What cultural evolution tells us about the innateness of language

Simon Kirby
Language Evolution & Computation Research Unit
Linguistics & English Language, PPLS
University of Edinburgh
www.ling.ed.ac.uk/~simon
What’s wrong with this picture?
What’s wrong with this picture?

vs.

“The big language evolution debate”
Nativism and culture
Nativism and culture

• Chomsky and Pinker:
 • are both nativists
 • neither appear to believe in a significant explanatory role for cultural evolution
Nativism and culture

• Chomsky and Pinker:
 • are both nativists
 • neither appear to believe in a significant explanatory role for cultural evolution

• I want to argue that these two go together

• If you take cultural evolution seriously, it has surprising implications for nativism
What do I mean by innateness?
What do I mean by innateness?

- Everything we bring to the task of language learning that is independent of the data
What do I mean by innateness?

- Everything we bring to the task of language learning that is independent of the data

- The real questions:
 - what is the content of innateness?
 - is it specifically linguistic?
What do I mean by innateness?

Everything we bring to the task of language learning that is independent of the data

The real questions:
 - what is the content of innateness?
 - is it specifically linguistic?

Linguistic nativism:
 - strong, language-specific constraints
Why believe in linguistic nativism?
Why believe in linguistic nativism?

- **UNIVERSALS**
 - The constraints on cross-linguistic variation directly reflect the languages we can acquire
Why believe in linguistic nativism?

- **UNIVERSALS**
 - The constraints on cross-linguistic variation directly reflect the languages we can acquire

- **APPEARANCE OF DESIGN**
 - Language structure is adapted to communication. Biological evolution only explanation
Why believe in linguistic nativism?

- **UNIVERSALS**
 - The constraints on cross-linguistic variation directly reflect the languages we can acquire

- **APPEARANCE OF DESIGN**
 - Language structure is adapted to communication. Biological evolution only explanation

- **POVERTY OF THE STIMULUS**
 - Given limited evidence, language acquisition would be impossible without significant innate knowledge
Cultural evolution
Cultural evolution

• Taking cultural evolution into account renders all three reasons suspect
Cultural evolution

- Taking cultural evolution into account renders all three reasons suspect

- Cultural evolution:
 - the analog of biological evolution in the domain of socially (rather than genetically) transmitted information

- Arguably, language is the best example in nature of a culturally transmitted system
Iterated Learning

- One mechanism for cultural evolution

- *Iterated Learning*: process whereby a behaviour is acquired through observation of another’s behaviour, who acquired it in the same way
Iterated Learning

• One mechanism for cultural evolution

• *Iterated Learning*: process whereby a behaviour is acquired through observation of another’s behaviour, who acquired it in the same way
Iterated Learning

- Nothing particularly controversial about this
- Nevertheless, it has unexpected properties we are only beginning to appreciate
- How do we study it?
 - Formal models
 - Experimental models with human participants
A formal model of Iterated Learning

Kirby, Dowman & Griffiths (2007), PNAS
A formal model of Iterated Learning

• Is it right to assume that universals are transparently related to innate constraints?

Kirby, Dowman & Griffiths (2007), PNAS
A formal model of Iterated Learning

• Is it right to assume that universals are transparently related to innate constraints?

• Need:
 • a model of innate contributions to learning,
 • and a way of telling what language universals this gives rise to.

Kirby, Dowman & Griffiths (2007), PNAS
A formal model of Iterated Learning

• Is it right to assume that universals are transparently related to innate constraints?

• Need:
 • a model of innate contributions to learning,
 • and a way of telling what language universals this gives rise to.

• Use *Bayesian* model of learning

Kirby, Dowman & Griffiths (2007), *PNAS*
Bayesian Iterated Learning
Bayesian Iterated Learning

- Learners combine *experience* with innately provided *prior bias* to calculate the probability of each language.
Bayesian Iterated Learning

- Learners combine experience with innately provided prior bias to calculate the probability of each language
- Bayes rule gives us a simple model of such a learner

\[p(h|d) \propto p(d|h)p(h) \]

- Allows us to provide a model of innateness, \(p(h) \), and predict what language (hypothesis), \(h \), a learner will pick given a given set of data, \(d \)
Bayesian Iterated Learning

- Learners combine experience with innately provided prior bias to calculate the probability of each language.

- Bayes rule gives us a simple model of such a learner:

\[p(h|d) \propto p(d|h)p(h) \]

- Allows us to provide a model of innateness, \(p(h) \), and predict what language (hypothesis), \(h \), a learner will pick given a given set of data, \(d \)
Bayesian Iterated Learning

\[p(\text{h is chosen} | d) \quad p(d | h) \quad p(\text{h is chosen} | d) \]
Bayesian Iterated Learning

- Imagine a chain of these learners, each one’s output the next one’s learning data:

\[p(h_{\text{is chosen}}|d) \quad p(d|h) \quad p(h_{\text{is chosen}}|d) \]

\[d_0 \rightarrow h_1 \rightarrow d_1 \rightarrow h_2 \rightarrow \cdots \]
Bayesian Iterated Learning

- Imagine a chain of these learners, each one’s output the next one’s learning data:

\[\vdots \rightarrow d_0 \rightarrow h_1 \rightarrow d_1 \rightarrow h_2 \vdots \]

- There’s a neat mathematical trick that lets us work out what will happen here to the probability of different languages in the limit
From innateness to universals

- To recap:
 - If we think of innateness in terms of prior bias
 - then we can work out what languages will emerge from iterated learning
From innateness to universals

- To recap:
 - If we think of innateness in terms of *prior bias*
 - then we can work out what languages will emerge from iterated learning

![Diagram showing the relationship between Innateness and Universals](image)
A simple example: regularity
A simple example: regularity

- Model language as a set of meanings
A simple example: regularity

- Model language as a set of meanings
- Meanings can be expressed regularly, or irregularly
A simple example: regularity

- Model language as a set of meanings
- Meanings can be expressed regularly, or irregularly
- Start with the assumption that there is a slight innate bias in favour of regularity
 - We can vary the strength of this bias
 - It’s reasonable to assume this isn’t language specific
A simple example: regularity

- Model language as a set of meanings
- Meanings can be expressed regularly, or irregularly
- Start with the assumption that there is a slight innate bias in favour of regularity
 - We can vary the strength of this bias
 - It’s reasonable to assume this isn’t language specific
- What happens?
Probability of language by type: strong bias
\((\alpha=1, \varepsilon=0.05, 4 \text{ meanings, 4 classes}) \)
Probability of language by type: strong bias
\((\alpha=1, \varepsilon=0.05, 4\text{ meanings, 4 classes})\)
Probability of language by type: strong bias
(\(\alpha=1\), \(\varepsilon=0.05\), 4 meanings, 4 classes)

Prior

m=10

regular

irregular
Probability of language by type: strong bias
($\alpha=1$, $\varepsilon=0.05$, 4 meanings, 4 classes)

- Regular:
 - aaaa
 - aaab
 - aabb
 - aabc
 - abcd

- Irregular:
 - m=10
 - m=6

Prior
Probability of language by type: strong bias
($\alpha=1, \varepsilon=0.05, 4$ meanings, 4 classes)
Probability of language by type: strong bias
($\alpha=1$, $\epsilon=0.05$, 4 meanings, 4 classes)

Strength of language universal depends on amount of data seen
Probability of language by type: weak bias
($\alpha=40$, $\varepsilon=0.05$, 4 meanings, 4 classes)
Probability of language by type: weak bias
($\alpha=40$, $\varepsilon=0.05$, 4 meanings, 4 classes)

Strength of language universal independent of strength of innate preference!
• What’s innate matters, but you can’t predict language universals from innateness

• Equally, you can’t infer innateness from universals.

• Strong universals do not imply strong innate constraints

• Neatly predicts Dediu & Ladd’s (2007) genes/tone correlation
Linguistic adaptation
Linguistic adaptation

• Language is *adapt*ing culturally

• The languages we see are the ones optimised for transmission
 • No need for natural selection
Linguistic adaptation

- Language is *adapting* culturally
- The languages we see are the ones optimised for transmission
 - No need for natural selection
- The tougher the transmission “bottleneck”, the more pressure there is to adapt
 - Turns the poverty of the stimulus problem on its head
 - Explains the frequency/irregularity correlation in morphology
Irregularity by frequency
($\alpha=1$, $\varepsilon=0.05$, 8 meanings, 4 classes)

- $m=10$
- prior
Irregularity by frequency
($\alpha=1$, $\epsilon=0.05$, 8 meanings, 4 classes)

Irregularity changes with frequency even though innate preference is uniform.
Beyond formal models
Beyond formal models

• Can we replicate the modelling results in the lab?
Beyond formal models

• Can we replicate the modelling results in the lab?
• Is our model of learning reasonable?
• Can this kind of evolution happen in a reasonable time-scale?
• Can cultural adaptation happen without human intention?
An experimental paradigm

Cornish, K. Smith, Tamariz, A. Smith, Flaherty, Beqa
An experimental paradigm

Cornish, K. Smith, Tamariz, A. Smith, Flaherty, Beqa

• Participants exposed to artificial language made up of picture/string pairs (typically initially random)
An experimental paradigm

Cornish, K. Smith, Tamariz, A. Smith, Flaherty, Beqa

• Participants exposed to artificial language made up of picture/ string pairs (typically initially random)

• Try and learn this kunige
An experimental paradigm

Cornish, K. Smith, Tamariz, A. Smith, Flaherty, Beqa

• Participants exposed to artificial language made up of picture/string pairs (typically initially random)

• Try and learn this

• Tested on full set of “meanings”
An experimental paradigm

Cornish, K. Smith, Tamariz, A. Smith, Flaherty, Beqa

• Participants exposed to artificial language made up of picture/string pairs (typically initially random)
• Try and learn this
• Tested on full set of “meanings”
• Output on test used as input language for next participant
Explorations
Explorations

• We can vary the same parameters as in the formal models:
 • How much of the language the subjects are exposed to
 • Frequency of meanings
 • Structure of meaning space

• What are the results?
Explorations

• We can vary the same parameters as in the formal models:
 • How much of the language the subjects are exposed to
 • Frequency of meanings
 • Structure of meaning space

• What are the results?
 • Language adapts
Study 1: Emergence of structure

Cornish (2006); Kirby, Cornish & Smith (forthcoming)
Study 1: Emergence of structure

- Meanings are moving coloured shapes
- 3 x 3 x 3 meaning space
- Initial language completely random (and hard to learn!)

Cornish (2006); Kirby, Cornish & Smith (forthcoming)
Study 1: Emergence of structure

- Meanings are moving coloured shapes
- $3 \times 3 \times 3$ meaning space
- Initial language completely random (and hard to learn!)
- Over generations of participants, language becomes gradually easier to learn

Cornish (2006); Kirby, Cornish & Smith (forthcoming)
Study 1: Emergence of structure

- Meanings are moving coloured shapes
 - 3 x 3 x 3 meaning space
- Initial language completely random (and hard to learn!)
- Over generations of participants, language becomes gradually easier to learn
- Compositional structure emerges

Cornish (2006); Kirby, Cornish & Smith (forthcoming)
Example initial language

<table>
<thead>
<tr>
<th>Lumonamo</th>
<th>Kinahune</th>
<th>Lahupine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nelu</td>
<td>Kanehu</td>
<td>Namopihu</td>
</tr>
<tr>
<td>Kapihu</td>
<td>Humo</td>
<td>Lahupiki</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Moki</th>
<th>Luneki</th>
<th>Lanepi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalu</td>
<td>Mola</td>
<td>Pihukimo</td>
</tr>
<tr>
<td>Nane</td>
<td>Kalakihu</td>
<td>Mokihuna</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kilamo</th>
<th>Kahuki</th>
<th>Neluka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilu</td>
<td>Neki</td>
<td>Pinemohu</td>
</tr>
<tr>
<td>Luki</td>
<td>Namola</td>
<td>Lumoka</td>
</tr>
</tbody>
</table>
Example final language
(10 “generations” later)

<table>
<thead>
<tr>
<th></th>
<th>n-ere-ki</th>
<th>l-ere-ki</th>
<th>renana</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n-ehe-ki</td>
<td>l-aho-ki</td>
<td>r-ene-ki</td>
</tr>
<tr>
<td></td>
<td>n-eke-ki</td>
<td>l-ake-ki</td>
<td>r-ahe-ki</td>
</tr>
<tr>
<td></td>
<td>n-ere-plo</td>
<td>l-ane-plo</td>
<td>r-e-plo</td>
</tr>
<tr>
<td></td>
<td>n-eho-plo</td>
<td>l-aho-plo</td>
<td>r-eho-plo</td>
</tr>
<tr>
<td></td>
<td>n-eki-plo</td>
<td>l-aki-plo</td>
<td>r-aho-plo</td>
</tr>
<tr>
<td></td>
<td>n-e-pilu</td>
<td>l-ane-pilu</td>
<td>r-e-pilu</td>
</tr>
<tr>
<td></td>
<td>n-eho-pilu</td>
<td>l-aho-pilu</td>
<td>r-eho-pilu</td>
</tr>
<tr>
<td></td>
<td>n-eki-pilu</td>
<td>l-aki-pilu</td>
<td>r-aho-pilu</td>
</tr>
</tbody>
</table>
Study 2:
Frequency/irregularity

Beqa (2007); Beqa, Kirby & Hurford (forthcoming)
Study 2: Frequency/irregularity

- Meanings are actions performed by male or female agents
- Half meanings are frequently seen, other half infrequent

Beqa (2007); Beqa, Kirby & Hurford (forthcoming)
Study 2: Frequency/irregularity

- Meanings are actions performed by male or female agents.
- Half meanings are frequently seen, other half infrequent.
- Initial language consists of verbs, half inflecting for gender regularly, half suppletives.

Beqa (2007); Beqa, Kirby & Hurford (forthcoming)
Study 2: Frequency/irregularity

- Meanings are actions performed by male or female agents
- Half meanings are frequently seen, other half infrequent
- Initial language consists of verbs, half inflecting for gender regularly, half suppletives
- Over generations:
 - language becomes easier to learn
 - *infrequent* irregulars regularise

Beqa (2007); Beqa, Kirby & Hurford (forthcoming)
Frequency/irregularity

Frequent
- vipirir / vipirar ➔ rivipir / rivipar
- tada / sinefu ➔ tada / senoufe
- ridetir / ridetar ➔ ravipir / ravipar

Infrequent
- gidu / riwe ➔ riwa / riwe
- livove / domipu ➔ rimipir / rimipar
Frequency/irregularity

Frequent
- vipirir / vipirar
 → rivipir / rivipar
- tada / sinefu
 → tada / senoufe
- ridetir / ridetar
 → ravipir / ravipar

Infrequent
- gidu / riwe
 → riwa / riwe
- livove / domipu
 → rimipir / rimipar
Pulling it all together
Pulling it all together

• Language is culturally transmitted
 • Surprisingly little investigated in the literature
Pulling it all together

- Language is culturally transmitted
 - Surprisingly little investigated in the literature
- Reduces three different sources of support for linguistic nativism:
Pulling it all together

• Language is culturally transmitted
 • Surprisingly little investigated in the literature

• Reduces three different sources of support for linguistic nativism:
 • strong universals do not imply strong constraints
Pulling it all together

• Language is culturally transmitted
 • Surprisingly little investigated in the literature

• Reduces three different sources of support for linguistic nativism:
 • strong universals do not imply strong constraints
 • appearance of design does not imply natural selection
Pulling it all together

• Language is culturally transmitted
 • Surprisingly little investigated in the literature

• Reduces three different sources of support for linguistic nativism:
 • strong universals do not imply strong constraints
 • appearance of design does not imply natural selection
 • stimulus poverty actually drives cultural adaptation, reducing the problem innate knowledge is presumed to solve
A final note...
A final note...

• I am not denying innateness
 • It’s just not necessarily strongly constraining or language specific
A final note...

- I am not denying innateness
 - It’s just not necessarily strongly constraining or language specific

- I am not denying a role for biological evolution

- The real question is revealed: *How did humans end up being the only species able to transmit a symbolic system culturally?*