input language for next participant
Example initial language

<table>
<thead>
<tr>
<th>umonamo</th>
<th>kinahune</th>
<th>lahupine</th>
</tr>
</thead>
<tbody>
<tr>
<td>nelu</td>
<td>kanehu</td>
<td>namopihu</td>
</tr>
<tr>
<td>kapihu</td>
<td>humo</td>
<td>laupiki</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>moki</th>
<th>luneki</th>
<th>lanepi</th>
</tr>
</thead>
<tbody>
<tr>
<td>kalu</td>
<td>mola</td>
<td>pihukimo</td>
</tr>
<tr>
<td>nane</td>
<td>kalakihu</td>
<td>mokihuna</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>kilamo</th>
<th>kahuki</th>
<th>neluka</th>
</tr>
</thead>
<tbody>
<tr>
<td>pilu</td>
<td>neki</td>
<td>pinemohu</td>
</tr>
<tr>
<td>luki</td>
<td>namola</td>
<td>lumoka</td>
</tr>
</tbody>
</table>
Example final language
(10 “generations” later)

- Confirms computational results: structure emerges that optimises *learnability* and *expressivity*
What’s this got to do with evolutionary arguments?
What’s this got to do with evolutionary arguments?

- It breaks any straightforward link between genes and language structure
What’s this got to do with evolutionary arguments?

- It breaks any straightforward link between genes and language structure
- Adaptive structure no longer implies natural selection
What’s this got to do with evolutionary arguments?

- It breaks any straightforward link between genes and language structure
- Adaptive structure no longer implies natural selection
- Only weak innate biases required and may be weakened by co-evolution (Smith & Kirby)
What’s this got to do with evolutionary arguments?

- It breaks any straightforward link between genes and language structure
- Adaptive structure no longer implies natural selection
- Only weak innate biases required and may be weakened by co-evolution (Smith & Kirby)
- Fits observations about genes and tone languages (Dediu & Ladd)
So where does this leave biology?
So where does this leave biology?

- Models build a lot in:
So where does this leave biology?

- Models build a lot in:
 - Learning complex signals
So where does this leave biology?

• Models build a lot in:
 • Learning complex signals
 • Inferring meanings
So where does this leave biology?

• Models build a lot in:
 • Learning complex signals
 • Inferring meanings

• The real evolutionary story?
 • Not: natural selection of innate constraints that determine language structure
 • Instead: pre-adaptations that enable iterated learning
Preadaptations
Preadaptations

- A number of other species produce learned complex sequential signals (e.g. birds)
Preadaptations

• A number of other species produce learned complex sequential signals (e.g. birds)

• Transmitted by iterated learning, but do not carry semantics
Preadaptations

- A number of other species produce learned complex sequential signals (e.g. birds)
- Transmitted by iterated learning, but do not carry semantics
- Evolves for other reasons
 - Complex learned song is fitness indicator (e.g. Ritchie, Kirby & Hawkey; Okanoya)
Preadaptations
Preadaptations

• Inferring complex meanings is probably beyond birds
Preadaptations

• Inferring complex meanings is probably beyond birds

• Possible cline of abilities in other primates
 • Although no other primate can learn complex sequential signals
Preadaptations

• Inferring complex meanings is probably beyond birds

• Possible cline of abilities in other primates
 • Although no other primate can learn complex sequential signals

• Intentional inference plausibly evolves for reasons other than communication
Putting it together
Putting it together

- Darwin’s suggestion: a musical protolanguage
- Substrate for later externalising of meaning (cf. Fitch; Mithen)
Putting it together

- Darwin’s suggestion: a musical protolanguage
- Substrate for later externalising of meaning (cf. Fitch; Mithen)
- Ongoing experimental work (Scott-Phillips, Kirby & Ritchie):
 - How exactly do embodied sequential behaviours get exploited to carry meaning?
 - What biases do we have?
Putting it together

• Darwin’s suggestion: a musical protolanguage

• Substrate for later externalising of meaning (cf. Fitch; Mithen)

• Ongoing experimental work (Scott-Phillips, Kirby & Ritchie):
 • How exactly do embodied sequential behaviours get exploited to carry meaning?
 • What biases do we have?

• Once this is in place, linguistic structure is delivered by adaptation through iterated learning
Conclusion

• The hypothesis we are chasing is this:
Conclusion

• The hypothesis we are chasing is this:

1. Humans are unique in having the biological prerequisites for learned complex signals and inference of meaning
Conclusion

- The hypothesis we are chasing is this:

 1. Humans are unique in having the biological prerequisites for learned complex signals and inference of meaning
 2. Once we started using the former to signal the latter, cultural transmission of meaning-signal mappings became possible
Conclusion

• The hypothesis we are chasing is this:

1. Humans are unique in having the biological prerequisites for learned complex signals and inference of meaning
2. Once we started using the former to signal the latter, cultural transmission of meaning-signal mappings became possible
3. Cultural transmission of such mappings leads to adaptation of partially predictable structure optimising learnability and expressivity
The hypothesis we are chasing is this:

1. Humans are unique in having the biological prerequisites for learned complex signals and inference of meaning
2. Once we started using the former to signal the latter, cultural transmission of meaning-signal mappings became possible
3. Cultural transmission of such mappings leads to adaptation of partially predictable structure optimising learnability and expressivity
4. The key structural characteristics of human language are the inevitable consequence of this cultural adaptation process
Conclusion

• The hypothesis we are chasing is this:

1. Humans are unique in having the biological prerequisites for learned complex signals and inference of meaning
2. Once we started using the former to signal the latter, cultural transmission of meaning-signal mappings became possible
3. Cultural transmission of such mappings leads to adaptation of partially predictable structure optimising learnability and expressivity
4. The key structural characteristics of human language are the inevitable consequence of this cultural adaptation process

• Still much work to be done, but multiple modelling strategies represent the best approach.